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Summary 
 
 

This dissertation investigates the very important and current problem of modelling 
human expertise.  This is an apparent issue in any computer system emulating human 
decision making.  It is prominent in Clinical Decision Support Systems (CDSS) due to 
the complexity of the induction process and the vast number of parameters in most 
cases.  Other issues such as human error and missing or incomplete data present 
further challenges. 
In this thesis, the Galatean Risk Screening Tool (GRiST) is used as an example of 
modelling clinical expertise and parameter elicitation.  The tool is a mental health 
clinical record management system with a top layer of decision support capabilities.  It 
is currently being deployed by several NHS mental health trusts across the UK.  The 
aim of the research is to investigate the problem of parameter elicitation by inducing 
them from real clinical data rather than from the human experts who provided the 
decision model.  The induced parameters provide an insight into both the data 
relationships and how experts make decisions themselves.  The outcomes help further 
understand human decision making and, in particular, help GRiST provide more 
accurate emulations of risk judgements.  Although the algorithms and methods 
presented in this dissertation are applied to GRiST, they can be adopted for other 
human knowledge engineering domains.  
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Chapter 1 

Introduction 

 

 
This Chapter covers the following: 

 Introduction 

 Knowledge Representation 

 Parameter Learning 

 Present Investigation 

 Thesis Organization   
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This work investigates the elicitation of parameter values in a hierarchical structure 

representing clinical expertise.     The work is based on the Galatean Risk Screening 

Tool (GRiST) [GRiST, 11].  GRiST is a clinical decision support system that provides 

clinicians with risk assessments based on a psychological model developed through 

the project. It is currently being deployed in several NHS Trusts across the UK.  We 

have used real data from GRiST to test the algorithms presented in this work.   

Although GRiST is used as a platform, the algorithms presented here can be easily 

applied to any knowledge engineering domain. 

 

1.1 Knowledge Representation 

 

In any real life system, knowledge representation is a complicated issue.  

Computers are at their very definition merely computational machines, but mapping 

real life data and simulating human thinking is very often a challenge.  

Knowledge Engineering is a field of computer science that deals with representing 

and conditioning knowledge to be suitable for computer processing.  This is one of the 

cornerstones of Decision Support Systems (DSS).   One very complicated aspect of 

knowledge representation is simulating human decision making.   This is due to the 

huge number of parameters involved many of which are unknown.  It is also fair to say 

that it has been a challenge to mirror the human decision making process.  Once the 

knowledge elicitation process is complete, this can then be used for decision support 

and analysis of new data. 

This dissertation focuses on the challenges associated with representing expert 

knowledge in the clinical field.    This is one of the most complicated decision support 

areas due to the lack of a formal approach by experts.   The decision making process 

in the clinical field is very subjective and lacks formal procedures and steps to describe 

or back decisions.  The Galatean Risk Screening Tool (GRiST) system tries to emulate 

the decision making process followed by clinicians in their day to day diagnosis.  

Although the algorithms and methods developed in this dissertation focus on the 

GRiST system, which represents psychological risk analysis, it can be easily adopted 
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for other fields of knowledge engineering.  This is due to the fact that throughout our 

work, as explained in detail in this thesis, we have assumed a generic model for data 

representation that does not rely on specific clinical models.  In fact, our induction of 

the algorithms presented in this dissertation does not make use of any clinical 

information, but deduces the solution based on the mathematical model of the tree.  

Thus the tree could represent any knowledge domain, not necessarily clinical, as long 

as the structure of the tree is provided by the experts. 

 

1.2 Parameter Learning 

 

In order to be able to represent the knowledge elicitation process accurately in any 

decision support system, a set of parameters such as relative influences or weights of 

input data; needs to be identified and instantiated.    These can be tuned from the data 

to achieve better results and more accurate decision process.   

One of the problems associated with parameter learning in decision support 

systems in general, is identifying the parameters in the first place.   This is due to the 

fact that in many cases the actual parameters are either unknown themselves, or their 

behaviour and distributions are not clear.  Hence the training phase of a Decision 

Support System (DSS) is very important when the parameters are learned.   The wrong 

parameters could, and probably would, invalidate the entire system operation. 

In Clinical Decision Support Systems (CDDS), this is especially important, as the 

types and distributions of the parameters play a major part in the credibility of the 

system among clinicians and patients alike.    In other words, we need to be able to 

justify the use of these parameters and their respective distributions and link them to 

the actual problem in a semantic way.   

There is also the issue of human factors and human errors, which could negatively 

affect any elicitation process.  Obtaining consensus over the elicitation process is a 

major issue with CDSS.   We need to have methodologies in place to generate 

consensus from very often inconsistent data. 

The final obstacle with DSS design in general and CDSSs in particular, is the 

problem of missing or corrupt data.   Whether at the training stage or the deployment 
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stage, missing data is inevitable.   This is due to human factors, the nature of the 

problem or both.  In the medical field, working with hundreds of parameters is not 

unusual.  Hence, the missing data problem becomes more apparent.   The more 

parameters the system has; the bigger the chance of missing some of them due to 

human error or simply lack of information.  

