
This post-publication version was produced for Aston University Research Archive by Stuart Wallis.

Vision Research 76 (2013) 1-10 doi:10.1016/j.visres.2012.09.019

Contents lists available at ScienceDirect

Vision Research
journal homepage: www.elsevier.com/locate/visres

The slope of the psychometric function and non-stationarity of thresholds in
spatiotemporal contrast vision

Stuart A. Wallis, Daniel H. Baker, Tim S. Meese & Mark A. Georgeson

School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK. Email: s.a.wallis2@aston.ac.uk

ARTICLE INFO

Article history:
Received 18 January 2012
Received in revised form 6 July 2012
Available online 4 October 2012

Keywords:
Psychometric slope
Detection threshold
Psychometric function
Spatial frequency
Observer variability

ABSTRACT

The slope of the two-interval, forced-choice psychometric function (e.g. the Weibull
parameter, β) provides valuable information about the relationship between contrast
sensitivity and signal strength. However, little is known about how or whether β varies
with stimulus parameters such as spatiotemporal frequency and stimulus size and shape.
A second unresolved issue concerns the best way to estimate the slope of the psychometric
function. For example, if an observer is non-stationary (e.g. their threshold drifts
between experimental sessions), β will be underestimated if curve fitting is performed after
collapsing the data across experimental sessions. We measured psychometric functions
for 2 experienced observers for 14 different spatiotemporal configurations of pulsed or
flickering grating patches and bars on each of 8 days. We found β ≈ 3 to be fairly
constant across almost all conditions, consistent with a fixed nonlinear contrast transducer
and/or a constant level of intrinsic stimulus uncertainty (e.g. a square law transducer
and a low level of intrinsic uncertainty). Our analysis showed that estimating a single β
from results averaged over several experimental sessions was slightly more accurate than
averaging multiple estimates from several experimental sessions. However, the small levels
of non-stationarity (SD ≈ 0.8 dB) meant that the difference between the estimates was, in
practice, negligible.

1. Introduction

Most studies of spatiotemporal contrast vision involve mea-
suring the observers psychometric function: a measure of
performance (d′ or percent correct) as a function of contrast.
This is usually done using a two-interval, forced-choice method
(2IFC). The lateral position of the psychometric function is an
indication of an observer’s sensitivity to the stimulus and the
contrast associated with a particularoften arbitraryperformance
level (e.g. 75% correct) is sometimes referred to as a ‘threshold’
(though authors do not always wish to invoke the theoretical
concept that this implies). Sometimes, the experimenter is also
interested in how performance varies with signal strength. This
involves measuring the slope of the psychometric function. When
the results are plotted as d′ against contrast, on log-log axes,
then the psychometric function is approximately a straight line
(e.g. Pelli, 1985) and the slope of the psychometric function is
given by the gradient of this line (b). When the performance
measure is ‘percent correct’, plotted against log(contrast), then
the psychometric function is sigmoidal (S-shaped) in form and
often fitted by a Weibull function, for which the slope is given
by its β parameter (see results section for details). To fair
approximations, β = 1.3b (Tyler & Chen, 2000) or β =
1.247b (Pelli, 1987). The slope parameter is of interest to

experimenters because it can be used to estimate the form of the
observers internal signal transducer (Nachmias & Sansbury, 1974)
(e.g. linear vs. an accelerating square law), assuming no signal
uncertainty (Foley & Legge, 1981; Lu & Dosher, 2008); the level
of signal uncertainty (Lasley & Cohn, 1981), assuming a linear
transducer (Georgeson et al, 2008; Pelli, 1985; Tyler & Chen,
2000); or some combination of the two (Meese & Summers, 2009).
Note that if the contrast transducer (r) has the form r = k.cp,
where c is stimulus contrast and k is a constant, then in the
absence of uncertainty, b = p.

The slope parameter is also of interest in contrast
discrimination experiments, where very low pedestal levels
produce steeper psychometric functions than higher pedestal
levels (Bird et al, 2002; Meese et al, 2006). Similarly, contrast
detection of target in noise can show a similar increase in slope
as the spectral density of the noise increases (Legge et al, 1987;
though see Baker and Meese, 2012). Changes in single interval
psychometric slope have been used to inform models of decision-
making (e.g. Wang, 2002), perceptual learning (e.g. Gold et al,
2010) and attention (e.g. Cameron et al, 2002). The slope of the
psychometric function is also of interest in studies that measure
a point of subjective equality and use the slope as a measure of
discriminability, as is often done in work on cue combination (e.g.
Ernst & Banks, 2002). However, to maintain focus, we restrict
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ourselves here to the study of the 2IFC psychometric function for
contrast detection (a form of the psychometric function whose
lower asymptote is 50% correct).

