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 
Abstract—Field experiments of 42.7 / 128.1 Gb/s WDM-OTDM 

transmultiplexing and all-optical dual-wavelength regeneration 
at the OTDM rate are presented. By using the asynchronous 
retiming scheme, we achieve error-free buffer-less data grooming 
with time-slot interchange (TSI) capability for OTDM meshed 
networking. We demonstrate excellent performance from the 
system, discuss scalability, applicability, and the potential reach 
of the asynchronous retiming scheme for transparent OTDM-
domain interconnection. 
 

Index Terms—Optical communication, synchronization, 
optical signal processing, time division multiplexing, ultrafast 
optics.  
 

I. INTRODUCTION 

LARGE research effort is being directed in recent years 
in enabling 100 Gbit/s Ethernet (100GE) transmission on 

a single channel over long and ultra-long haul (ULH) 
distances, and within the existing fibre plant and WDM 
infrastructure. This challenge is being dealt with quite 
successfully with the introduction of multi-level single-carrier 
[1], [2] and multi-carrier [3], [4] modulation formats, and 
associated hardware implementations for data generation, 
detection and error correction. Many of the transmission 
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techniques that are being developed in optical research labs 
worldwide are based on concepts that have long been 
implemented and matured in the electronic and wireless 
communications. In many cases the application of such 
communications concepts in optics has been made possible by 
the continuous advancement in computational speed of digital 
electronics. Nevertheless, electronics do not scale well in 
terms of transmission in RF lines and clock speed [5], which 
leads to the problem of finding efficient and ‘future-proof’ 
(i.e. bit-rate-scalable) ways for generating, detecting, 
grooming, and switching 100’s Gb/s (or higher) single 
channel speeds, that are anticipated in the future network. 

In addition, it has been reasoned that, as network traffic 
rates increase, the significance of data traffic grooming will 
increase, not least because of its current predominately 
electronic nature and, therefore, limited scalability in terms of 
cost and power consumption [6]. It is possible that the 
significance of data grooming may be currently masked by the 
proliferation of optical and electronic by-pass [7], which 
gradually increases the efficient use of resource-consuming 
fine-granularity packet routers. When these efficiency gains 
take hold, data grooming may once again become top research 
priority. Furthermore, studies show [8] that, as network access 
data rates increase, aggregated data rates need to increase in 
proportion to the access speeds in order to maintain the 
efficient use of network resources. Therefore, future high 
capacity networks may require a coarse granularity of 100’s 
Gb/s, or more.  

In this context, optical time-division multiplexing (OTDM) 
[9], which capitalizes on the inherent high-speed characteristic 
of optical devices, may find increasing relevance, because 
OTDM channels can be made to have the capacity of the 
desirable coarse-granularity channel; and when a coarse 
channel is routed in the network only one physical channel 
needs to be switched. Multi-Tb/s OTDM generation / 
demultiplexing [10], and transmission [11], [12] has been 
reported, and the highest single channel capacities involve 
multi-level modulation formats for the OTDM channel 
tributaries, together with polarization multiplexing. This has 
the advantage of requiring a lower pulse rate (Baud rate), 
which reduces the stringent requirements in pulse generation 
and time alignment, transmission, demultiplexing, and clock 
recovery. 
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To realize the potential benefits of OTDM in a multi-
granular network, techniques and technologies for the 
realization of time-domain routing (i.e. routing of OTDM 
time-slots) will be necessary [13]. In particular, time-domain 
optical add-drop multiplexers (TD-OADM) [14], [15] would 
be key network elements in OTDM ring architectures; 
whereas time-domain optical cross-connects, with time-slot 
interchange (TSI) functionality [16] would be necessary for 
mesh connectivity. However, in order to perform time-domain 
routing, retiming of tributaries is necessary. This involves 
both synchronizing the tributary data rates – since data rates 
are different for tributaries that are generated at different, 
remote locations – and phase aligning the pulses. An effective 
solution to this problem had not been reported until very 
recently [17] when the asynchronous digital optical 
regeneration (ADORE) concept [18], [19] was applied to 
OTDM/WDM networks (i.e. with the retiming applied at 
tributary level). For example, previously, in [14] delay lines 
were considered, but these have to offer impractically long 
delays; and in [20] synchronism between WDM channels, 
before the OTDM grooming takes place, was attained by 
imposing severe restrictions in terms of networking, choice of 
wavelengths, and reach. 

From this perspective and to our knowledge, in this paper 
we report on the first experiments in deployed fiber of a novel 
42.7 / 128.1 Gb/s grooming switch [21], [22] which provides 
the necessary functionality for OTDM meshed networking. In 
particular, we demonstrate in the field, first, transparent 
WDM-to-OTDM data grooming (with TSI functionality), 
without using buffers, by applying the ADORE concept for 
bit-wise tributary synchronisation; second, simultaneous 
OTDM demultiplexing of all tributaries; and third, all-optical 
dual-wavelength regeneration at the OTDM bit-rate.  

The rest of the paper is organised as follows:  In section II 
we describe the grooming switch design. In section III we 
describe the network concept on which two experiments were 

based, and we discuss the potential of asynchronous retiming 
concept in terms of reach. In section IV we present the 
experimental setup and results from the two experiments 
which were designed to demonstrate the functionality and 
performance of the switching node within the network concept 
presented in section III. Finally, section V summarizes our 
findings and discusses scalability, and the limitations and 
applicability of our approach. 
 

