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Abstract: Protein-protein interactions referring to the associations
of protein molecules are crucial for many biological functions. A ma-
jor challenge in text mining for biomedicine is automatically extracting
protein-protein interactions from the vast amount of biomedical litera-
ture since most knowledge about them still hides in biomedical publi-
cations. We have constructed an information extraction system based
on a semantic parser employing the hidden vector state (HVS) model
for protein-protein interactions. Unlike other hierarchical parsing mod-
els which require fully annotated treebank data for training, the HVS
model can be trained using only lightly annotated data whilst simulta-
neously retaining sufficient ability to capture the hierarchical structure
needed to robustly extract semantics in task domain. When applied it
in extracting protein-protein interactions from biomedical literature, we
found that it performed better than other established statistical meth-
ods and achieved 61.5% in F-score with balanced recall and precision
values. Moreover, the statistical nature of the pure data-driven HVS
model makes it intrinsically robust and it can be easily adapted to other
domains, which is rarely mentioned and possessed by other rule-based
approaches.
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1 Introduction

Protein-protein interactions referring to the associations of protein molecules
are crucial for many biological functions. Understanding protein functions and
how they interact with each other gives biologists a deep insight into understand-
ing of living cells as complex machines, disease process and provides targets for
effective drug designs. Although many databases, such as BIND [1], IntAct [2]
and STRING [3], have been built to store protein-protein interaction information,
constructing such databases is time-consuming and needs immense amount of man-
ual efforts to ensure the correctness of data. To date, vast quantity of knowledge
about protein-protein interactions still hides in biomedical literature. As a result,
automatically extracting these information from biomedical text holds the promise
of easily discovering large amounts of biological knowledge in computer-accessible
form.

At the earlier stage of this field, statistical methods [4,5] were employed to search
abstracts or sentences which may describe protein-protein interactions based on
the co-occurrence of protein names. Following that, other approaches [6,7] focused
on detecting proteins pairs and determining the relations between them based on
some probability scores. Obviously, these approaches can not achieve satisfiable
performance because they ignore sentence structures which play an important role
in expressing protein-protein interactions.

Since then, more and more complicated approaches have been proposed. They
can be roughly classified into two categories: those based on pattern matching and
those employing parsing techniques. Approaches using pattern matching [8–10]
rely on a set of predefined or automatically generated patterns to extract protein-
protein interactions. For example, [8] manually defined some patterns which were
then augmented with additional restrictions based on word forms and syntactic
categories to generate better matching precision. It achieved high performance
with a recall rate of 85% and a precision rate of 84% for Saccharomyces cerevisiae
(yeast) and Escherichia coli. [9] introduced a probability score for each predefined
rule based on its reliability. Interaction events were assigned scores depending on
their matched patterns and the distances between protein names. They also con-
sidered negative sentences. However, these methods are not feasible in practical
applications as they require heavy manual efforts to define patterns when shifting
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to another domain. Parsing based methods employ either shallow or deep pars-
ing. Shallow parsers [11, 12] break sentences into none-overlapping chunks. Local
dependencies are extracted among chunks without reconstructing the structure of
an entire sentence. The precision and recall rates of these approaches published so
far range from 50% to 80% and from 30% to 80%, respectively. Systems based on
deep parsing [13,14] deal with the structure of an entire sentence and therefore are
potentially more accurate. [13] defined a grammar for biomedical domain and used
a full parser to extract interaction events. Another full parsing based approach uses
the context-free grammar (CFG) to extract protein interaction information with a
recall rate of 63.9% and a precision rate of 70.2% [14].

In this paper, we propose an approach based on the hidden vector state (HVS)
model to automatically extract protein-protein interactions from biomedical liter-
ature. The HVS model has been successfully applied to discover semantic infor-
mation in spoken utterances [15]. However, it is not straightforward to extend the
usage of the HVS model to the biomedical literature domain. One major reason
is that spoken utterances are normally simple and short. Unlike written docu-
ments, there are normally no complex syntactic structures in spoken utterances.
It therefore poses a challenge on how to effectively and efficiently extract semantic
information from much more complicated written documents. This paper explores
the performance of our approach based on the HVS model for protein-protein in-
teractions extraction [16].