1.1 Five unanswered questions about the slope of the 2IFC
psychometric function

In spite of growing theoretical interest in the slope of the
2IFC psychometric function (e.g. Garca-Perez & Alcala-Quintana,
2007; Lu & Dosher, 2008; Meese et al, 2006; Meese & Summers,
2009; Petrov et al, 2006) few studies have provided a systematic
empirical investigation of this parameter. The most obvious
exception is a study by Mayer & Tyler (1986). Those authors
measured thresholds and slopes (β) for 500 ms presentations of
curved strips of grating for a wide range of sizes (4–48 grating
cycles at 12 c/deg) and spatial frequencies (2–26 c/deg for 4 deg
patches). Both of these manipulations were performed for gratings
placed 3.5 deg into the periphery but only the spatial frequency
manipulation was performed when the gratings were centred on
the fovea. Mayer and Tyler reported some variation in β across
their four observers but found no evidence for variation in β as
functions of stimulus size or spatial frequency. On average, they
found β = 3.7 for foveal viewing. Although broad in its scope, this
study leaves several questions unanswered. In order of increasing
priority these are:

1. Are similar results found using smoothly windowed stimuli
such as Gabor patches (here we used log-Gabor stimuli)
instead of hard-edged gratings? Although a fairly low-
priority question, it is possible that performance in
the Mayer & Tyler study was influenced by the high
spatial frequency artefacts introduced by the hard-edged
windowing of their stimuli.

2. Does the slope of the 2IFC psychometric function vary
with stimulus size for foveal viewing? This has theoretical
importance for understanding the processes of spatial
summation (Tyler & Chen, 2000; see Summers & Meese,
2007 for a preliminary report). Some of the conditions in
the present study bear on this issue.

3. Does the slope of the 2IFC psychometric function change
when the number of cycles is reduced below 4 (the lower
limit used by Mayer & Tyler (1986))? The preliminary
cortical filtering stage probably involves receptive fields that
respond to fewer than four grating cycles (Meese, 2010)
whereas larger gratings are detected by either probability
summation amongst multiple mechanisms (Robson & Gra-
ham, 1981) or higher-order mechanisms performing spatial
pooling (Meese, 2010). An argument has been made for
the slope of the psychometric function to be affected by
probability summation (Wilson & Bergen, 1979; see also
Mayer & Tyler, 1986) and it is plausible that the contrast
response characteristic of higher-order pooling mechanisms
might be different from that of their lower-order feeder
units, as in the case of a cascade of accelerating contrast
transducers (Meese & Baker, 2011; Sclar et al, 1990).
Therefore, the slope of the psychometric function might
be informative about the transition from a single (or few)
mechanisms to many. More generally, localised stimulus
patches containing few stimulus cycles have become the
preferred contrast stimulus in vision science (e.g. see the
ModelFest project: Watson & Ahumada, 2005) and a study
of the slope of the psychometric function for these stimuli
is long overdue.

4. Is the slope of the 2IFC psychometric function the same
or different for light bars and dark bars? There is

evidence from psychophysics that luminance increments and
decrements can have different thresholds (e.g. Krauskopf,
1980; Short, 1966) and evidence from retinal anatomy and
single-cell physiology that ON and OFF sub-systems in the
retina are very distinct both structurally and functionally
(e.g. Balasubramanian & Sterling, 2009; Burkhardt, 2011;
Field & Chichilnisky, 2007). We asked whether such
differences might be reflected in the threshold or slope of
the psychometric function.

5. Is the slope of the 2IFC psychometric function the
same or different in the two opposite ‘speed’ corners of
spatiotemporal vision? It is thought that the high-speed1

corner of spatiotemporal vision (high temporal frequency,
low spatial frequency) is dominated by the magnocellular
pathway and that the slow-speed corner of spatiotemporal
vision (low temporal frequency, high spatial frequency) is
dominated by the parvocellular pathway (Merigan et al,
1991; Merigan & Maunsell, 1990). The contrast responses
of P-cells in the retina and lateral geniculate nucleus
are far more linear than their M-cell counterparts, which
first accelerate with contrast and then saturate (Croner
& Kaplan, 1995; Shapley & Perry, 1986). Therefore, if
psychophysical performance is determined by mechanisms
with similar characteristics to the P- and M-streams, we
should expect the slope of the psychometric function to
increase with stimulus speed consistent with an increase in
the underlying contrast response exponent (p; see above).

1.2 The issue of non-stationarity

There was one other important motivation for our study.
The literature on sequential dependencies of observer responses
(e.g. Howarth & Bulmer, 1956; Treisman & Williams, 1984) and
perceptual learning (e.g. Gold et al, 2010) suggests that sensitivity
can vary across repeated measures, implying that the observers
2IFC psychometric function is not stationary but slides along
the contrast axis over time. Few studies have investigated this
systematically, though there is some evidence for such variations
from an early study using a now obsolete methodology (Hallet,
1969). If the psychometric function is non-stationary, this has
potentially important implications for its measurement (Frund et
al, 2011). When data are gathered from multiple experimental
sessions (blocks), often spread over several days, there are two
main ways in which investigators proceed. Data are either (i)
collapsed across multiple sessions and a single fit performed to
estimate threshold and slope (the ‘pool-then-fit’ method), or (ii)
fitted separately for each session, and threshold and slope derived
by averaging the multiple estimates (the ‘fit-then-pool’ method).
The pool-then-fit method has the advantage of lessening the effects
of binomial error inherent in the data because the fits are made
to larger data sets. However, it has the disadvantage that the
slope of the psychometric function will be underestimated if the
observer is non-stationary, because it involves pooling multiple
psychometric functions with different thresholds.