II. SWITCHING NODE ARCHITECTURE AND IMPLEMENTATION 

Fig. 1a is a block diagram of the switch architecture. Upon 
entering the node the OTDM channels are first 2R regenerated 
in the multi-wavelength regenerator and then enter a 
wavelength selective switch (WSS). Depending on its 
wavelength, an OTDM channel is either dropped or passed 
through the node. A dropped OTDM channel is time-
demultiplexed in the OTDM-to-WDM unit into its tributaries, 
with each tributary being mapped onto a selectable 
wavelength channel. It should be noted that although only one 
such unit is shown, a number of demultiplexing units may 
exist, each one processing one OTDM channel. All OTDM 
tributaries enter a space switch, typically based on micro-
electromechanical systems (MEMS) switch fabric. There are 
two possibilities for each tributary: First, the tributary is 
switched to a lower bit-rate domain, denoted as ‘WDM 
domain’; and second, a tributary is looped-back and enters a 
WDM-to-OTDM subsystem. This subsystem combines lower 
bit-rate channels – switched from either the WDM domain or 
looped-back from the OTDM-to-WDM subsystem – and maps 
them onto OTDM tributaries to form a new higher bit-rate 
OTDM channel, which subsequently enters the OTDM 
domain. As it will become apparent, the port scalability of this 
architecture, in terms of both OTDM and WDM channels, is 
restricted only by the dimension of the space switch. 

     
 

Fig. 1. a)  Block diagram of the switch architecture;  b) Grooming switch implementation [21] 
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Fig. 1b depicts our implementation of the grooming switch, 
reported in [21], which provides the transmultiplexing 
functionality and signal regeneration outlined in Fig. 1a. (Note 
that the regenerator can be placed at either input or output of 
the node). The current implementation of this switch is 
capable of performing OTDM-to-WDM and WDM-to-OTDM 
conversions between one 128.1 Gb/s (3 x 42.7 Gb/s) higher 
bit-rate OTDM channel and three 42.7 Gb/s lower bit-rate 
WDM channels; while the 2R regenerator is capable of 
regenerating up to two OTDM channels, OTDM1, OTDM2, and 
is henceforth referred to as dual-wavelength regenerator. The 
WSS is implemented with a set of two tunable 5 nm full-width 
half-maximum (FWHM) band-pass filters. The space switch is 
based on a 8x8 dimension MEMS switch fabric, with 
reconfiguration time of the order of 1 ms. All 42.7 Gb/s 
channels, whether originating in the OTDM domain or the 
WDM domain, are input to the MEMS space switch, which 
provides non-blocking circuit connectivity. With reference to 
Fig. 1b, we will now describe the three main building blocks 
of the grooming switch: WDM-to-OTDM, OTDM-to-WDM, 
and 2R regenerator. 

A. WDM-to-OTDM subsystem 

The WDM-to-OTDM consists of three ADORE units, each 
mapping one 42.7 Gb/s on/off keying (OOK) channel on one 
of the three OTDM time-slots, TS1, TS2, TS3. It can be seen 
that each ADORE addresses a certain time-slot. Therefore, by 
re-arranging the connectivity of add1, add2, add3 with the 
MEMS switch, TSI operation can be performed.  

Any process of WDM-to-OTDM mapping should involve 
the following: (i) narrowing of the lower bit-rate time-slot in 
order to fit the OTDM time-slot; (ii) converting the lower bit-
rate wavelengths into a common wavelength; (iii) retiming 
these lower bit-rates [17]. The retiming function concerns the 
translation of the input signal frequency (or bit-rate), fD, to a 
frequency determined by a shared node-specific local clock, 
fL. With the dual-gate ADORE (as shown in Fig. 1b), retiming 
is attained by taking one sample of the data waveform every 
T/2 (where T is the lower rate bit-slot duration) with a mode-
locked laser (MLL) locked at the local frequency, fL. Each of 
the two samples within a bit-slot propagates in a different 
light-path, and the path which most faithfully reproduces the 
input data is switched to the output, using a cross-bar switch. 
In our implementation, the ‘switch controller’ includes a phase 
comparator, which compares the input data phase with the 
phase of the local clock. The pulse width and wavelength of 
all OTDM tributaries derive from the MLL, and since this is 
common within one WDM-to-OTDM subsystem (here, 
OTDM2), all tributaries have the same pulse width and 
wavelength. It should be noted that the cross-bar switch only 
switches between paths when the input data phase changes 
appreciably, which happens in timescales much longer than 1 
ms, as we will see in section III.B. Upon switching bit-slot 
slippage (by one bit-slot) may occur. In addition, during 
switching data may be lost, depending on how fast the rise and 
fall time of the switch is. It is therefore necessary to provide a 

mechanism for maintaining data integrity. A simple 
mechanism is provided in the form of guard-band between 
data blocks as in [19] (see also section III.B.). Accordingly, 
the switch controller in Fig. 1b also takes into account 
whether a guard-band is present, and is only allowed to 
change the state of the cross-bar switch during a guard-band. 