We need to have mechanisms to deal with missing data, otherwise the training 

would be inaccurate and subsequently, the decision making process would become 

inaccurate too.   

 

1.3 Present Investigation 

1.3.1 Motivation 

 This work addresses the challenges of missing parameter values learning and 

elicitation in CDSSs.   The algorithms developed in this work have been applied on the 

GRiST CDSS as a platform to test the methods we developed.  Real clinical patient 

data has been used and the inputs of 43 experts were deployed in the testing process. 

Large hierarchical knowledge structures such as GRiST with relative influences of 

each node (i.e. the contribution of each node in the tree to the top or decision, see 

Chapter Two) require a large number of parameter values that experts cannot and 

probably would not provide.    The focus of this work is to automate the parameter 

value elicitation process using available data.  Since the GRiST tree structure is 

predefined through years of elicitation by the experts, the main contribution of this 

research would be calculating the values of the parameters based on previous known 

cases in a large hierarchical structure representing clinical expertise.   However, the 

algorithms presented in this thesis can be adapted to other knowledge engineering 

domains, which is part of the contribution of our work. 

The often large number of parameters -and the complicated relationships between 

them- involved in a CDSS makes it very desirable to have automated methods for the 

elicitation of its parameters.   In some cases, as in GRiST, this may be the only way to 

obtain objective information with viable proof due to the large number of parameters 

involved. 
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Another aspect of a CDSS that is challenging and we aim to address is the missing 

and corrupt data issue.  As with any DSS, and real life system, it is inevitable that some 

data may be missing and wrong data may be entered by users.  The system needs to 

be able to identify irregularities and warn the user, as well as possibly having 

methodologies to replace the missing data with valid assumptions.  Although this is not 

the main contribution of this work, we touch on it out of necessity to be able to test our 

algorithms on real data. 

The final challenge that we aim to address is the issue of expert consensus at the 

training stage of a CDSS.   In our case, over 40 experts were prompted to devise some 

of the parameter distributions.  This meant that we could potentially have over 40 

different expert alternatives for each of the parameters.  

We need a way to be able to concatenate the expert opinions into one global 

function.    The astronomical number of different possible combinations would make it 

impossible for experts to agree and would make it impossible for us to analyze experts’ 

suggestions.    It would be extremely difficult (if not impossible) to collate the data 

provided by different experts into one coherent model, with meaningful values.     

 

1.3.2 Objectives 

The project aims at devising a methodology to automatically elicit parameter values 

in a decision tree, based on previous or expert knowledge.    Though in our case it is 

applied to a clinical decision support system, the approach could be adopted to other 

applications that involve similar decision tree structures. 

 

 The objectives are summarized as follows: 

 

1. Developing a parameter value elicitation methodology for the GRiST 

decision tree.  This includes devising the necessary algorithms to learn the 

values automatically and using the available data to learn the values.  This is 

the main contribution of this work. 
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2. Testing the methods on real data.  We have a large number of patient 

data available through the GRiST online system.  Several NHS trusts in the UK 

are currently using GRiST. 

3. Exploring the challenges associated with eliciting real life data.  This 

includes – but not limited to- missing values in the test set, incomplete or 

inaccurate patient records and errors in the original data. 

4. Consensus analysis and representation.  As the system uses experts 

knowledge to test the algorithms, it is difficult to make sure that one expert’s 

decision will be similar to another expert even on the same case.   This creates 

the problem of generating consensus and integrity of the test data set. 
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1.4 Thesis Organization 

 

The rest of the thesis is organized as follows:   Chapter Two presents background 

information and literature survey on the current state of knowledge engineering and 

clinical decision support.    Chapter Three presents our methodology in tackling our 

problem in representing mental health clinical expertise.  

Chapter Four presents our work in tackling the issue of obtaining expert consensus, 

since the system was developed using the feedback of over 40 experts, their opinions 

had to be concatenated.  We present our approach to this problem. 

 Chapter Five covers the problem of missing and inaccurate data.  We present 

methods of tackling this issue in GRiST patient records. 

Chapter Six presents analysis of the real life data, obtained from our software that 

uses the algorithms presented in this thesis on real patient data. 

Chapter Seven concludes the work and presents future work. 

Appendix A through D present some material from the GRiST system (our clinical 

decision support system), and overview of the software we developed and statistical 

results from our algorithm. 

 References are provided in [ABCD, YY] format, where “ABCD” represents the first 

four letters of the main author’s surname, “YY” is the year of publication.  For example, 

[BUCK, 08], represents a reference by “C.D.Buckingham” as the main author, 

published in 2008. 
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Chapter 2 

Background 

 

 
 

This Chapter covers the following: 

 Introduction 

 Clinical Decision Support Systems  

 Design Methodologies    

 GRiST 

 Summary 
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2.1 Introduction 

  In this chapter, we introduce a background and literature survey of Clinical Decision 

Support systems, their history, classification, techniques and examples.   As the work 

will be focused on GRiST, this survey will in turn have emphasis on clinical systems.  

The final part of this chapter focuses on GRiST as our platform and discusses where it 

is situated among clinical decision support systems and techniques.  We will also show 

how GRiST differs from conventional systems.  The survey covers a variety of aspects 

due to the complex nature of clinical decision support systems.  GRiST itself deploys 

various techniques.   