1.3 Aims and outcomes

To address the five questions posed above and the issue of
non-stationarity, we measured the psychometric function for a
large set of widely varying spatiotemporal stimuli and repeated
this several times over several days. We analysed our results
using both the pool-then-fit method and the fit-then-pool method.
We found no systematic effect of stimulus type on the slope
of the psychometric function (with only one exception) but did
find low levels of non-stationarity. However, the amount of
non-stationarity was so small that it had little impact on our
estimates of pool-then-fit slopes, whereas the fit-then-pool slopes

1When we use the term ‘speed’ we refer to the scalar quantity given by dividing temporal frequency by spatial frequency. We do not imply that
the stimulus is drifting.
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were slightly over-estimated, due to undersampling. Thus, for
well-practised observers at least, our conclusion is that the pool-
then-fit method is slightly more accurate than the fit-then-pool
method, but these small effects are unlikely to be of much practical
concern.

2. Method

2.1 Equipment

Stimuli were displayed on a Nokia MultiGraph 445X CRT with
a frame rate of 120 Hz using a CRS ViSaGe stimulus generator to
render pseudo-14-bit greyscale resolution. The mean luminance
of the central region (512×512 pixels; 10.7◦×10.7◦) of the display
was 60 cd/m2. The surrounding region of the display was dark.
Gamma correction was performed to ensure linearity over the
full range of target contrasts. Observers sat in a dark room at a
viewing distance of 91 cm with their head in a chin and headrest.
The experiment was controlled by a PC.

2.2 Stimuli

There were 13 stimuli: 8 log-Gabor patches, 4 Gaussian bars
and 1 Gaussian blob. Log-Gabors are similar in appearance
to a conventional Gabor (a sinusoidal grating modulated by a
2D Gaussian), except that the carrier is not perfectly sinusoidal
(Meese, 2010). Unlike conventional Gabor stimuli, they have
the attractive property of containing no DC component for any
carrier phase, including cosine phase. The set of log-Gabors was
designed to span a range of sizes (full width of the envelope at
half height: 163, 81.5, 40.8 and 10.2 min arc) whilst keeping
the number of cycles constant (Figure 1, a-d), and to span a
range of spatial frequencies (0.25, 0.5, 1 and 4 cycles/deg) whilst
keeping the size constant (Figure 1, a and e-g). The pairings of
b and e, c and f and d and g also allowed us to investigate the
effects of varying stimulus size for a constant spatial frequency.
There was also an elongated version of the smallest log-Gabor
(Figure 1h). This was for direct comparison with the bar stimuli
to test the possibility that a bar of a single polarity (dark or light)
would result in less stimulus uncertainty (and hence a shallower
psychometric function) than a bar containing both dark and light
regions. Log Gabor stimuli were created in the Fourier domain.
They were Cartesian separable (see Appendix C of Meese, 2010,
for details) and were in positive cosine phase with stimulus centre

(i.e. had a central light bar). The Gaussian bars (Figure 1i-l),
were dark (Figure 1i, k) or light (Figure 1j, l) and wide (Figure
1i, j) or narrow (Figure 1k, l). The bar widths and lengths were
matched to the central bars of the appropriate log-Gabor stimuli
(e.g. Figure 1a). Contrast was defined as ∆L/Lb, where Lb is the
background luminance, and ∆L is the absolute difference between
Lb and Lmax (light bars or log-Gabors) or Lmin (dark bars).

All of the stimuli above were temporally modulated by a
positive 100ms pulse, which had an abrupt onset and offset. In
two other ‘temporal’ conditions (designed to test the magno/parvo
distinction described in the introduction), the temporal envelope
was different from this. In a fast condition, a Gaussian blob
(σ = 104.1 min arc, Figure 1m) was presented at 15Hz for 1
cycle of a temporal square-wave (4 frames light, then 4 frames
dark). In the ‘slow’ condition, the contrast of the smallest log-
Gabor (Figure 1d, n) was slowly ramped on and off by a Gaussian
envelope whose full width at half-height was 400ms.

Groups of 4 fixation points (each 2 × 2 pixels) were used to
avoid the masking of small targets by a single central fixation
points (Summers & Meese, 2009). The fixation points were
designed to reduce uncertainty by cueing the size and shape
of each stimulus (Figure 1 and caption).

2.3 Procedure

We first estimated the approximate threshold for each stimulus
using a staircase procedure. We then used the method of constant
stimuli (MCS) with 6 contrast levels spaced at 2 dB intervals to
determine the full psychometric function in each condition. Both
procedures used a two-interval forced-choice (2IFC) technique,
where one temporal interval contained the target and the other
interval was blank. The onset of each interval was indicated by an
auditory tone and the duration between the two intervals was 400
ms. Observers were required to select the interval containing the
stimulus using one of two mouse buttons to indicate their response.
Correctness of response was provided by auditory feedback, and
the computer selected the order of the intervals randomly.