It should be noted that Fig. 1b depicts the principle of 
operation of the dual-gate ADORE. A more accurate 
representation of the ADORE architecture used in the 
experiments of section IV is shown in Fig. 2. This is the dual-
gate single Mach-Zehnder modulator (MZM) ADORE, as 
reported in [23], [24], apart from the pulsed source which is 
now replaced by a fiber-based 40 GHz hybridly-mode-locked 
MLL. In this configuration the detected data is first reshaped 
(specifically, converted to non-return-to-zero, NRZ, format) 
and then input to a driver amplifier which drives one 40 Gb/s 
Lithium-Niobate (LN) MZM. The MZM samples one of two 
trains of clock pulses, having T/2 phase difference, and both 
generated from the MLL driven by the local clock. A phase 
comparator (including a 40 GHz RF mixer) within the switch 
controller determines the optimum switch state of the 2x1 
optical switch. A separate input to the said controller (not 
shown in Fig. 2) is provided by a 100 MHz photodiode (PD) 
which detects the power envelope of the input data signal, in 
order to detect the presence of guard-band (see section IV.B). 
Based on these two conditions, i.e. optimum switch state and 
guard-band presence, the 2x1 optical switch, with 440 ns 
switching time, switches-in the optimum path. The signal at 
the output of the switch will have the same characteristics 
with the local optical clock in terms of pulse width and 
wavelength. It will also be aligned to a fixed output phase, 
independent of the incoming data phase, and irrespectively of 
the path the MLL pulses pass through. It should be noted that 
the two tunable delays in Fig. 2 are only required in a 
prototype subsystem, and are adjusted at the beginning of each 
experiment to account for thermal drifts in the light-paths. 

In order to save on the required hardware in our 
implementation, the WDM-to-OTDM consisted of one dual-
gate single MZM ADORE and two reduced versions of an 

 
Fig. 2.  The dual-gate single MZM ADORE used in the experiments [23]. 
Dashed lines: RF lines. Solid lines: Optical paths. ISO: Isolator, CIRC: 
Circulator, PD: 40 GHz Photodiode, MZM: LiNbO3 Mach-Zehnder 
modulator, PC: Polarization controller, MLL: Mode-locked laser  



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

4

ADORE, offering very similar performance but without 
automatic phase selection functionality [25]. Therefore, in the 
experiments that follow, full retiming was only performed on 
one input tributary, and the other two tributaries were 
synchronous with the frequency of the MLL, and at their 
respective optimum input phases. Nevertheless, we can still 
draw the same conclusions as if we had three ADORE units, 
since we have confirmed experimentally [25] that when a 
number of ADORE units are employed in parallel, they may 
be considered independently, with negligible penalty 
associated with phase tuning of adjacent channels. 

B. OTDM-to-WDM 

In this subsystem the OTDM signal is first amplified and 
then its spectrum is broadened by self-phase modulation 
(SPM) in a 310 m-long highly non-linear fiber (HNLF) with 
chromatic dispersion of -0.31 ps/nm/km, dispersion slope of 
0.0031 ps/nm2/km, nonlinear coefficient of 22 (Wkm)-1, and 
attenuation of 1.21 dB/km (all data are specified at 1550 nm). 
Next, the broadened spectrum is offset-filtered both sides of 
the spectrum (5 nm offset either side) with 2 nm FWHM 
band-pass filters (BPFs), yielding two replicas of the original 
128.1 Gb/s data [26]. These two replicas plus the original 
signal (filtered with a 5 nm BPF) are delayed as shown (where 
T/3 is the bit-slot duration of the OTDM channel) and then are 
coupled together and enter an electro-absorption modulator 
(EAM) gate, driven by a sinusoidal signal at 42.7 GHz, which 
performs simultaneous demultiplexing by sampling a different 
OTDM tributary from each of the three replicas [27]. In this 
way, the three tributaries exit the subsystem at three different 
wavelengths: drop1, drop2, drop3. (A more detailed schematic 
of the subsystem is given in Fig. 6 in section IV.C, and also in 
[27]). The technique resembles those reported in [28], [29]. 
However, our implementation does not require a pulse source, 
it is simpler, it yields excellent performance, while it is still 
compatible with phase modulated formats. 

The clock recovery unit (CRU), required for driving the 
EAM gate with a synchronous clock signal, is an opto-
electronic oscillator as in [30], [31]. It oscillates at 42.7 GHz, 
and it includes a 40 GHz EAM of low polarisation dependent 
loss (PDL), a 40 GHz photodiode, a band-pass RF filter with 
resonant cavity of Q =1000, and a manually adjustable 
variable optical delay line (VODL) for adjusting the loop 
length. 

C.  2R dual-wavelength regenerator 

The 2R regenerator is also based on offset filtering of SPM-
broadened spectrum in HNLF. The configuration, HNLF, and 
filters used were exactly as reported in [32]. This regenerator 
can simultaneously process two 128.1 Gbit/s channels, by 
launching them bi-directionally in the HNLF. In more detail, 
the two channels are launched into the regenerator, and are 
separated in two paths by 3nm FWHM BPFs. After 
amplification and further filtering with 5 nm FWHM BPFs, 
the two signals are fed into a single HNLF in opposite 
directions through optical circulators which route outgoing 

signals to the output of the regenerator. These outgoing 
signals are filtered with 2 nm FWHM BPFs at a blue offset of 
2nm with respect to the incoming wavelengths, yielding 
’OTDM1, and ’OTDM2. The 348 m-long HNLF used in this 
subsystem has a chromatic dispersion of -0.8 ps/nm/km, a 
dispersion slope of 0.024 ps/nm2/km, a nonlinear coefficient 
of 18 /W/km, and an attenuation of 0.8 dB/km (all data are 
specified at 1550nm). Note that the fiber properties were 
carefully selected following the design maps outlined in [33].  