Compared to the previously published approaches, our method has the potential
to stand out in several points. Firstly, the HVS model can be easily adapted to other
domains by adding a small set of adaption training data. Secondly, by employing
the preprocessing method such as sentence simplification and the postprocessing
method including relation extraction from the 5-best parsing results, the HVS model
gives fairly stable performance on complex sentences. This shows that the ability
of our method on handling complex sentence structures is almost the same as that
on handling simple sentence structures, which is rarely possessed by the rule-based
approaches. In addition, the performance of our approach based on the HVS model
is so far the best among all the statistical approaches employing semantic parsing.
It is also comparable to the performance of the full parsing approach employing
CFG with a recall of 63.9% and a precision of 70.2% [14], although, in general, it
is difficult to compare our method with other existing approaches directly, because
there is neither an accurate task definition on processing the MEDLINE abstracts
nor a benchmark dataset for extracting protein-protein interactions a.

The rest of the paper is organized as follows: In the next section, we will
briefly describe the HVS model and how it can be used to extract protein-protein
interactions from biomedical literature. In section 3, we present the overall structure
of the extraction system and its components. Experimental results are discussed
in section 4. Adaptation methods and results are presented in section 5. Finally,
section 6 concludes the paper and gives future directions.

aBioCreAtIvE challenge [17] began in 2004 and provided two common evaluation tasks to
assess the state of the art for text mining applied to biological problems. Currently, extraction
of protein-protein interactions from text is targeted as a main task in BioCreAtIvE II 2006 and
evaluation corpora are still not released to the public.
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Figure 1 An example of a simplified parse tree and its vector state equivalent.
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2 The Hidden Vector State Model

In linguistics, semantic analysis is defined as the process of relating syntactic
structures to their language-independent meanings. Given a semantic parse tree
for a sentence as illustrated in the upper part of Figure 1, the semantic information
relating to each word in the sentence is fully described by the semantic concept or
tag ranging from the pre-terminal node to the root node. If storing these semantic
information as a label for each word, semantic parsing can be formulated as a
sequence labelling problem. Let W denote a word sequence 〈w1, w2, · · · , wn〉, the
semantic parsing task is to predict a label sequence S = 〈s1, s2, · · · , sn〉.

Existing statistical approaches to this problem include sliding-window meth-
ods [18], hidden Markov models [19], maximum entropy Markov models [20], con-
ditional random fields [21], graph transformer networks [22] etc [for a review, see
[23]].

While the aforementioned approaches require fully annotated training corpora
for model parameter estimation in general, we propose a hidden vector state (HVS)
model [15] which only needs abstract semantic annotations serving as constraints
to limit the forward-backward search during the Expectation Maximization (EM)
training. The HVS model is a discrete Hidden Markov Model (HMM) in which
each HMM state represents the state of a push-down automaton with a finite stack
size. This is illustrated in Figure 1 which shows the sequence of HVS stack states
corresponding to the given parse tree. State transitions are factored into a stack
shift followed by a push of one or more new preterminal semantic concepts relating
to the next input word. If such operations are unrestricted, the state space will
grow exponentially and the same computational tractability issues of hierarchical
HMMs are incurred. By limiting the maximum stack depth and only allowing one
new preterminal semantic concept to be pushed onto the stack for each new input
word, the state space can be reduced to a manageable size. The result is a model
which is complex enough to capture hierarchical structure but which can be trained
automatically from only lightly annotated data.
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The HVS model computes a hierarchical parse tree for each word sequence W ,
and then extracts semantic concepts C from this tree. Each semantic concept
consists of a name-value pair where the name is a dotted list of primitive semantic
concept labels. For example, the semantic concepts extracted from the parse tree
illustrated in the upper part of Figure 1 is shown in equation 1