 

2.2 Clinical Decision Support Systems 

2.2.1 Definition 

Clinical Decision Support Systems (CDSSs) have been defined broadly as any 

computer programme which helps health professionals make clinical decisions [SHOR, 

90]. They are "active knowledge systems which use two or more items of patient data 

to generate case-specific advice"  [WYAT, 91] and are typically designed to integrate a 

medical knowledge base, patient data and an inference engine to generate case 

specific advice.  This is a basic definition, but in most clinical systems the data used to 

generate advice consists of complex and complicated relationships between many 

pieces of information, as in the case of GRiST [GRIST, 11] [BUCK, 08]. 

  The main purpose of a modern CDSS is to assist clinicians at the point of care 

[BERN, 07]. Their four key functions are [PERR, 99]:  

1. Administrative: Supporting clinical coding and documentation, 

authorization of procedures, and referrals.  

2. Managing clinical complexity and details: Keeping patients on research 

and chemotherapy protocols; tracking orders, referrals follow-up, and 

preventive care.  

3. Cost control: Monitoring medication orders; avoiding duplicate or 

unnecessary tests.  

http://www.openclinical.org/dss.html#wyatt1991#wyatt1991
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4. Clinical Advice: Supporting clinical diagnosis and treatment plan 

processes; and promoting use of best practices, condition-specific guidelines, 

and population-based management.  

Clinical decision support systems are often complicated and required to work in 

sensitive knowledge domains [HEEK, 06], [FOX, 02].    Risk screening in the mental 

health field is a particularly complex procedure but lacks much assistance beyond 

paper-based approaches [HAWL, 06].    Unfortunately, computerised decision support 

systems to assist mental-health clinicians are hindered by limited knowledge about the 

cognitive processes involved in risk assessment, which compounds the inherent 

difficulty of knowledge elicitation [BUCK, 07].  

 

2.2.2 Overview 

2.2.2.1 History 

The concept of decision support has evolved from two main areas of research: The 

theoretical studies of organizational decision making done at the Carnegie Institute of 

Technology during the late 1950s and early 1960s, and the technical work on 

interactive computer systems, mainly carried out at the Massachusetts Institute of 

Technology in the 1960s [KEEN, 78]. 

It is considered that the concept of DSS became an area of research of its own in 

the middle of the 1970s, before gaining in intensity during the 1980s [SPRAG, 93]. In 

the middle and late 1980s, executive information systems (EIS), group decision support 

systems (GDSS), and organizational decision support systems (ODSS) evolved from 

the single user and model-oriented DSS [EFRA, 05]. 

The definition and scope of DSSs has been migrating over the years. In the 1970s a 

DSS was described as "a computer based system to aid decision making" [SOL, 87].  

In the late 1970s the DSS movement started focusing on "interactive computer-based 

systems which help decision-makers utilize data bases and models to solve ill-

structured problems" [SOL, 87]. In the 1980s DSS should provide systems "using 

suitable and available technology to improve effectiveness of managerial and 

professional activities", and the end of 1980s DSS faced a new challenge towards the 

design of intelligent workstations [BERN, 99].     Beginning in about 1990, data 
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warehousing and on-line analytical processing (OLAP) began broadening the realm of 

DSS.  As the turn of the millennium approached, new web-based analytical 

applications were introduced [ANAH, 97]. 

Since the early days of computers, as early as the 1950‟s, the prospect of using 

computers to assist in clinical decision making has been recognized by physicians and 

computer scientists [GREE, 07]. Several groups began to analyze the process of 

medical diagnoses in order to automate it [LEDL, 59]. This in turn led to another 

domain of research, more concerned with the representation and use of knowledge, 

beyond data and numbers which was later to become known as knowledge 

engineering.    This led to the exploration of new symbolic reasoning approaches 

[GREE, 07].   

  Clinical decision support systems followed the developments in decision support 

systems, and they started to emerge as early as the 1960‟s CDSS [SHOR, 90]. Their 

major obstacle was negative human perception and the reluctance of clinicians to give 

up their knowledge and use the systems afterwards. The lack of structure and rules in 

the clinical process did not help either, as many experts rely on experience rather than 

set-in-stone rules [GRAY, 01].  Experience changes with time and is amended or 

modified, whereas rules are fixed.  This is apparent in the medical field as new 

advances in medicine can change previous rules. 

This problem is still around today, although progress has been made in many areas. 

A brief history of early clinical decision support systems is listed in Figure 2.1 below.  

More details on these systems are given in section 2.3.5: Case studies.  Some of these 

systems (or their derivatives) are still in use today, such as INTERNIST, others form 

the basis of many of the current systems on the market, like MYCIN.   

 Wright and Sitting [WRIG, 08] have formulated a model charting the developments 

in the clinical domain with four distinct architectural phases for decision support: 

1. Standalone decision support systems, beginning in 1959: 

a. These were the early attempts to develop tools to help clinicians and 

gather medical data.  These were disjoint efforts with no 

standardisation or integration ability. 

2. Integrated systems, beginning in 1967: 
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a. These were systems that could be integrated into existing clinical 

systems, although rigid formats had to be followed and often were not 

portable among different platforms. 