 

III. NETWORK SCENARIO AND ASYNCHRONOUS RETIMING 

A.  Network scenario 

The network scenario we consider herewith takes into 
account the potential applicability of an OTDM meshed 
network-domain. OTDM transmission is faced with 
challenges, especially in terms of chromatic dispersion (CD) 
compensation, and polarization mode dispersion (PMD) 
mitigation [9]. Even with optical regeneration applied to the 
OTDM channels, transmission over certain long-haul routes 
may be unattainable due to, for example, poor performance or 
unsuitable design of the fiber plant, such as high PMD or 
inadequate optical signal-to-noise ratio (OSNR). In addition, 
as it was discussed in section I, the value of the OTDM 
approach would partly derive from its ability to carry the 
capacity of the coarse granularity in a multi-granular network.  

The above arguments suggest that a potential applicability 
lies in the core or metro-core network, and over probably 
modest distances of up to a few hundred km. One could 
envisage, therefore, OTDM islands (or domains) in the core 
network, interconnected with lower bit-rate, WDM links. Fig. 
3 depicts a case within this framework, including the case of 
traffic grooming in an edge OTDM node.  

In particular, the notation in Fig. 3 reflects the two 
experiments that were carried out in which one WDM 
channel, 1, from a remote site (through a fiber denoted as 
‘Ipswich’) was combined with two local WDM channels to 
form an OTDM channel at OTDM2. This OTDM2 together with 
another 128.1 Gb/s OTDM channel at OTDM1 (which transits 
Node 1) propagate in a fiber link (‘Chelmsford’) belonging to 
the OTDM domain and are input to Node 2. In Node 2 both 
signals are regenerated in the same dual-wavelength 2R 
regenerator and, subsequently, OTDM1 exits the node without 
further processing, and propagates in the same OTDM 
domain; while OTDM2 is dropped to the OTDM-to-WDM. All 
three tributaries of OTDM2 are now converted to the three 
WDM channels, 4, 5, 6, and are propagated in a WDM link 
(‘Ipswich’), which ‘bridges’ two OTDM domains. These three 
WDM channels could be combined together in the WDM-to-
OTDM subsystem of Node 3 to form the same OTDM 
channel to be launched in the second OTDM domain. 
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In the next section we will see that the above network 
scenario is demonstrated in two separate experiments, with the 
first experiment demonstrating the interoperability of Nodes 1 
& 2, and the second the interoperability of Nodes 2 & 3. 

B. Asynchronous retiming and network reach 

In the above scenario, it is of interest to consider the 
possible reach of the asynchronous retiming scheme, in order, 
for example, to be able to transparently interconnect (via 
ADORE units) two distant OTDM domains.  

For the duration of a data block (i.e. between guard-bands) 
the ADORE cannot switch to an alternative sampling phase 
without loss of data (see section II.A). Therefore, for the 
duration of the data block, random changes in the data phase 
should not accumulate to more than a small fraction of the bit-
slot duration, T. In dispersion compensated links in which 
small wavelength drifts do not affect time-of-flight, there are 
two mechanisms which cause changes to the data phase: First, 
it is the clock accuracy, or frequency deviation between the 
local clock in the ADORE and the remote clock which 
produces the data. Secondly, it is the time-of-flight in the 
fiber, which – in the absence of residual dispersion – depends 
on its thermal expansion coefficient. 

In terms of clock accuracy, technology advancements in 
chip-scale atomic clocks (CSAC) [34], with accuracies better 
than 10-11, makes possible the introduction of affordable, 
compact CSAC in metro-access and core network, alike. 
Therefore, if we consider 2 parts in 1011 relative drift in 
frequency between two clocks of 10-11 accuracy, 40 GHz 
clock frequency, and 1 ms data block length, the expected 
maximum phase drift within a data block would be less than 
10-3 T [18]. 

In terms of time-of-flight, if we consider a typical value for 
fiber thermal expansion of 10-6 [35] (which is equivalent to 
0.5ns/100km/°C), and 1°C uniform change in temperature 
over 8 minutes over a ULH link, asynchronous retiming can 
exceed 100,000 km reach with 1 ms data block length, and at 
40 Gb/s, assuming that the ADORE can tolerate 10-1T phase 
drift within a data block. 

It seems plausible, therefore, for the asynchronous retiming 
concept to extend over global distances. However, studies on 
the statistics of short term time-of-flight variations due to fiber 
expansion over ULH links would need to be done to confirm 
the above.  

 

IV. FIELD EXPERIMENTS  

Two experiments were performed, first reported in [36], 
with the aim of demonstrating key network functions in the 
network scenario presented in section III.A (Fig. 3). All 
equipment resided in a lab environment in Colchester, apart 
from the dark fiber links and some of the Erbium-doped fiber 
amplifiers (EDFAs). We start with describing the dark fiber 
network used, before we present the experimental setup and 
results for each experiment. 

A. Dark fiber network 

The field experiments were performed using two dispersion 
compensated G.652 dark fibre sections between the towns of 
Ipswich, Colchester, and Chelmsford (Fig. 4). As we will 
detail in the next subsection, we transmitted three 42.7 Gb/s 
channels in the Colchester-Ipswich link (or ‘Ipswich’ link), 
and two 128.1 Gb/s channels in the Colchester-Chelmsford 
link (‘Chelmsford’ link). The ‘Ipswich’ link had a round-trip 
length of 83 km, a loss of 12 dB for each direction, and an 
EDFA at the Ipswich site. It was 100% pre-compensated using 
slope-matched dispersion compensating modules (DCMs). 
The launched power into the DCM and the transmission fiber 
was +2 dBm and +3 dBm per channel, respectively. 