PROTEIN=Spc97

PROTEIN.ACTIVATE=interacts

PROTEIN.ACTIVATE.PROTEIN=Spc98

PROTEIN.ACTIVATE.PROTEIN=Tub4

(1)

In the HVS-based semantic parser, conventional grammar rules are replaced by
three probability tables. Given a word sequence W , a concept vector sequence C

and a sequence of stack pop operations N , the joint probability of P (W,C, N) can
be decomposed as

P (W,C, N) =

T∏

t=1

P (nt|ct−1)P (ct[1]|ct[2 · · ·Dt])P (wt|ct) (2)

where T is the length of the word sequence W , nt is the vector stack shift operation,
ct denotes the vector state at word position t, which consists of Dt semantic concept
labels (tags), i.e. ct = [ct[1], ct[2], ..., ct[Dt]], ct[1] = cwt

is the new pre-terminal
semantic label assigned to word wt at word position t and ct[Dt] is the root concept
label (SS in Figure 1).

Thus, the HVS model consists of three types of probabilistic move, each move
being determined by a discrete probability table:

1. popping semantic labels off the stack - P (n|c);

2. pushing a pre-terminal semantic label onto the stack - P (c[1]|c[2 · · ·D]);

3. generating the next word - P (w|c).

Each of these probability tables are estimated in training using an EM algorithm
and then used to compute parse trees at run-time using Viterbi decoding. In
training, each word sequence W is marked with the set of semantic concepts C that
it contains. For example, if the sentence shown in Figure 1 was in the training set,
then it would be marked with the four semantic concepts given in equation 1. For
each word wk of each training sentence W , EM training uses the forward-backward
algorithm to compute the probability of the model being in stack state c when
wk is processed. Without any constraints, the set of possible stack states would
be intractably large. However, in the HVS model this problem can be avoided by
pruning out all states which are inconsistent with the semantic concepts associated
with W . The details of how this is done are given in [15].

3 System Overview

The overall architecture of the extraction system is shown in Figure 2. It works
as follows. At the beginning, abstracts (or full papers) are retrieved from MED-
LINE and split into sentences. Protein names and other biological terms are then
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Figure 2 System architecture.
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identified based on a pre-constructed biological term dictionary. After that, each
sentence is parsed by the HVS semantic parser. Finally, protein-protein interac-
tions are extracted from the tagged sentences using a set of manually-defined simple
rules. An example of the procedure is illustrated in Figure 3. The details of each
step are described below.
1. Preprocessing - identification of protein names, other biological terms and inter-
action keywords, simplification of sentences.
To extract protein-protein interactions from literature, protein names need to be
identified firstly, which still remains as a challenging problem. In our system, pro-
tein names and other biological terms such as “adenovirus”, “NK cells” are identi-
fied based on a manually constructed dictionary of biological terms. In addition, a
category/keyword dictionary for identifying terms describing interactions has also
been built based on [14]. All identified biological terms and interaction keywords
are then replaced with their respective category labels as can be seen in Figure 3
(b). By doing so, the vocabulary size of the training corpus can be reduced and
the data sparseness problem would be alleviated.

We believe that some types of words, such as articles, adjectives, do not con-
tribute to the expression of protein-protein interactions. POS tagging is employed
to parse sentences and these types of words are removed. To avoid removing some
adjective words such as “inhibitory” which may indicate protein-protein interaction,
words whose etyma can be found in the keyword dictionary are kept.

2. Parsing sentences using the HVS model.
Sentences which contain at least two distinct proteins identified by step 1 are then
parsed with the HVS model. Before doing so, the HVS model needs to be trained
using a lightly annotated training corpus. An annotation example is shown below.
Sentence: CUL-1 was found to interact with SKR-1, SKR-2, SKR-3, SKR-7,

SKR-8 and SKR-10 in yeast two-hybrid system.
Annotation: PROTEIN NAME(ACTIVATE(PROTEIN NAME))
We suspected that prepositions play an important role in expressing embedding

semantic relationships, therefore we provided another set of annotations which in-
clude the preposition information as shown below:
PROTEIN NAME(ACTIVATE(WITH(PROTEIN NAME)))

It can be seen that unlike fully-annotated treebank data, no explicit semantic
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Figure 3 An example of a procedure for information extraction using the HVS model.