3. Standards-based systems, beginning in 1989: 

a. Attempts to create a standard syntax for medical decision support 

systems and specifically rules were introduced.  Some of these, like 

ARDEN are still in commercial use today.    

4. Service models, beginning in 2005: 

a. These used Application Programming Interface (API) framework to 

create portable systems that can be integrated more easily into 

existing clinical records.  They eased the restrictions on standards on 

the data side, but imposed new restrictions on the application side.  

They act as gateways between the data and the Decision Support 

System. 

 

 

Figure 2.1:  A schematic drawing of the four-phase model for the development of 

clinical decision support systems [WRIG, 08]. 
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2.2.2.2 Classification 

Most CDSSs consist of three parts, the knowledge base, inference engine, and 

mechanism to communicate.  There are two main types of CDSS, as classified by 

[BERN, 99]: 

 Knowledge-Based  

 Non Knowledge-Based  

i. Knowledge-Based CDSS 

In this model, the knowledge base contains the rules and associations of compiled 

data which most often take the form of IF-THEN rules.  If this was a system for 

determining drug interactions, then a rule might be that IF drug X is taken AND drug Y 

is taken THEN alert user.  

Using another interface, an advanced user could edit the knowledge base to keep it 

up to date with new drugs [BERN,99].  The inference engine combines the rules from 

the knowledge base with the patient‟s data. The communication mechanism will allow 

the system to show the results to the user as well as have input into the system.  

[BERN, 07], [OPEN, 09]. 

This is covered in more detail in the heuristic modelling section. 

ii. Non-Knowledge-Based CDSS 

These are CDSS that do not use a knowledge base but use a form of artificial 

intelligence or machine learning, which allows computers to learn from past 

experiences and/or find patterns in clinical data.    An example is using neural 

networks.  These systems generally do not require a rule base, as they generate their 

rules from the data and previous cases.  There are several methodologies used for 

these types of systems, mainly statistical and mathematical.  These are listed in this 

chapter in section 2.3.3.  Non-knowledge-based systems often focus on a narrow list of 

symptoms such as ones for a single disease as opposed to the knowledge based 

approach which cover many different diseases to diagnosis [BERN, 07]. 

 The advantage of knowledge based systems is that the decisions can be easily 

justified and are supported by the experts who supplied the rules.  They are also easy 
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to implement.  They have a limitation on the number of rules (as they need to be 

supplied by experts) and they are difficult to update. 

 Non-knowledge based systems on the other hand, learn directly from the data, 

which makes them up to date and reflect the previous cases.   It is difficult to justify the 

decisions and outcomes and the design and testing process of these systems is quite 

complicated.  They require fairly large amounts of data for accurate learning.   

 

2.2.3 Structure of CDSS  

Shortliffe [CLAN, 84] classifies the structure of CDSSs into five areas:  

i. Functionality: 

Broadly speaking they are intended to assist with forming diagnoses or selecting 

treatment.  

ii. Output: 

Passive systems require the physician to access the advice, whereas active 

systems give unsolicited advice and have a higher level of information processing 

[ELSO, 95], e.g., PRODIGY [PURV, 88].  

iii. Consultation Type:  

This may be by a response to entered data, which is the commonest type, or by a 

critiquing of the doctor‟s treatment suggestions, e.g., CAPSULE  

http://www.infermed.co.uk.  

iv. Design Methodology: 

The mathematical model or method used in creating the engine behind the DSS 

could be used to classify such systems.  For example, rule based experts systems, 

belief networks and decision trees have all been used to model clinical expertise. 

[BERN, 99].   These are covered in more detail later. 

v. Interface: 

The Human Computer Interface (HCI) is an important aspect of any compute 

system.  If the system is not user friendly and intuitive, it is likely to be blocked by the 

target users and eventually discarded.  This is more apparent in the clinical field, as 

http://www.infermed.co.uk./
http://www.infermed.co.uk./
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clinicians are used to certain paper interfaces and documents, which they would be 

very reluctant to replace.   The interface design will depend on the application and 

inputs of the system [BERN, 07]. 

2.3 Design Methodologies 

 Any decision support system relies on knowledge that originates from a variety of 

sources [GREE, 07].   In clinical DSSs, however, due to the large number of the 

sources, selecting and integrating this knowledge is a complicated task [COIE, 94]. 

There are many different methodologies that can be used by a CDSS In order to 

process the data and prepare it in order to provide support to the health care 

professional,   The basic components of a CDSS include a dynamic (medical) 

knowledge base and an inference mechanism.   In the following sections, we will 

present an overview of both [COIE, 94].  The dynamic knowledge base is mainly 

concerned with the data, how it is retrieved, modeled and pre-processed.   The 

inference mechanism is mainly responsible for the decision support process, and 

intelligence. 

2.3.1 Data Collection 

 Finding information relevant to the problem or the case is a basic form of CDSS.    

A simple check to determine whether a laboratory result is normal or not requires 

searching a table or literature to find the ranges of a „normal‟ result. 

There are two main types of Information retrieval, user initiated and automated. 

2.3.1.1 User Initiated 

This could be simply described as a search tool for clinicians to search literature.  