The ‘Chelmsford’ link had a round trip length of 114 km, a 
loss of 14 dB for each direction, and included an EDFA at the 
Chelmsford site. It was 80% pre-compensated and 20% post-
compensated using slope-matched DCMs. The launched 
power into the DCM and the transmission fiber was -1 dBm 
and +1 dBm per channel, respectively.  

In both links we used standard length fiber-based DCMs, 
and tailored dispersion by adding small spools of extra G.652 
fiber in the lab. For the Chelmsford link, in which ~2 ps 
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Fig. 3.  The network scenario: Edge grooming, transmission, tributary separation, WDM bridge, and re-aggregation. 
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pulses were launched for transmitting 128.1 Gb/s channels, we 
tailored the G.652 spool length to +/-30 m, and therefore, the 
second order group velocity dispersion (GVD) was 
compensated to within +/-0.5 ps/nm. It should be noted that 
due to some residual third order dispersion of -0.3 ps/nm2 in 
this link, the two 128.1 Gb/s channels had to also include 
individually tailored lengths.  

The tailoring of the dispersion of the Ipswich link, in which 
33% return-to-zero (RZ) 42.7 Gb/s channels were transmitted, 
was much more relaxed. We did not employ any adaptive 
dispersion compensation in either link, and did not observe 
any substantial change of the dispersion in the Chelmsford 
link, even though the outside temperature varied by more than 
12º C during the experiments. This is because the deployed 
fiber is, for the most part, buried in the ground, and its 
temperature does not change substantially on a daily basis. 
However, seasonal temperature variations, and, as a result, 
changes in the residual GVD of the fiber link are to be 
expected. For long term operation, therefore, adaptive 
dispersion compensation would be necessary. 

The first order polarization mode dispersion (PMD) of the 
Chelmsford link was ~1.0 ps, and the launched polarization of 
each individual signal was controlled. We observed both fast, 
but of limited extent; and slow (over many hours) changes to 
the pulse width. The system was able to cope with fast limited 
changes in differential group delay (DGD) due to PMD, and 
therefore, we only had to adjust the polarization controller of 
the launched signal only a few times a day. Nevertheless, in a 
real implementation active polarization control (principal state 
tracking) of the launched signal would be necessary.  

B. 42.7 / 128.1 Gb/s signal generation 

For the experiments we generated three 33% RZ 42.7 Gb/s 
OOK signals, which were transmitted in the Ipswich link, and 
two 128.1 Gb/s OOK OTDM signals (each with co-polarized 
tributaries) for the Chelmsford link. To generate the pulses for 
the 42.7 Gb/s channels, three un-modulated continuous-wave 
(CW) laser diodes (LDs) at 1 = 1547.7 nm, 2 = 1549.3 nm, 
3 = 1550.9 nm (Table I), were input to an x-cut LN single-
drive MZM driven by a sinusoidal signal at 21.35 GHz, and 
biased to produce 33% RZ at 42.7 GHz. To generate the pre-
data-encoded 42.7 GHz pulses for the two OTDM channels 
we used two MLLs. The first MLL, centered at OTDM1 = 1542 

nm, was a 10.675 GHz hybridly mode-locked laser diode 
(MLLD), with RMS jitter of ~250 fs (in 100Hz – 10 MHz), 
and FWHM pulse width of ~ 2.5 ps. Its rate was multiplied by 
four to reach 42.7 GHz, by a polarization maintaining (PM) 
fibre-based optical multiplexer (OMUX), to derive the same 
polarization for all multiplexed pulses, and accurate, stable 
pulse alignment. The second MLL, centered at OTDM2 = 1556 
nm, was a 42.7 GHz hybridly mode-locked fibre laser 
(MLFL) with RMS jitter less than 70 fs (in 100Hz – 10 MHz). 
The pulse width was selected between two values, ~1.4 ps and 
~2.5 ps, on the instrument. For the first experiment, the 2.5 ps 
FWHM pulse width was chosen, which is approx. 30% of the 
7.8 ps bit-period at 128.1 Gb/s. However, at this setting the 
laser produced a small leading pulse, which created a 
performance degradation in the system (see next subsection). 
In the second experiment we selected the narrower pulse, and 
with external filtering we brought the output pulse width to 
2.1 ps.  

Due to equipment limitations, all five 42.7 GHz signals (the 
two MLLs plus the three 33% RZ) were subsequently coupled 
into a single LN MZM for OOK data encoding. Therefore, the 
choice of wavelengths (chosen wavelengths listed in Table I) 
for the five signals was limited, and resulted in a large 
separation for the two OTDM channels. After encoding the 
five signals were demultiplexed. We used a separate OMUX 
to take the rate to 128.1 (3x 42.7) Gb/s of each MLL-based 
42.7 Gb/s signal. This is because the fiber-based OMUX can 
only be optimized at a certain wavelength, due to the 
dispersion of its fiber. Since there are no OMUX products in 
the marketplace to provide 3-times multiplication, we 
constructed custom OMUXs, by using 40 -> 80 Gb/s standard 
OMUX product to take the rate to 2 x 42.7 Gb/s, and coupling 
to its output one extra delayed copy of the original 42.7 Gb/s 
data. The 40 -> 80 Gb/s stage was providing 27-1 
pseudorandom bit-sequence (PRBS) at 85.4 Gb/s, for 27-1 
PRBS at its input. In addition, we provided sufficient delay in 
the extra path to decorrelate the third tributary with either of 
the other two. However, it should be noted that the data 
pattern at 128.1 Gb/s was not the standard PRBS 27-1 pattern. 
Last, a polarizer with extinction better than 24 dB was 
connected at the output of each custom OMUX to guarantee 
co-polarized OTDM tributaries. 