Heteronuclear NMR spectroscopy has
been utilized to map the YUH1 binding
surface on ubiquitin.

1) -87.08 SS(sent_start) SS+PROTEIN_NAME(Heteronuclear) SS+PROTEIN_NAME+DUMMY(NMR)
SS+PROTEIN_NAME+DUMMY(spectroscopy) SS+PROTEIN_NAME+ATTACH(has)
SS+PROTEIN_NAME+ATTACH+DUMMY(been) SS+PROTEIN_NAME+ATTACH+DUMMY(utilized)
SS+PROTEIN_NAME+ATTACH+TO(to) SS+PROTEIN_NAME+ATTACH+TO+DUMMY(map)
SS+PROTEIN_NAME+ATTACH+TO+DUMMY(the) SS+PROTEIN_NAME+ATTACH+TO+PROTEIN_NAME(protein_name)
SS+PROTEIN_NAME+ATTACH+TO+PROTEIN_NAME+DUMMY(attach) SS+PROTEIN_NAME+ATTACH+TO+DUMMY(surface)
SS+PROTEIN_NAME+ATTACH+TO+DUMMY(on) SS+PROTEIN_NAME+ATTACH+TO+PROTEIN_NAME(protein_name)
SS+SE(sent_end)
2) -87.12 SS(sent_start) SS+PROTEIN_NAME(Heteronuclear) SS+PROTEIN_NAME+DUMMY(NMR)
SS+PROTEIN_NAME+DUMMY(spectroscopy) SS+PROTEIN_NAME+MODIFY(has) SS+PROTEIN_NAME+MODIFY+BY(been)
SS+PROTEIN_NAME+MODIFY+BY+PROTEIN_NAME(utilized)
SS+PROTEIN_NAME+MODIFY+BY+PROTEIN_NAME+DUMMY(to)
SS+PROTEIN_NAME+MODIFY+BY+PROTEIN_NAME+DUMMY(map) SS+PROTEIN_NAME+MODIFY+BY+PROTEIN_NAME(the)
SS+PROTEIN_NAME(protein_name) SS+PROTEIN_NAME+ATTACH(attach)  SS+PROTEIN_NAME+ATTACH+TO(surface)
SS+PROTEIN_NAME+ATTACH+TO+DUMMY(on) SS+PROTEIN_NAME+ATTACH+TO+PROTEIN_NAME(protein_name)
SS+SE(sent_end)

YUH1 binds ubiquitin

 (identify protein name,
other biology terms,

interaction keyword )  (use the HVS model)

( extract protein-protein interaction information )

(a)
(b)

(c)

(d)

Preprocessor

Semantic parser

Extractor

sent_start Heteronuclear NMR spectroscopy has been utilized to
map the protein_name attach surface on protein_name send_end

tag/word pairs are given. Only the abstract annotations are provided to guide the
EM training of the HVS model.

3. Extracting protein-protein interactions.
Instead of employing the best parsing result, protein-protein interactions are ex-
tracted based on the 5-best parsing results for each sentence (top 2 parsing result
examples are shown in Figure 3 (c)). The extracting process follows the rules below:

• Ignore the semantic tag if its preterminal tag is DUMMY;

• If an interaction keyword such as “activate”, “attach” etc is tagged with
“DUMMY” in the best parsing result of a sentence, then check the second best
parsing result and so on until this interaction keyword is tagged with its cor-
responding category label. If such a parsing result can be found, then extract
the protein-protein interactions from this parsing output. Otherwise, the best
parsing result will still be used. Figure 3 (c, d) illustrates the application of
this rule where the protein-protein interaction information is extracted from
the second best parsing result, instead of the best one.