There were 26 trials (the first 12 conditions) or 20 trials (the
final two ‘temporal’ conditions) for each contrast level, randomly
interleaved from each of the six MCS levels. An additional 2
practice trials using the highest contrast level were included at
the start of each session to indicate the target identity. Responses
to these trials were ignored. One session was completed for each
of the conditions in a random order. This process was repeated a

a b c d e f g

h i j k l m n

Figure 1: High contrast examples of the stimuli used in each of the 14 conditions. Fixation points are shown here at double size for clarity. They were
placed symmetrically about the centre of the image and for the largest log-Gabors and the Gaussian blob (a, e-g, m) they were separated horizontally and
vertically by 482 min arc. For the other ‘circular’ log-Gabors (b-d, n) the placement of the fixation points was scaled in proportion to the stimulus size. For
the elongated log-Gabor and the Gaussian bars, the fixation points were separated horizontally by 482 min arc. The vertical separation was 30 min arc for
the elongated log-Gabor (h), 110 min arc for the wide bars (i and j) and 10 min arc for the narrow bars (k and l).
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further 11 times, with a different random order of conditions for
each repetition. To ensure that the range of MCS contrast levels
straddled each threshold, the psychometric functions were checked
after each session and the range adjusted as appropriate. Thus,
each final psychometric function was spread over 6-8 contrast
levels, with up to 312 trials (12 × 26) per level. Data were
collected from a total of 25,344 trials per observer.

Before data collection began, the following rejection and
replacement criterion was set to lessen the impact of unreliable
estimates of threshold. If the standard error of a threshold
estimate from a single session was greater than 3 dB (estimated
by probit analysis), the data for that condition were discarded
and the condition was rerun. Only two out of 336 thresholds were
rejected by this criterion. The standard error calculated by probit
analysis was used only for assessing this rejection criterion.

2.4 Observers

Two psychophysically experienced observers performed the
experiment. They were two of the authors (SAW and DHB). Both
had normal uncorrected vision.

3. Results

3.1 Pool-then-fit method

For each observer, the data for each condition were pooled
across sessions and fitted, using a maximum likelihood method
(Wichmann & Hill, 2001), with a Weibull function defined as

W =

(
1 − exp

(
−
(x
α

)β))
(1)

where α is the threshold, β is the slope and x is contrast in percent.
This was scaled for 2IFC proportion correct by,

p = 0.5 (W (1 − λ)) + 0.5 (2)

where λ is the lapse rate and controls the upper asymptote of the
psychometric function. The proportion of lapses was free to vary
between 0% and 1%, but constrained to a common value across
all 14 conditions for each observer. The fitting was implemented
in Matlab by using Palamedes functions (Kingdom & Prins, 2010)
and the resulting lapse rate was 0.008 for each observer.

3.2 Fit-then-pool method

We also explored a second method of combining data across
sessions. A Weibull function was fitted to the data from each
session (168 fits per observer, 120 or 156 trials per fit), with
the proportion of lapses fixed at 0.008 for each of the two
observers (determined from the pool-then-fit method). This
provided 12 estimates of threshold and slope for each condition,
which were averaged (geometric mean) across the 12 repetitions.
The geometric mean was used rather than the arithmetic mean
because the distribution of slopes was not normal in linear units
(Lilliefors test: k = 0.131, p<0.001) but was closer to normal when
transformed to log units (Lilliefors test: k = 0.048, p = 0.063), as
illustrated in Figure 2a, b.

Figure 3 shows the best and worst fit (defined as lowest and
highest deviance) of the 168 (14 conditions × 12 repetitions) fitted
Weibull functions to each observers data. Only 19 of the 336 fits
produced a p(deviance) less than 0.05. This represents 5.65% of
the fits, and is close to the expected value of 5%, suggesting that
the Weibull function provides an acceptable fit to this set of data.

The top two panels of Figure 4 show the thresholds from the
fits to each of the 168 psychometric functions for each observer.

As expected, thresholds varied across the different targets. This
is of little interest here other than to note that the variation in
sensitivity with spatial frequency is consistent with the shape of a
typical contrast sensitivity function when the size of the stimulus
is fixed (Campbell & Robson, 1968) and that the peak of this
function shifts substantially to lower spatial frequencies when the
number of cycles is fixed (a, b, c & d; Watson & Ahumada, 2005).

Averages for each condition are shown by the red and
black horizontal lines for the pool-then-fit and the fit-then-pool
methods, respectively. The error bars show 95% confidence
intervals. The superposition of the red and black lines in the top
two rows of Figure 4 confirms that estimates of threshold were
very similar for the two methods of analysis.

The slopes of the psychometric functions are shown in the
bottom two panels of Figure 4. These were similar across the
14 stimulus conditions and where they did vary, this was not
consistent across observers (discussed further below). For each
observer, the slopes (β) were always slightly shallower for the
pool-then-fit method (geometric mean: β = 2.78, 95% conf: 2.32-
3.35) than for the fit-then-pool method (geometric mean: β =
3.16, 95% conf: 2.52-3.96). This is consistent with a small level
of drift (non-stationarity) of the observers thresholds over time.
(We describe Monte Carlo simulations that attempt to quantify
this non-stationarity in the next section.)

A two-way ANOVA was performed on the rank transformed2

slopes of the psychometric functions (Conover & Iman, 1981),
which revealed a significant effect of condition (F13,308 = 2.29, p =
0.007) and observer (F1,308 = 7.6, p = 0.006) but no significant
interaction (F13,308 = 0.98, p = 0.469). Post-hoc analysis,
with Bonferroni correction, revealed that the significant effect of
condition arose only from a difference between the ‘elongated’
condition (steep slopes in Figure 4, target h) and the ‘slow’
condition (shallow slopes in Figure 4, target n). All other pairwise
comparisons between conditions were not significant, including
the three pairwise comparisons where the spatial frequency was
constant but the stimulus size varied (b and e; c and f; d and g).