In order to evaluate the performance of the asynchronous 
retiming provided by the ADORE, and determine the data 
integrity of the scheme, we included guard-bands in the data 
pattern (Fig. 5). The data pattern of all five signal wavelengths 
(Table 1) at 42.7 Gb/s consisted of a repeating 27-1 PRBS of 

 
Fig. 4.  The dark fiber network. Colchester – Chelmsford: 114 km, round trip.
Colchester – Ipswich: 83 km, round trip. 

 
TABLE I 

SIGNAL WAVELENGTHS 

1 1547.7 nm 
2 1549.3 nm 
3 1550.9 nm 
OTDM1 1542 nm 
OTDM2 1556 nm 

 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

7

1ms duration, and a single truncated and modified 219-1 PRBS 
serving as a 1μs guard-band with mark ratio 52.5%. There is 
no particular significance in the 219-1 PRBS length we used. 
We used it simply because we found it easier to generate and 
modify. The 52.5% mark ratio however, was selected after 
testing a number of different mark ratios which had to satisfy 
the following two conditions: First, the mark ratio should be 
significantly different than 50% in order for the slow speed 
(100 MHz) guard-band detection circuitry to detect a different 
power level for the signal envelope, and register it as the start 
of the guard-band (see section II.A). Second, the mark ratio 
should be close enough to 50% so that the DC imbalance was 
not affecting the operation of the 128.1 Gb/s CRU. 

C.  Experiment 1: Edge grooming, transmission, and 
tributary separation 

In the first experiment (Fig. 6), the three 42.7 Gb/s 33% RZ 
channels at wavelengths 1, 2, and 3 (Table I) were 
transmitted in Ipswich link (refer to Fig 3). They were then 
demultiplexed and entered a MEMS switch. Of these, 1 was 
selected to enter the ADORE unit of the WDM-to-OTDM 
subsystem. The ADORE was configured as in Fig. 2 (section 
II.A), including a 15dB gain pre-amplifier for the data input 
with no optical band-pass filter. The 42.7 GHz MLFL at 

OTDM2 provided the pulse trains needed for the WDM-to-
OTDM subsystem and therefore, the local clock signal in the 
WDM-to-OTDM was the same with the clock of the 
transmitter. However, the data phase at the ADORE input 
experienced a random drift, of up to a few tenths of 1 ps per 
second, with respect to the locally generated pulses from the 
MLFL, due to thermal fluctuations in the 83 km transmission 
fiber. The ADORE detected the guard-band in the data, and 
the switch controller allowed selection of the correct phase of 
the data for each 1ms-long data block, with switching taking 
place within a guard-band. The total switching time was 
consistently measured to be 440ns, and was, therefore, well 
within the 1 s duration of the guard-band. In this way, data 
block integrity was assured during natural variations of input 
data phase in the dark fiber. For certain tests we used a 
computer controlled VODL at the ADORE input to provide 
deterministic and accelerated relative variation of input phase 
up to a maximum of 9 ps per second. The left eye in inset B, 
Fig. 6 shows the ADORE output eye over multiple controlled 
1 bit (i.e. 23ps) sweeps, at step size of 0.1ps, of the input 
phase. (The persistence on all eyes presented was approx. 9 s. 
An optical sampling scope was used). During such controlled 
phase sweeps we recorded, in an error detector (ED) gated at 
the edges of the guard-band, error free operation (zero errors) 
down to -27dBm power in a receiver placed at the ADORE 
output, suggesting an approximate penalty at 10-9 BER of 3-4 
dB with respect to the input signal to the ADORE. This 
penalty is due to eye closure (left eye in Fig. 6, inset B), and is 
in agreement with previous stand-alone testing [25].  

 
 

 
 

Fig. 6. Experiment 1 (Edge grooming, transmission, and tributary separation): Setup and results. Results at point G are shown separately, in Fig. 7. 

 
Fig. 5.  The data format used in all generated signals. 
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In addition to 1, two local channels at 2 were pulse-width 
adapted and wavelength converted to OTDM2 in the reduced 
ADORE versions, and interleaved together with the ADORE 
output to form the OTDM2 128.1 Gb/s OTDM channel at the 
WDM-to-OTDM output (inset B, Fig. 6). A polarizer at the 
output of the WDM-to-OTDM was guaranteeing co-polarized 
tributaries. 