• If a semantic tag with the form SS+PROTEIN NAME+REL+PRO TEIN NAME

or SS+REL+PROTEIN NAME+PROTEIN NAME can be found in the parsing
result, where REL can be any of the category names describing the interactions
such as “activate”, “inhibit” etc, then check whether the corresponding word
is in fact a protein name. If so, search backwards or forward for the interaction
keyword and the other protein name. Otherwise, ignore this semantic tag.

Based on the rules described above, protein-protein interactions can be easily ex-
tracted as shown in Figure 3 (d).
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Figure 4 (a) Histogram of sentence length in the test set after simplification. (b)
Histogram of length decrease of sentences in the test set by employing simplification.
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4 Results

A corpus named Corpus I was constructed based on the GENIA corpus [24].
GENIA is a collection of 2000 research abstracts selected from the search results
of MEDLINE database using keywords (MESH terms) “human, blood cells and
transcription factors”. All these abstracts were then split into sentences and those
containing more than two protein names and at least one interaction keyword were
kept. Altogether 3533 sentences were left and 2500 sentences were sampled to build
Corpus I.

We performed 10-fold cross validation on our method. The corpus I was ran-
domly split into the training set and the test set at the ration of 9:1. The test
set consists of 250 sentences and the remaining 2250 sentences were used as the
training set. The experiments were conducted ten times (i.e Experiment 1, 2, ...,
10 in Table 1) with different training and test data each round.

Figure 4 (a) illustrates the distribution of the sentence length in the test set
after sentence simplification. Here a protein name consisting of several words is
considered as one word. Figure 4 (b) shows the decrease of sentence length in the
test set by employing sentence simplification. It can be observed that sentence
simplification can effectively eliminate 1 to 7 words for most sentences and the
sentence length is reduced to the range of 20-40.

The average processing speed on Itanium-1 model Linux server equipped with
733Mhz processor and 4 GB RAM was 0.23s per sentence.

The results reported in this paper are based on the values of TP (true positive),
FP (false positive), and FN (false negative). TP is the number of correctly ex-
tracted interactions. (TP+FN) is the number of all interactions in the test set and
(TP+FP) is the number of all extracted interactions. F-score is computed using
the formula below:

F-score =
2 · Recall · Precision

Recall + Precision
(3)

where Recall is defined as TP/(TP+FN) and Precision is defined as TP/(TP+FP).
Table 1 shows the evaluation results of 10-fold cross-validation where the average

F-score value obtained is 61.5% with the balanced recall and precision values.
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Table 1 Results of 10-fold cross-validation

Experiment TP+FN TP NP Recall Precision F-Score
(%) (%) (%)

1 367 207 156 56.4 57.0 56.7
2 394 220 156 55.8 58.5 57.1
3 386 241 176 62.4 57.8 60.0
4 400 268 136 67.0 66.3 66.7
5 427 278 153 65.1 64.5 64.8
6 391 234 155 59.8 60.2 60.0
7 371 223 168 60.1 57.0 58.5
8 369 252 145 68.3 63.5 65.8
9 385 230 131 59.7 63.7 61.7
10 390 244 146 62.6 62.6 62.6

overall 3880 2397 1522 61.8 61.2 61.5

Figure 5 (a) Comparisons between results obtained from 1-best v.s. 5-best parsing
results. (b) Comparisons between results with and without the preposition information.
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4.1 Results based on the 5-best parsing results

Instead of using the best semantic parsing result, we performed protein-protein
interaction extraction based on the 5-best parsing results as mentioned in section 3.
Figure 5 (a) illustrated the F-scores obtained from the 1-best or 5-best parsing re-
sults. It can be seen that using the 5-best parsing results, the relative improvement
on F-score is 0 to 9%, and the average improvement on F-score is 5.58%. An ex-
ample has been given in Figure 3 (c). This reveals that the best parsing result does
not always present correct semantic information.