An early example is MEDLINE (1964), which started as a bibliographic retrieval system 

for biomedical literature for use by librarians in the US National Library of Medicine 

(NLM).  The system still exists in other forms with over 21 million citations as cited by 

the National Institute of Health [Pubmed.gov, accessed on 1 July 2012]. 

2.3.1.2 Automated 

In this case, the system can automatically come up with suggestions that are 

relevant to the current context, and perform automated searches using automatically 

generated parameters.  An example is the Infobutton [THOM, 10] where a visual icon is 
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placed on all screens indicating that information relevant to the display is present in 

other areas.  The automated system offers more flexibility and advice but require far 

more development and testing.  It also relies on experts input in the design cycle. 

2.3.2  Logical Expressions 

Logical expressions are indeed very common in clinical decision support systems.  

They represent a true or false decision node, and can be represented using many 

common techniques, such as decision tables.   Complex expressions can be 

constructed from a set of simple true or false statements.   

 The deterministic nature of the Logical Expression makes it easy to account for the 

decision and track the decision process.  For example, if patient BMI is larger than 26, 

then obesity alert is raised.   Alerts and reminders have been shown to help increase 

physician compliance with many different guidelines; however, the risk exists that 

creating too many alerts and reminders could overwhelm doctors, nurses, and other 

staff and cause them to ignore the alerts altogether.  There are many different ways to 

analyze the data and represent them using logical expressions and these are 

described next.  

2.3.2.1 Decision Tables 

These are among the earliest techniques used to represent logical conditions.  The 

advantages of a decision table include the ease of sorting the data based on a certain 

column (criteria), and the ease of mapping between paper based human approaches 

and the computerised representation. Decision tables use Boolean expressions to 

represent the rules. 

Example:  A simple decision table for the GP or nurse at a clinic is shown in Table 

2.1.  

Condition Rules 

Fever? Y Y N N 

Headache? Y N Y N 

Actions     

Refer to consultant Y Y   

Paracetamol Y  Y  

Table  2.1: A simple Decision Table for a nurse in GP surgery. 
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2.3.2.2 Venn Diagrams 

Another classic approach to representing logic in general and clinical logic 

specifically, is Venn diagrams.  Venn diagrams were conceived around 1880 by John 

Venn. They are used to teach elementary set theory, as well as illustrate simple set 

relationships.   Shapes or circles are used to enclose groups of entities representing 

certain characteristics.  The overlap of these circles indicates subgroups that have a 

combination of characteristics from several groups. 

The main limitation of the Venn Diagram is its visual aspects, as it becomes 

significantly difficult to represent more than three or four classes visually.   An Example 

is shown in Figure 2.2.  Classes A, B and C could represent different symptoms of 

three diseases.  The intersection area would represent the shared symptoms of these 

three diseases. 

 Venn diagrams are very useful in mindmaps and the design stage, but later in the 

design process they become more difficult and complicated to use. 

 

Figure 2.2: A simple Venn diagram. 

 

2.3.2.3 Logical Conditions 

A common way of representing logical conditions is by the use of logical expression, 

of If … then statements.    The evaluation of n expressions yields a true or false result.  

Boolean operators can also be used in these expressions.  Logical expressions are 

widely used in knowledge based systems, such as rule based reasoning, where 

decisions are made using If-Then statements. 
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2.3.3 Artificial Intelligence 

As in most human decision and judgment, most clinical judgement is not 

deterministic.   Many factors contribute to various errors, imprecision of tests and 

limitations of data.  Many decisions are based on expert opinions rather than actual 

facts or figures.   There are several techniques and methods used to incorporate 

probabilities into the process of clinical decision making [MICH, 93].     

2.3.3.1 Artificial Neural Networks 

Artificial Neural Networks (ANN) use a form of artificial intelligence, that allows the 

systems to learn from past experiences / examples and recognizes patterns in clinical 

information.   They consist of nodes called neurons and weighted connections that 

transmit signals between the neurons in a unidirectional fashion.    A simple ANN 

consists of three main layers (Figure 2.3): Input (data receiver or findings), Output 

(communicates results or possible diseases) and Hidden (processes data).   The 

system becomes more efficient with known results for large amounts of data [TANG, 

07].    Artificial neural networks use nodes and weighted connections between them to 

analyze the patterns found in the patient data to derive the associations between the 

symptoms and a diagnosis [BURK, 97].  

The advantages of ANN include the elimination of needing to program the systems 

and providing input from experts.    ANN systems do not require large databases to 

store outcome data with its associated probabilities.    

Some of the disadvantages are that the training process may be time consuming 

leading users to not make use of the systems effectively.  Parameter learning could be 

sensitive and requires rigorous testing to obtain the best learning parameters. They 

also require large amounts of testing data to gain acceptable accuracy.   The ANN 

systems derive their own formulas for weighting and combining data based on the 

statistical recognition patterns over time which may be difficult to interpret and doubt 

the system‟s reliability [GALU, 07].   Another disadvantage is that since the system 

cannot explain the reason why it uses the data the way it does, most clinicians don‟t 

use them for reliability and accountability reasons [BERN, 07]. 
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Figure 2.3: A basic Artificial Neural Network. 