Furthermore, a second 128.1 Gb/s OTDM channel at 
OTDM1 was generated at the transmitter using the higher jitter 
MLLD. Its eye is shown in inset A, Fig. 6. The Q2 was 19.5 
dB. (All Q2 values presented were measured with the optical 
sampling scope). The two channels were subsequently 
launched into the Chelmsford link (spectrum at launch is in 
inset C, Fig. 6). After transmission, both OTDM channels 
were 2R regenerated (in the regenerator described in section 
II.C) by launching them in the same HNLF in opposite 
directions at approx. 30 dBm power per channel. The 2 nm 
blue-shifted spectra of the regenerated channels can be seen in 
Fig. 6, spectra insets D, and E. The regenerated OTDM1 was 
restored to its pre-transmission quality (eye inset D), 
according to Q2 (measured Q2 = 19.5 dB) and burst-mode bit-
error rate (BER) measurements (see BER plot in Fig. 6).  

The regenerated OTDM2, at ’OTDM2, was exhibiting an open 
eye of Q2 = 24.5dB, irrespectively of the input data phase to 
the ADORE (Fig. 6, inset E). This was subsequently OTDM-
to-WDM demultiplexed into wavelengths 4 = 1549, 5 = 
1554, and 6 = 1559nm. The launched power into the HNLF 
was approx. 28 dBm. Fig. 6, inset F, shows the spectrum of 
the three 128.1 Gb/s copies, before EAM-demultiplexing. 
While the system was simultaneously demultiplexing all three 
tributaries, we filtered with a 1.2 nm FWHM filter each 
tributary and carried out burst-mode BER measurements, 
which are shown in Fig. 7. The tributary at 4 belongs to the 
ADORE (i.e. it is the one that was generated by it), which was 
operating automatically while we were carrying out the BER 
measurements. Fig. 7 also shows the demultiplexed eyes. The 
noise that appears on the two sides of each demultiplexed eye 
is due to the 1.2 nm filter we used, which results in overlapped 
pulses due to imperfect extinction provided by the EAM. A 
broader filter is normally required but was unavailable. For 
comparison, the BER of the back-to-back EAM-demultiplexed 
OTDM2 channel is also provided. The maximum penalty is 2dB 
at 10-9 BER. The degradation was mainly due to the presence 
of a small leading pulse from the MLFL (clearly visible in 
Fig. 6, inset B), that was spreading during transmission into 
adjacent pulses causing beating, and thus affecting the 
stability of the 128.1 Gb/s CRU. In fact, because of this 
influence, the CRU operation was more stable when the clock 
was derived from the 128.1 Gb/s before the 2R regenerator. 
This is because the beating mentioned was translated in 
increased jitter of the 2R regenerated signal – as predicted in 
[37] – further destabilizing the CRU if connected at the output 
of the 2R regenerator. 

D. OTDM transmission, tributary separation, WDM bridge, 
and re-aggregation 

In the second experiment (Fig. 8), we selected the narrower 
pulse output from the MLFL (see section IV.B) and filtered it 
externally to get 2.1 ps FWHM pulses at OTDM2. Unlike the 
previous experiment, there was no small leading pulse from 
the MLFL, as a result of this change. The 128.1 Gb/s OTDM 
at OTDM2 from the transmitter (Fig. 8 inset A) was launched in 
the Chelmsford link. After transmission (Fig. 8 inset B) it was 
2R regenerated with 2nm blue-offset filtering in the 
regenerator described in section II.C, by launching approx. 30 
dBm signal power in the HNLF. A Q2 = 25.5 dB was achieved 
(Fig. 8 inset C). The regenerated signal at ’OTDM2 = 1554 nm 
was then input to the OTDM-WDM demultiplexer. The 
launched power into the HNLF was approx. 28 dBm and the 
broadened spectrum is shown in Fig. 8, inset D. A 5 nm offset 
filtering was applied either side of the centre, creating two 
128.1 Gb/s copies of the original channel (Fig. 8 insets E, F) 
at 4 = 1549, and 6 = 1559 nm, with Q2 23.5 dB and 24 dB, 
respectively. These two copies together with the original 
signal at ’OTDM2 = 1554 nm, which we now call 5 (i.e. 5 = 
1554 nm), were combined and input to the EAM gate, driven 
by the recovered clock at 42.7 GHz. The total power into the 
EAM was 6 dBm, and the polarization was optimized for each 
of the three channels. In addition, tunable delay lines were 
used (shown as fixed delays in Fig. 8) in order to 
simultaneously demultiplex a different tributary from each of 
the three 128.1 Gb/s copies. In this experiment, the input 
signal to the CRU unit was taken by tapping off the output of 
the 2R regenerator. The CRU RMS jitter was calculated based 
on single side-band phase noise measurements, and was less 
than 50 fs in 100 Hz – 10 MHz bandwidth. 

 
Fig. 7.  BER measurements and eye diagrams for the three demultiplexed 
tributaries in the first experiment, at point G of Fig. 6. 
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All three demultiplexed channels were transmitted in the 
Ipswich link. (Fig. 8, inset G shows the spectrum after 
transmission). The channels were subsequently demultiplexed 
using 2 nm FWHM filters, and burst-mode BER 
measurements are shown in Fig. 9, along with the eyes of the 
three tributaries in the receiver. It can be seen that, compared 
with back-to-back measurements (by demultiplexing OTDM2 at 
the transmitter, using the same EAM, driven with the same RF 
amplitude, for fair comparison), there is no penalty in the 5, 
and 6 tributaries. (It should be noted that the Ipswich link 
introduced a less than 0.5 dB penalty to the signal). In 
addition, 4 shows a very small 0.5dB penalty at 10-9 BER, 
but with an error floor (below 10-12). We attribute this to 
insufficient broadening in the OTDM-WDM HNLF in the 
shorter wavelength side (Fig. 8, inset D), which reflects a 
significant departure from the optimum transfer function for 
the HNLF [33].  