4.2 Including prepositions in the annotation

As mentioned in section 3, two types of annotations were provided for the train-
ing data set. Figure 5 (b) shows the results generated by the HVS model trained
without or with the preposition information. It is observed that by including the
preposition information, the average improvement on F-score is 1.71%. This gives
positive support on our hypothesis that preposition information do play an impor-
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Figure 6 (a) Performance on sentences with increasing length. (b) Comparisons
between results on sentences containing no more than one protein-protein interaction and
those on sentences containing more than one protein-protein interaction.
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tant role on revealing the underlying semantic information of the sentence.

4.3 Results based on the sentence complexity

To analyze the ability of the HVS model in extracting information from syntac-
tically complex sentences, we sorted the sentences in the test data by their length in
ascending order. The rationale behind this is that in general, sentences with more
words exhibit more complex syntactic structures. By adding sentences gradually,
Figure 6 (a) illustrates the performances on the ten-round test. It can be observed
that the performance of the HVS model only drops slightly when the test sentences
become more complex. Overall, the HVS model gives quite stable performance.

We also measured the performance on the sentences containing only one protein-
protein interaction and the sentences containing more than one interaction sepa-
rately. It can be observed from Figure 6 (b) that F-score on sentences containing
more than one protein-protein interaction is always higher than that on sentences
containing a single protein-protein interaction for most experiments. It only drops
slightly by 2% for the Experiment 2 test data. These results are contrary to our
general belief that sentences containing more than one protein-protein interaction
should exhibit more complex syntactic structures. One reason is that the system
fails to extract one protein-protein interaction from a sentence containing a single
protein-protein interaction will result in 0% in F-score. However, the system fails
to extract one protein-protein interaction from a sentence containing two protein-
protein interactions would result in 66.7% in F-score. These results can be further
explained by our observation that for sentences containing more than one protein-
protein interaction, their theme often focuses on protein-protein interaction only, so
they are short in general, while for sentences containing a single protein-protein in-
teraction, they might discuss something else rather than protein-protein interaction
only, therefore the length of those sentences is normally longer.

4.4 Results based on the interaction category

By analyzing the categories of protein-protein interactions in our data set (Cor-
pus I), we found that two categories, activate and attach accounts for about 30% of
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Table 2 Results based on the interaction category

Category Recall (%) Precision (%) F-Score (%)

activate 66.7 68.3 67.5
attach 58.1 71.4 64.1

Figure 7 Performances of HVS model trained on the increasingly added training data.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0.42

0.46

0.5

0.54

0.58

0.62

0.66

Number of Sentences in the Training Corpus (*100)

F−score
Precision
Recall

all protein-protein interactions. Thus, the results based on these two categories are
also shown here. It can be observed from Table 2 that there are slight changes in
F-score when compared with the overall performance result in Table 1. It increases
about 6% for the activate category and 2.5% for the attach category. One expla-
nation for the result is that patterns about the two categories are well modeled
because of enough training sentences of the two categories in the training data set.

4.5 Results based on the increasingly added training data

To explore the best performance of the HVS model, we conducted an experiment
as follows. First, randomly select 100 sentences from training data (2250 sentences),
use them to train an HVS model and analyze its performance based on ten-fold
cross validation. Then add 100 sentences each time to build a new HVS model and
analyze its performance. Figure 7 illustrates the performance on each stage. It
shows that the model performance gradually improves when adding more training
data. It saturates when the size of training data reaches 1600. It implies that for
this particular corpus, 1600 sentences would be sufficient to train the HVS model.