To improve the strength of our conclusions, we performed a
second analysis that used Akaike’s Information Criteria (AIC;
Akiake, 1974) to compare the fit of 16 competing models to the
pool-then-fit data. (We used the pool-then-fit results because
our analysis below indicates that they provide a slightly better
estimate of the underlying ‘true’ psychometric slopes than the fit-
then-pool estimates; see ahead to Figure 5). One model allowed
all 28 slopes (14 per observer) to be free. The second model
constrained the slopes to a common value for the 14 conditions
of each observer, but allowed SAW’s slope to differ from DHB’s
slope. The remaining 14 models each allowed the slopes for one
condition to be free, but the other 13 conditions to be constrained
to a common value for each observer. In all models, thresholds
were free to vary across conditions and observers. For each model,
the likelihood of the data given the model was computed, and this
value (L) was used to calculate the AIC, given by

AIC = −2 ln (L) + 2k (3)

where k is the number of free parameters in the model.
We found that the lowest value of AIC (46527.16, indicating

the ‘best’ model) was provided by the model that constrained
the slope to a common value for 13 conditions and allowed it to
be free for the ‘elongated’ condition (see Figure 4h). The 2nd
lowest value of AIC (46531.82) was provided by the model that
constrained the slope to a common value for 13 conditions and
allowed it to be free for the slow’ condition (see Figure 4n). These
findings are consistent with the conclusion from the ANOVA post
hoc test, above, that a statistically significant difference exists

2We initially examined the distributions of the log-transformed slopes for normality, but the high outlier in DHB’s slope for the ‘slow’ condition
(Figure 4n) meant that normality could not be assumed.
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Figure 2: Figure 2. a) Distributions of normalized Weibull slopes and thresholds pooled across two observers, shown on linear axes (x refers to threshold
(α) or slope (β)). Each histogram is based on 336 individual psychometric functions (14 conditions × 12 sessions × 2 observers) and for each observer
the results for each condition were normalized by their mean. b) The same results as in (a), but with a logarithmic abscissa. Distribution of slopes has
positive skew in (a) but is approximately normal on log axes (b). c) Distributions of Weibull slopes and thresholds from the Monte Carlo simulations for a
stationary observer (see text for details). d) As c, but for a non-stationary observer with threshold jitter, j = 0.81 dB. In all four panels, the frequency axis
is normalized to the peak of the threshold function.

between these two conditions.
Although the 2nd best model produced an AIC value that was

4.66 higher than the best model, the remaining models produced
AIC values that were 5.86 to 13.87 higher. Given this variability
in AIC values, it can be difficult to intuit the magnitude of a
difference in AIC that represents a substantial difference in the
abilities of two models to fit the data, over and above data ‘noise’.
In order to resolve this problem, we calculated the Akaike weights
(Wagenmakers & Farrell, 2004), which can be interpreted as the
probability that a given model is the best model. The set of
weights is given by

w = exp
−∆α

2
(4)

followed by

w =
w

Σ (w)
(5)

where ∆α is the vector of AIC values minus the minimum AIC
value. For the 16 models considered here, the weights of the best
and 2nd best models were 0.80 and 0.08 respectively. Thus it
can be concluded that the best model does represent a substantial
improvement over its competitors.

We also computed the set of AICs and weights for each
observers data separately. For DHB, the pattern of results was

similar to both observers combined, described above. But for
SAW, there were 4 models that had low AIC values, and they
produced weights from 0.14 to 0.22, suggesting no clear ‘winner’.
Thus, the identification of the best-fitting model appears to be
driven primarily by DHB’s data and not SAW’s, and this is
consistent with his steeper slopes for the ‘elongated’ condition,
apparent in Figure 4h.

Close inspection of Figure 4 suggests that for SAW (but not
DHB), there was a small decrease in slope as spatial frequency
increased when the number of cycles was fixed (targets a-d,
fourth row of Figure 4), but this spatial frequency effect was not
replicated when the target size was fixed (targets a, e, f and g)
and its cause (if real) remains unclear. Neither observer showed
a consistent variation of slope with bar polarity (targets i-l). For
SAW the slope of the psychometric function was slightly steeper
for the ‘fast’ condition than for the ‘slow’ condition but there was
little evidence of this difference for DHB, and the ANOVA post hoc
test above demonstrated that this difference was not statistically
significant. Nevertheless, to check this more thoroughly, we
gathered data from an additional two observers (RJS and ASB) for
these two conditions. They were both experienced psychophysical
observers and were naive to the aims of the study. Independent
t-tests were performed on the log-transformed slopes for these

5
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Figure 3: Figure 3. Example data and fitted Weibull functions. Rows show data from each observer, and columns show the best (left) and worst (right)
fits (defined as lowest and highest deviance) of the 168 Weibull functions to the results. Error bars show the expected binomial error (±1se) given by

se =
√

(p (1 − p)) /n , where p is the proportion correct, and n is the number of trials at a given contrast level.

two conditions for observers SAW, RJS and ASB, and a Mann-
Whitney U test was performed on DHB’s slopes (because of the
outlier in his ‘slow’ condition). This revealed that there was no
significant difference between the ‘fast and ‘slow’ conditions for
any of the four observers, even without correcting for the use
of multiple tests (SAW: t(22)=1.62, p=0.12; RJS: t(22)=1.03,
p=0.31; ASB: t(22)=0.12, p=0.90, DHB: U=173, p=0.71).