Examples include the diagnosis of appendicitis, back pain, myocardial infarction, 

psychiatric emergencies and skin disorders.   The ANN‟s diagnostic predictions of 

pulmonary embolisms were in some cases even better than physician‟s predictions. 

Additionally, ANN based applications have been useful in the analysis of 

Electrocardiogram (ECG) (A.K.A. EKG) waveforms [DYBO, 01]. 

There are many variations and derivations from the basic neural network, all of them 

however share the same limits.  Many of them only work on thresholds, i.e. not exact 

values, and most need large amounts of test data.   This means that the results of the 

neural net are approximate or in a range form, which makes it difficult when exact 

values are needed.   The error margins depend highly on the data and the number of 

test cases, as well as learning parameters.  This makes it quite sensitive. 

 

2.3.3.2 Decision Trees 

Decision trees are a very useful and intuitive way of representing decisions, as they 

emulate human thinking [AHO, 74].   The model in which every decision is based on 

the comparison of two numbers within constant time is called simply a decision tree 

model.  It was introduced to establish computational complexity of sorting and 

searching  [QUIN, 89].   Figure 2.4 shows a basic decision tree for early diabetes 

screening of a patient.   

http://upload.wikimedia.org/wikipedia/commons/e/e4/Artificial_neural_network.svg
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Simple decision trees can be generated manually, when all the parameters are known.    

In more complex cases, when the structure of the tree is not known, techniques have 

been developed to generate the structure based on known data.  Most algorithms that 

have been developed for learning decision trees are variations on a core algorithm that 

employs a top-down, greedy search through the space of possible decision trees.   

These algorithms generally construct a decision tree T  from a set of training cases 

[QUIN,92].   

J. Ross Quinlan developed the first algorithm, ID3 [QUIN, 75]], and based it on the 

Concept Learning System (CLS) algorithm [QUIN, 75].  Other methods like 

Classification and Regression Trees (CART) were introduced for the induction of a tree 

[BREI, 84].   Variations on the above methods usually deal with the type of the input 

variables, the data pool or set properties, or the output type (i.e. continuous or discrete 

data) [DRUC, 96], [JANI, 96].   Most of these methods attempt to construct the tree 

without prior knowledge of the desired tree structure. This means, they attempt to 

predict the layout of the tree and number of nodes based on the training cases.  The 

trees are then pruned and optimized to the minimum structure that satisfies the classes 

in the training instances.    A simple decision tree is shown in Figure 2.4. 

  

Figure 2.4: A decision tree for basic diabetes screening. 
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2.3.3.3 Bayesian Belief Networks 

Bayesian Belief Networks (BBN) model causality and the probabilistic dependencies 

of events on one another [NEAP, 04].    They are based on conditional probabilities, the 

probability of an event given the occurrence of another event [HEIS, 75].     In the 

context of CDSS, the Bayesian network can be used to compute the probabilities of the 

presence of the possible diseases given their symptoms [JENS, 96]. 

They were developed by Pearl in the 1970‟s at Stanford [GREE, 07].  The first 

application in medical problems was by Cooper in the 1980‟s.   This model permits 

known probabilities to be entered into the system, and estimate or infer unknown ones 

based on the known probabilities [JENS, 07].   

An example is shown in Figure 2.5.  The BBN is used to determine whether a 

smoker will develop Bronchitis or cancer due to smoking.  The X-Ray will be able to 

correctly determine cancer with a certain probability.  Correct diagnosis is also 

measured in probability.  

 
  

Figure 2.5:  A simple Bayesian Belief Network for diagnosis of Bronchitis and its 

relation to smoking and lung cancer [GADEW, 10]. 
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In a clinical BBN, nodes are used to represent items such as symptoms, patient 

states or disease categories.  Connections between nodes indicate a cause and effect 

relationship.    A system based on this logic will attempt to trace a path from symptom 

nodes all the way to disease classification nodes, using probability to determine which 

path is the best fit.    

Some of the advantages of this approach are the fact that it helps to model the 

progression of a disease over time, based on linking time and probability; and the 

interaction between diseases; however, it is not always the case that medical experts 

know exactly what causes certain symptoms, and it can be difficult to choose what 

level of detail to build the model to.  BBN‟s also have the advantage of representing 

knowledge and conclusions of experts in the form of probabilities and are based on 

unbiased probabilities that are applicable to many models. 

Some of the disadvantages of Bayesian network include the difficulty to get the 

probability knowledge for possible diagnosis and not being practical for large complex 

systems given multiple symptoms.   The Bayesian calculations on multiple 

simultaneous symptoms could be overwhelming for users. 

The first clinical decision support system to use a causal probabilistic network was 

CASNET, developed by Kulikowski (1982), used to assist in the diagnosis of glaucoma.   

CASNET featured a hierarchical representation of knowledge, splitting all of its nodes 

into one of three separate tiers: symptoms, states and diseases.   Another example of 

a Bayesian network in the CDSS context is the Iliad system [WARN, 94] which makes 

use of Bayesian reasoning to calculate posterior probabilities of possible diagnoses 

depending on the symptoms provided. The system now covers about 1500 diagnoses 

based on thousands of findings.   A further example is the DXplain system 

(http://www.lcs.mgh.harvard.edu/dxplain.htm) that uses a modified form of the 

Bayesian logic.   This CDSS produces a list of ranked diagnoses associated with the 

symptoms.   It is covered later in the Case Studies section. 