The 6 channel was then input to the ADORE unit. The 
clock pulses were generated by the MLFL at OTDM2, and the 
data input to the ADORE included a 15dB gain pre-amplifier 
with no optical band-pass filter, as in the first experiment. In 
this experiment, the signal was experiencing phase changes 
due to its transmission in both Chelmsford and Ipswich link, 
since 6 data originates in the OTDM2 OTDM channel 
launched in the Chelmsford link. The ADORE output eye can 
be seen in Fig. 8, inset H, and was confirmed to be error free 
(zero errors) for all input data phases, by performing 
controlled sweeps of the phase using the computer controlled 

VODL, as in the first experiment. Three ADORE units would 
be required to aggregate the traffic carried by 4, 5, and 6, 
and form a new OTDM channel for transmission in the new 
OTDM domain. 

 
 

 
 

 
Fig. 8. Experiment 2 (OTDM transmission, tributary separation, WDM bridge, and re-aggregation): Setup and results. BER results at point G are shown in Fig. 9.

 
Fig. 9.  BER measurements and eye diagrams for the three demultiplexed 
tributaries in the second experiment, at point G, Fig. 8. 
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V. DISCUSSION AND CONCLUSIONS  

During all measurements in the two experiments, we were 
only controlling variable delay lines, in order to compensate 
for thermal drifts in the lab setups, especially in the two 
transmultiplexing subsystems. In particular, the OTDM-to-
WDM would require thermally stabilized packaging, and the 
light-paths in the WDM-to-OTDM should preferably be made 
of light waveguides rather than fiber. An additional 
requirement for the WDM-to-OTDM subsystem concerns the 
length of each individual tributary path, from the local pulse 
source to the multiplexed output. These paths would need to 
be kept to within a few centimeters long if thermal 
fluctuations in the individual paths are not to cause output 
power fluctuations, owing to small overlaps between adjacent 
pulses at the output OTDM channel [38]. However, given the 
current ADORE implementation, such short path lengths are 
unattainable. Therefore, it may be necessary to include a gate 
at the output of this subsystem, in order to construct a 
common phase for all tributaries [39].   

We also found that the MLL source quality is critical for 
good performance. In addition, tracking of the principal state 
of polarization and adaptive chromatic dispersion 
compensation would be required in a real deployment. 

Furthermore, the OTDM-to-WDM subsystem, with the 
particular HNLF we used in the experiments, requires signals 
with very low amplitude noise, in order to produce 
wavelength converted copies of low jitter. This clearly reflects 
the HNLF specification. With the 2R regenerator at its input 
the OTDM-to-WDM produced excellent performance. 

An issue that was not addressed in this work concerns 
channel identification. A possible solution to this problem can 
be found in [40]. In addition, the 440 ns cross-bar switch that 
was used in the ADORE can potentially affect subsequent 
clock recovery. A nanosecond-fast switch should solve this 
problem. Last, the proposed regenerator changes the signal 
wavelength, with two possibilities: to shorter or longer 
wavelength. As a result, selective regeneration of OTDM 
channels could result in wavelength blocking at the node 
output. It may be necessary, therefore, to regenerate all input 
OTDM channels to a node, using the concept of the multi 
wavelength regenerator, in order to effect a uniform 
wavelength shift on all channels. Such uniform shift may be 
cancelled out at the output of the same node, if an output 
regenerator is placed, with offset filtering applied on the 
opposite side of its broadened spectrum. 

Although we presented experimental results at 128.1 Gb/s, 
our concept is scalable to much higher bit-rates. This is 
because, first, the ADORE operates on tributaries. Second, the 
OTDM-to-WDM can be implemented with a different 
technique, including pulsed source as in [29]. And third, the 
2R regenerator is all-optical. Regarding the latter, in [41] we 
have numerically studied the scalability limit of the 2R 
regenerator system as the repetition rate increases. Carefully 
selecting from the design map reported in [33] the fiber and 
input signal parameters in order to achieve the same 

regenerative properties, it is possible to increase the repetition 
rate up to 640Gbit/s without any extra degradation due to 
undesired cross-talk with the Rayleigh backscattered signal. 

In addition, our concept provides a port-scalable solution, 
since it is limited only by the dimension of the MEMS switch 
fabric. Bursty traffic on a per tributary basis [17] could also be 
supported by the transmultiplexing technologies presented. In 
this case, the MEMS switch should be replaced by a much 
faster switch, suitable for routing bursts. However, fast switch 
fabrics have limited port scalability. 

Furthermore, the ADORE, as a concept, is applicable to a 
host of single-carrier (multi-level, and including phase 
sensitive) modulation formats. With this in mind, the only real 
limitation of the scheme is the need for adaptation of the data 
format at network edge to include guard-bands. This would 
require s-long electronic buffering at the edge. 

In conclusion, we have demonstrated in the field a concept 
for OTDM meshed networking of potentially global reach, 
and with near 100% channel utilization based on 1 ms data 
blocks separated by 1 s guard-bands. Our results confirm, 
first, the data integrity of the asynchronous retiming scheme in 
both cases of edge traffic grooming and OTDM domain 
interconnection and, second, the potential of the all-optical 
techniques used for signal regeneration and wavelength 
conversion in small scale OTDM domains. 
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