4. Monte Carlo Simulations

Our results show that estimations of the slope of the
psychometric function depend to a small extent on the way
in which the results are pooled. This is to be expected if
the location of the observers threshold fluctuates a little over
sessions. How might we estimate the magnitude of this non-
stationarity? It would be overestimated by the standard deviation
of the distribution of threshold estimates from different sessions
because even for a stationary observer, this would be non-zero
owing to binomial errors in the data. To tackle this problem, we
performed Monte Carlo simulations for various levels of simulated
non-stationarity to estimate the level needed to account for the
differences in the estimates of the empirical slopes from the two
methods of analysis. Details of the simulations were as follows.

We ran 1400 Monte Carlo simulations of every condition of the
experiment, each of which had the same number of contrast levels,
trials per datum and repetitions as were used in the experiment.
In keeping with the empirical results, the simulated proportion of
lapses was fixed at 0.008. In other words, on every simulated trial
there was a 0.8% probability that no signal event was simulated

on that trial (equivalent to the observer missing the entire trial),
in which case there was a 50% probability that the trial was
recorded as correct. For a range of generative slopes, we estimated
the slope of the psychometric function using the pool-then-fit
and fit-then-pool methods at various levels of non-stationarity, j.
This was the standard deviation of normally-distributed jitter, in
logarithmic (dB) units, applied to the ‘true’ generative threshold
between simulated experimental sessions. Thus, we assumed that
the observer was stationary within a session but non-stationary
between sessions (i.e. across different days).

When the observer was stationary (j = 0, Figure 5a), the
simulated pool-then-fit slopes (red line) were very close to the
generative slope (grey dashed line). The simulated fit-then-pool
slopes (black line) were slightly steeper than the generative slopes,
by an amount that increased with the generative slope. For a
typical experimental slope of β = 3, the simulated fit-then-pool
slope was β = 3.3. This small overestimation is an inherent
consequence of undersampling (Wichmann & Hill, 2001) by this
method (in experiment and simulations) and can be completely
overcome in the simulations by increasing the number of simulated
trials (effectively, this is shown by the red line in Figure 5a).

Non-stationarity (j > 0) can have no effect on the estimate of
slope using the fit-then-pool method, since the overall estimate
of slope derives from those measured within each session where
we have assumed (in our simulations) that the observer is
stationary (see next section). This is confirmed in Figure 5 by
the black line, which is identical for the three levels of non-
stationarity considered here (j = 0, j = 0.75 dB and j = 0.98dB;
different panels). However, as the simulated observer became

6



6

0

6

12

18

Th
re

sh
ol

d 
(d

B)

DHB

 

 

6

0

6

12

18

Th
re

sh
ol

d 
(d

B)

SAW

1

2

4

8

Sl
op

e 
(

)

DHB

1

2

4

8

Sl
op

e 
(

)

SAW

fit then pool
pool then fit

a

a

b

b

c

c

d

d

e

e

f

f

g

g

h

h

i

i

j

j

k

k

l

l

m: Fast

m: Fast

n: Slow

n: Slow

Figure 4: Figure 4: Thresholds and slopes for each observer and condition. The red horizontal lines show the results of fitting to the pooled data (the
pool-then-fit method) and the black dashed horizontal lines show the geometric mean across the 12 repetitions of each condition (the fit-then-pool method).
Error bars are 95% confidence intervals, obtained from bootstrapping (pool-then-fit) or 2.2 × se (fit-then-pool).

 
 
 
 

 

2 2.5 3 3.5 4

2

2.5

3

3.5

4

Generative slope (   )

Fi
tte

d 
sl

op
e 

(  
 )

No jittera)

2 2.5 3 3.5 4

2

2.5

3

3.5

4

Generative slope (   )

Fi
tte

d 
sl

op
e 

(  
 )

j = 0.75dB

DHB

b)

2 2.5 3 3.5 4

2

2.5

3

3.5

4

Generative slope (   )

Fi
tte

d 
sl

op
e 

(  
 )

j = 0.98dB

SAW

c)

 

 

sim fit then pool
expt fit then pool
sim pool then fit
expt pool then fit

! ! 

! !  ! 

 ! 
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less stationary (j increased), the simulated pool-then-fit slopes
decreased, underestimating the true generative slopes. This
occurred because the generative slope was ‘blurred’ by the non-

stationarity across sessions.
The symbols in Figure 5 (b and c) are the empirical slopes

estimated using the pool-then-fit (red-edged symbols) and fit-
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then-pool methods (black-edged symbols). These were replotted
from Figure 4, as follows. We associated the fitted slope
parameters from the fit-then-pool results with the fitted slopes
from the simulations. By forcing these points to fall on the
black line this set their horizontal position and solved the inverse
problem of estimating the true slope of the empirical psychometric
function from the slopes generated by the fits to the original data.
By association, this also set the horizontal positions of the pool-
then-fit estimates (i.e. there is one red edged and one black edged
estimate in each pair of points with identical positions along
the x-axis). The level of non-stationarity, j, was then varied in
increments of 0.01 dB to find the minimal (summed square) error
between the logarithm of the simulated and experimental pool-
then-fit slopes (the red lines in Figure 5b and c). The optimal
values were j = 0.75 dB (DHB) and j = 0.98 dB (SAW).