 

2.3.3.4 Data Mining 

As databases became larger and computer hardware became faster and more 

capable of faster processing, the number of patient records and data stored digitally 

http://www.lcs.mgh.harvard.edu/dxplain.htm
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soared in the 1980‟s [TAN, 05].    With such massive data volumes, it became difficult 

to extract meaningful information, or relationships that can be used in a CDSS. 

Data mining uses statistical and mathematical techniques to find relationships 

between field and substructures in a database based on occurrences in data [BOCA, 

03].   Newer techniques such as fuzzy logic have also been deployed in recent years 

[LARO, 06]. 

Data mining and machine learning, also known as Knowledge Discovery from 

Databases (KDD), have also benefited from other artificial intelligence techniques, such 

as artificial neural networks [LARO, 06].  A combination of AI techniques and data 

mining algorithms could produce more in depth knowledge and pattern analysis of the 

system.   Data mining could use a variety of methods to deduce relationships and 

information from the data. 

 

2.3.3.5 Statistical Pattern Matching 

  Pattern Recognition techniques define the mathematical relationship between 

measurable features and classification of objects. [KANA, 74].  In clinical practice, the 

presence or absence of each of several signs and symptoms in a patient may be 

definitive for the classification of a patient [SHOR, 79]. 

In order to find the diagnostic pattern, or discriminant function, the method requires 

a training set of objects for which the correct classification is already known.   If the 

form and parameters are not known for the statistical distributions underlying the 

features, then they must be estimated [CLAN, 84].   After training, the pattern can be 

compared to new, unclassified objects to aid in deciding the category to which the new 

object belongs. 

Three of the best known training criteria for the discriminant function are  [SHOR, 

79]: 

1.  Least squared error criterion:   Choose the function that 

minimizes the squared differences between predicted and observed 

measurement values.  This includes a variety of statistical regression 

methods, and Regression Analysis of the results to decide on the quality 

of fit and when to stop the regression process [CHAT, 77]. 
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2. Clustering Criterion: choose the function that produces the 

tightest clusters; 

3.  Bayes’ Criterion:  Choose the function that has the minimum 

cost associated with incorrect diagnoses.  The method also involves 

probability, which helps to model more complex problems. 

There are numerous papers on the use of pattern recognition methods in medicine, 

as early as (Armitage and Gehan, 1974), who discuss three examples of prognostic 

studies, with an emphasis on regression methods [CLAN, 84].   Medical imaging 

pattern recognition is widely used as a decision support tool to highlight possible 

abnormalities in medical MRI scans and X-Rays [BAES, 03]. 

 

2.3.3.6 Genetic Algorithms 

A Genetic Algorithm (GA) is a non-knowledge-based method developed in the 

1940s at the Massachusetts Institute of Technology based on Darwin‟s evolutionary 

theories that dealt with the survival of the fittest [GOLD, 89].  These algorithms 

rearrange to form different re-combinations that are better than the previous solutions.   

Similar to neural networks, the genetic algorithms derive their information from patient 

data.   

In a genetic algorithm, a population of strings (called chromosomes or the genotype of 

the genome), which encode candidate solutions (called individuals, creatures, or 

phenotypes) to an optimization problem, evolves toward better solutions [FALK, 97].  

These systems go through an iterative process to produce an optimal solution.   The 

so-called fitness function measures the quality of potential solutions.   

A disadvantage is the lack of transparency in the reasoning involved for the decision 

support systems making it undesirable for physicians.    

The main challenge in using genetic algorithms is in defining the fitness criteria 

[FRAS, 70].    
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2.3.4 Heuristic Modelling 

In the previous section, we introduced some of the methods used to modelling the 

CDSS based on data.    An alternative approach is to try to emulate human reasoning 

processes and model human expertise.  These models are often well understood by 

clinicians, and the output can be justified.  This is sometimes called “naturalistic” 

decision making [KLEI, 93].   It differs from that found in the artificial intelligence / 

expert system literature in that these models are typically focused on emulating the 

outcomes of expert decision making by emulating the process a human decision maker 

might use in reaching the outcome [MORR,98].  The human expert will typically look at 

a situation, and use some general heuristic derived from his/her previous experience to 

choose an action, rather than computationally exhausting all possible outcomes. 

 

2.3.4.1 Rule-Based Systems 

 A rule-based expert system attempts to capture knowledge of domain experts into 

expressions that can be evaluated known as rules.   These are generally simple 

linguistic rules or logical expressions that represent the knowledge of the expert.    An 

example rule might read, "If the patient has high blood pressure, he or she is at risk for 

a stroke." Once enough of these rules have been compiled into a rule base, the system 

can then use them to give diagnosis on new cases, by looking for the closest match. 

The main difficulty in such systems is the formulation of the rules themselves.   

Questionnaires or interviews are often used to extract the rules from the experts.  The 

rules may be in several levels and the output of one level would be the input to another.  