4.6 Discussions

In general, it is difficult to compare performance of different approaches fairly
because different corpus was employed. There are no benchmarks in biomedical
text mining for protein-protein interactions. We chose the GENIA corpus as our
training and test data set based on the following reasons. Firstly, protein names are
fully annotated in the GENIA corpus so that we can focus on the protein-protein
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Table 3 Distribution of number of sentences in each category (PPI denotes protein-
protein interaction)

Result Category
Number of
Sentences

Percentage (%) of
Sentences

Identify all PPIs in the sentence without
generating wrong PPIs

104 41.6

Identify all PPIs in the sentence, but gen-
erate wrong PPIs

44 17.6

Identify part of PPIs in the sentence with-
out generating wrong PPIs

68 27.2

Identify part of PPIs in the sentence, and
generate wrong PPIs

34 13.6

Total 250 100

interaction extraction task without being distracted by the problems in name entity
identification. Secondly, the GENIA corpus has been widely used in the field of
biomedical text mining especially for name entity identification. Although there
is no system published so far on extracting protein-protein interactions from the
GENIA corpus, we believe GENIA will be used by more and more researchers for
protein-protein interactions extraction in the near future.

To investigate the reasons behind the errors in the experiments, we have an-
alyzed the parsing results of 250 randomly selected sentences from the test data
set. The parsing results are classified into four categories and frequencies in each
category are presented in Table 3. It can be observed that 41.6% of sentences were
correctly processed by our approach. We then proceeded to analyze the errors in
the parsing results of the remaining 58.4% of sentences. Errors can be classified
into three main categories as listed in Table 4. (1) Semantic parsing errors con-
stitute the major portion of all errors. We find that the current semantic parsing
method has some restrictions and causes approximately 70% of the total errors.
This partially derives from the fact that some complex hierarchical structure can
not be handled by our method. With these considerations, a more accurate seman-
tic parsing method is under development. (2) Errors caused by the preprocessing
procedure accounts for nearly 6% of all failures. By elaborately constructing the
protein name and interaction keyword dictionary, errors in this category should be
eliminated. (3) The simple extraction rules and he heuristics for result selection
based on 5-best parsing paths caused about 22% errors. we currently are building
a set of more comprehensive rules to solve the problem.

5 Adaptation to Changing Domains

Statistical models calculate their probability estimates based on their training
data. When these models are shifted to another domain, the performance usu-
ally drops. Adaptation techniques are used to adapt a well-trained model to a
novel domain. Two major approaches are commonly used: maximum a posteriori
(MAP) estimation and discriminative training methods. For the MAP estimation
methods, adaptation data are used to adjust the parameters of the model so as to
maximize the likelihood of the adaptation data. Count merging and interpolation
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Table 4 Classification and frequency of errors

Error Category Reasons Error Proportion
Semantic pars-
ing errors

Negative words such as “but”, “unlike”
are not considered.

5(3.4%)

Total: 106 er-
rors (72.6%)

Left-branching structures can not be han-
dled by the HVS model.

3 (2.1%)

Interaction keywords are rarely presented
in the training data.

14 (9.6%)

Hierarchy information is generated incor-
rectly

84 (57.5%)

Preprocessing
Errors

Some relevant words are removed by sen-
tence simplification

2 (1.4%)

Total: 8 errors
(5.5%)

Interaction keywords are not listed in the
keyword dictionary.

3 (2.1%)

Protein names are identified incorrectly. 3 (2.1%)
Postprocessing
Errors

Wrong parsing results are chose, although
true information can be found in 5-best
parsing results.

12 (8.2%)

Total: 32 er-
rors (21.9%)

Predefined rules for extracting protein-
protein interactions from parsing results
fail to extract.

20 (13.7%)

of models are the two MAP estimation methods investigated in speech recognition
experiments [25]. In recent years, MAP adaptation has been successfully applied
to lexicalized probabilistic context-free grammar (PCFG) models [26]. Discrimina-
tive approaches, on the other hand, aim at using the adaptation data to directly
minimize the errors on the adaptation data made by the model. These techniques
have been applied successfully to the task of language modeling in non-adaptation
scenario [27].

Since MAP adaptation is straightforward and has been applied successfully to
PCFG parsers, it has been selected for investigation in this paper. In particular, we
mainly focused on one of the special forms of MAP adaptation which is interpolation
between the in-domain and out-of-domain models. The following presents how to
adapt the HVS model using the log-linear interpolation method b.

5.1 Log-Linear interpolation

Log-linear interpolation has been applied to language model adaptation and has
been shown to be equivalent to a constrained minimum Kullback-Leibler distance
optimization problem [28].