4.1 The overall variability of thresholds is predicted by combining
two sources

The variability in threshold estimates from undersampling the
psychometric function (in the fit-then-pool method) was estimated
from the simulation of the stationary observer. Figure 2c shows
this distribution, which has a standard deviation of 0.76 dB. Our
estimates of the non-stationarity for each observer (expressed as
standard deviations) are given by j in the previous section (e.g.
Figure 5b and c). Summing the variances of these two sources of
variability (undersampling and non-stationarity) for each observer
gives us very good predictions (SD = 1.08 dB for DHB and SD
= 1.24dB for SAW) for the overall variability in our estimates of
threshold across experimental sessions (SD = 1.08 dB for DHB
and SD = 1.18 dB for SAW).

Although the variability of thresholds is well predicted by
combining the two sources above, we cannot rule out the
possibility that observers were non-stationary within individual
experimental sessions as well, even though each of these lasted only
4-5 minutes. Relevant factors might include drifting of attention,
learning or adaptation effects (either to the target waveform or the
background luminance). However it was not practical to examine
these possibilities because dividing the results from each session
into smaller parts reduced the number of trials to an extent that
made the estimates in the slopes of the psychometric functions
too unreliable.

5. Discussion

We gathered extensive data (42,048 trials, 336 psychometric
functions) to address the issue of observer non-stationarity, and to
answer five questions about the slope of the psychometric function
set out in the introduction. The answers to those questions are as
follows.

1. The use of smoothly windowed stimuli here produced
similar results to Mayer & Tyler (1986), in that pooled
psychometric slopes remained fairly constant (β = 2.78 ±
0.07) across all conditions. Moreover, our slopes were of
similar magnitudes to Mayer & Tyler’s observers (3.24±0.39
for DD, 5.08 ± 0.72 for MM and 2.45 ± 0.24 for JB in
that study). This suggests that the high spatial frequency
artefacts introduced by the hard-edged windowing of their
stimuli had little or no effect on the psychometric slopes.

2. The 2-way ANOVA of the 12 rank-transformed measures
of slope from each of the 14 conditions for observers SAW
and DHB revealed no significant difference between the
stimuli that had the same spatial frequency but varied in
size (Figure 1, stimuli b and e; c and f; d and g). Thus,
we found no evidence that the slope of the psychometric
function depends on stimulus size for foveal viewing.

3. The similarity of the slopes of the psychometric functions

for stimuli with few cycles (Figure 4, targets a-d) compared
to those with many cycles (Figure 4, targets e-g) shows that
the slope of the psychometric function does not change when
the number of cycles is reduced below four. This extends
Mayer and Tyler’s (1986) conclusions to grating patches
containing small numbers of cycles, including single bars.

4. The empirical slopes and thresholds were very similar for
light bars and dark bars (Figure 4, targets i-l). Many, but
not all, previous studies have reported consistently lower
detection thresholds for decrements than increments, by
about 2 dB (0.1 log unit) (e.g. Krauskopf, 1980; Patel
& Jones, 1968; Short, 1966). In these earlier studies
such a small difference might be attributed to a criterion
shift (though it would have to be a surprisingly consistent
one). The light/dark asymmetry in thresholds was more
prominent at low background luminances where threshold
contrasts were higher (Patel & Jones, 1968; Short, 1966).
Indeed, contrast level may be the key factor, because
when the retinal response to luminance is nonlinear and
compressive, the response gain for increments is lower
than decrements. The difference may be trivial for small
luminance changes (low contrasts) but very significant at
high contrasts (see Kingdom & Whittle, 1996; McIlhagga &
Peterson, 2006, for a full discussion). Consistent with this
argument, in a forced-choice study similar to ours, Legge
& Kersten (1983) reported that thresholds for dark bars
were on average just 0.04 log units (0.8 dB) lower than
for light bars (their table 2). Thus our data reinforce
the conclusion that at photopic luminances, and with
forced-choice methods, light and dark bars are almost
equally detectable. Our data show that the psychometric
slopes are also equal. This implies that nonlinearity
and/or uncertainty in the response to contrast are the
same for localized increments and decrements. Light-dark
asymmetries arise only at much higher contrasts.

5. We compared the slopes of the psychometric functions
from the two opposite ‘speed’ corners of the spatiotemporal
frequency domain. For SAW, the slope was slightly steeper
for the ‘fast’ stimulus than the ‘slow’ stimulus (Figure 4,
targets m and n), as we had anticipated (see Introduction),
but this difference was not significant and not at all
apparent in the results from the other three observers.
Thus, we were unable to find any evidence for a difference in
the slopes of the psychometric functions for ‘fast’ and ‘slow’
(flickering) stimuli. This implies that any differences (e.g
different exponents) in the early contrast responses to these
stimuli are irrelevant at the point of the decision variable.
Assuming that our stimuli were successful in differentially
tapping the M- and P-pathways, then one interpretation
(following Birdsall’s theorem and Lasley & Cohn, 1981)
is that performance limiting noise is injected after the
nonlinearity that distinguishes the M- and P- pathways, but
also after subsequent (e.g. cortical) nonlinearities (response
exponents or uncertainty) that control and equate the slope
of the psychometric function across the various stimulus
conditions. With this arrangement, the distinction between
the nonlinearities of the M- and P-pathways would be lost in
the performance data. Put another way, our results imply
that observers did not tap the direct outputs of pure M-
and P-pathways here because that would have produced
differing slopes in the psychometric functions.

5.1 Polarity uncertainty

Wallis & Georgeson (2007) examined detection performance
for Gaussian bars, and found that the slope of the psychometric
function was slightly steeper when there was uncertainty about
the polarity of the target (the bar could be light or dark on
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each trial) compared with when its polarity was known. We
wondered whether a similar increase in slope might occur for a
stimulus containing adjacent light and dark thin bars, where small
fixation errors might induce uncertainty about polarity, when
compared with the slope for a thin bar of known polarity. The
ANOVA revealed no significant difference between the ‘elongated’
log-Gabor condition (Figure 1h) and the thin light or dark bars
(Figure 1k, l). Thus, polarity uncertainty (if present) appears to
have little or no impact on the slope of the psychometric function
for these stimuli.

5.2 The slope of the psychometric function is invariant with
stimulus condition

In general, the slopes of the psychometric functions showed no
consistent departure from the mean across any of the conditions,
apart from the difference between the ‘elongated’ log-Gabor
and ‘slow’ conditions described above (and the reason for that
difference is unclear). This general uniformity suggests a common
form of nonlinear contrast transducer, or constant intrinsic
stimulus uncertainty, or a fixed contribution from the combination
of both factors. For example, using Monte Carlo simulations, it
can be shown that if the transducer is a square-law (p = 2) and the
observer monitors about two or three times as many mechanisms
as are useful, then these effects will combine to predict our average
β = 2.78 to 3.16 (from our two different methods of analysis).

5.3 Pool-then-fit slopes vs fit-then-pool slopes

One of the main aims of this study was to discover how best to
combine data sets across multiple experimental sessions. Figure 4
shows that there was a small difference in the empirical estimates
of the slopes of the psychometric functions (0.38 β units) when
they were derived by fitting to each of 12 sessions and then
pooling (fit-then-pool method), compared with a single fit to data
pooled across the 12 sessions (pool-then-fit method). In every
condition, the slope from the fit-then-pool method was slightly
steeper than that from the pool-then-fit method. Which of the
two methods is most appropriate for estimating the true slope of
the psychometric function? Using the same curve-fitting methods
and the same number of trials as typically used in psychophysical
experiments, the Monte Carlo simulations in Figure 5a indicate
that part of the difference between the two estimates derives from
the undersampling of the psychometric function in the session-by-
session basis of the fit-then-pool method and that this causes the
slope of the psychometric function to be slightly overestimated
(i.e. to be slightly too steep) (see also Wichmann & Hill, 2001).
This is quantified in Figure 5a, which shows that when the
threshold was completely stationary the fit-then-pool slopes (y)
are given by3

log10 (y) = 1.09log10 (x) − 0.004 (6)

where x = generative β. This error could be reduced by
substantially increasing the number of simulated trials for each
psychometric function either by increasing the number of trials per
contrast level or the number of contrast levels, or a combination
of the two. However, this is usually impractical in experimental
situations where time constraints can be important. Can
estimation be improved by using the pool-then-fit method where
the large number of trials in the pooled psychometric functions
mitigate the effects of undersampling in the fit-then-pool method?
Unfortunately, Figure 5 shows that this method also comes with
a cost, since the blurring of the psychometric function caused by
non-stationarity causes its slope to be underestimated (i.e. to
be slightly too shallow). For one of our observers (DHB) the

blurring was fairly minor, leading to only small errors in the
estimate (Figure 5b). For the other observer (SAW) the blurring
was a little more severe, causing the magnitude of the errors to
approach those inherent in the fit-then-pool method, but in the
opposite direction (Figure 5c). Nonetheless, it might be argued
that this is the preferred method for estimating the slope of the
psychometric function because the solid red lines lie closer to the
generative slopes (dashed grey lines) than do the black lines. In
fact, our initial concern that the pool-then-fit method would be
unduly compromised by the non-stationarity of the psychometric
function was not borne out because the level of non-stationarity
for our experienced observers was so small. However, as the level
of non-stationarity (j) became more severe in the simulations, the
method eventually underperformed the pool-then-fit method (not
shown). This could be a problem in circumstances where the levels
of non-stationarity are greater than those estimated here. These
situations could include results from less experienced observers or
results from observers spread over a longer period of time. In these
cases, a better estimate of the slope of the psychometric function
might be achieved by taking the average of the pool-then-fit and
the fit-then-pool estimates.

The slope from the fit-then-pool method was slightly steeper
than that from the pool-then-fit method in all 14 conditions
for both observers. Although this pattern looks systematic, the
magnitude of this effect is very small. Nevertheless, it raises
the interesting possibility that a future study addressing the sole
question of non-stationarity would further delineate between these
two pooling rules.

5.4 Conclusion

For practised observers, non-stationarity of the psychometric
function is of little practical concern, meaning that reasonable
estimates can be achieved using either the fit-then-pool method
or the pool-then-fit method. Computational models for contrast
detection can be simplified by assuming a stationary observer and
a slope of the psychometric function that is common across stimuli
that vary in area, number of spatial cycles, spatial frequency,
contrast polarity and ‘speed’.
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