Assume a generalized parser model P (W,C) for a word sequence W and seman-
tic concept sequence C exists with J component distributions Pj each of dimension
K, then given some adaptation data Wl, the log-linear estimate of the kth compo-

bExperiments using linear interpolation have also been conducted but it was found that the
results are worse than those obtained using log-linear interpolation.
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Table 5 Performance Comparison of adaptation to Corpus II

System Recall (%) Precision (%) F-score (%)

Baseline 39.9 60.1 48.0
In domain 53.4 62.6 57.6
Log-Linear 44.4 71.2 54.7

nent of Pj , P̂j(k), is

P̂j(k) =
1

Zλ

Pj(k)
λ1 P̃j(k)

λ2 (4)

where Pj(k) is the probability of the original unadapted model, and P̃j(k) is the
empirical distribution of the adaptation data defined as

P̃j(k) =
σj(k)∑K

i=1
σj(i)

(5)

in which σj(k) is defined as the total count of the events associated with the kth
component of Pj summed across the decoding of all adaptation utterances Wl. The
parameters λ1 and λ2 were determined by optimizing the log-likelihood on the held-
out data using the simplex method. The computation of Zλ is very expensive and
can usually be dropped without significant loss in performance [29].

5.2 Experimental results

To justify the robustness of the HVS parser, another corpus named as Corpus
II was used. Corpus II were obtained from [10]. The initial corpus consists of
1203 sentences which are accompanied with their respective protein interaction
information. All sentences were examined manually to ensure the correctness of
protein-protein interactions. After cleaning up the sentences which do not contain
protein interaction information, 800 sentences were kept. Note that Corpus II is
constructed from the first 50 biomedical papers downloaded from the Internet with
the keyword “protein-protein interaction”. Corpus I and Corpus II are disjoint
sets. Corpus I, a collection of abstracts, and Corpus II, a set of sentences from full
papers might comprise different writing styles.

The baseline HVS model was trained on data from Corpus I and was later
adapted using a small amount of adaptation data from Corpus II. Table 5 lists the
recall, precision, and F-score obtained when tested on data from Corpus II (100
sentences). The “Baseline” results were obtained using the HVS model trained on
data from Corpus I without adaptation. The “In domain” results were obtained
using the HVS model trained solely on the Corpus II sentences. The “Log-Linear”
row shows the performance using the log-linear interpolation based adaptation of
the baseline model using 90 randomly selected adaptation sentences from Corpus
II.

Figure 8 shows the parser performance versus the number of adaptation sen-
tences used. It can be observed that the F-score value increases when increasingly
adding more adaptation data from Corpus II. The parser performance almost sat-
urates when the number of adaptation utterances reaches 40. The performance
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Figure 8 F-score vs amount of adaptation training data.
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however degrades when the number of adaptation utterances exceeds 80, possibly
due to model overtraining. For this particular application, we conclude that just
80 adaptation utterances would be sufficient to adapt the baseline model to give
comparable results to the in-domain model. Overall, we found that directly moving
a HVS model trained on data from Corpus I to Corpus II resulted in a 10% absolute
drop in F-score. However, when adaptation was applied using only 40 adaptation
sentences, the loss of concept accuracy was dramatically restored. Specifically, using
log-linear adaptation, the out-of-domain F-score of 48.0% was restored to 54.7%,
which is not far from the in-domain F-score of 57.6%.

6 Conclusion

In this paper, we have presented an approach based on the HVS model to auto-
matically extract protein-protein interactions from unstructured text sources. The
approach can generate satisfactory performance measured in recall and precision.
We have also investigated the ability of the HVS model to be adapted to another
domain. The experimental results give positive support that the purely data-driven
extraction system is robust and can be readily adapted to a new domain. Our work
may provide a useful supplement to manually created resources in established pub-
lic databases. In future work we will work on the enhancement of our approach in
order to improve the extraction accuracy.
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