An extension of the Rule based-system is a Case-Based system, which tries to 

overcome the problem of rule formulation or at least updating.   A Case-Based system 

is more advanced, in the sense that it uses rules, but learns from new cases, and new 

rules could be inferred based on the new cases entering the system.  

  Figure 2.6 shows the Case Based Reasoning (CBR) system‟s life cycle. 

The current working knowledge will be evaluated against the rule base by chaining 

rules together until a conclusion is reached [KOLO, 93].   Some of the advantages of a 

rule-based expert system are the fact that it makes it easy to store a large amount of 

information, and coming up with the rules will help to clarify the logic used in the 

decision-making process.  However, it can be difficult for an expert to transfer their 
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knowledge into distinct rules, and many rules can be required for a system to be 

effective. 

 

Figure 2.6: The CBR Cycle [adapted from Aamodt & Plaza, 1994] 

Rule-based systems can aid physicians in many different areas, including diagnosis 

and treatment.    An example of a rule-based expert system in the clinical setting is 

MYCIN [SHOR, 76].      The Stanford AI group subsequently developed ONCOCIN, 

another rules-based expert system coded in Lisp in the early 1980's [SHOR, 81]. 

The system was intended to reduce the number of clinical trial protocol violations, 

and reduce the time required to make decisions about the timing and dosing of 

chemotherapy in late phase clinical trials.    As with MYCIN, the domain of medical 

knowledge addressed by ONCOCIN was limited in scope and consisted of a series of 

eligibility criteria, laboratory values, and diagnostic testing and chemotherapy treatment 

protocols that could be translated into unambiguous rules. Oncocin was put into 

production in the Stanford Oncology Clinic. 
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2.3.5 Case studies 

CDSS software can be commercially available or home grown to meet specific 

needs.    Either way, applications of information technology must be motivated by 

clinical problems in order to be useful in the clinical setting [COIE, 97]. 

A brief overview of some systems is given below:  

CASNET/Glaucoma 

CASNET (Causal ASsociational NETworks), developed in the 1960s, was a general 

tool for building expert system for the diagnosis and treatment of diseases. The most 

significant expert system application based on CASNET was CASNET/Glaucoma for 

the diagnosis and treatment of glaucoma.  

Expert clinical knowledge was represented in a causal-associational network 

(CASNET) model for describing disease processes. CASNET/Glaucoma was 

developed at Rutgers University and implemented in FORTRAN. 

AAPHelp: de Dombal's system for Acute Abdominal Pain (1972): 

This was an early attempt to implement automated reasoning under uncertainty 

[HORR, 72] [DOMB, 93]. De Dombal's system, developed at Leeds University, was 

designed to support the diagnosis of acute abdominal pain and, based on analysis, the 

need for surgery.   The system's decision making was based on the naive Bayesian 

approach. 

INTERNIST I (1974) 

Pople and Myers began work on INTERNIST, one of the first clinical decision 

support systems, designed to support diagnosis, in 1970.  

INTERNIST-I was a rule-based expert system designed at the University of 

Pittsburgh in 1974 for the diagnosis of complex diagnosis of complex problems in 

general internal medicine. It uses patient observations to deduce a list of compatible 

disease states (based on a tree-structured database that links diseases with 

symptoms). By the early 1980s, it was recognized that the most valuable product of the 

system was its medical knowledge base.   This was used as a basis for successor 

systems including CADUCEUS and Quick Medical Reference (QMR), a 

commercialised diagnostic DSS for internists [MILL, 89]. 
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HELP Health Logical Processing 

“HELP was the first hospital information system to collect patient data needed for 

clinical decision-making and at the same time incorporate a medical knowledge base 

and inference engine to assist the clinician in making decisions"   [GARD, 98].   It was 

developed by Department of Medical Informatics, University of Utah, Salt Lake City in 

1975.  It supports not only the routine applications of an Hospital Information System 

(HIS) including order entry/charge capture, pharmacy, radiology, nursing 

documentation, ICU monitoring, but also supports a robust decision support function. 

The decision support system has been actively incorporated into the functions of the 

routine HIS applications. Decision support has been used to provide alerts/reminders, 

data interpretation, patient diagnosis, patient management suggestions and clinical 

protocols. Activation of the decision support is provided interactively within the 

applications and asynchronously through data and time drive mechanisms. 

MYCIN (1976) 

MYCIN was a rule-based expert system designed to diagnose and recommend 

treatment for certain blood infections (antimicrobial selection for patients with 

bacteremia or meningitis).   It was later extended to handle other infectious diseases.  

Clinical knowledge in MYCIN is represented as a set of IF-THEN rules with certainty 

factors attached to diagnoses. It was a goal-directed system, using a basic backward 

chaining reasoning strategy (resulting in exhaustive depth-first search of the rules base 

for relevant rules though with additional heuristic support to control the search for a 

proposed solution).   MYCIN was based on around 600 rules and was used to help 

identify the type of bacteria causing an infection.   While useful, MYCIN can help to 

demonstrate the magnitude of these types of systems by comparing the size of the rule 

base (600) to the narrow scope of the problem space. 

MYCIN was developed in the mid-1970s by Edward Shortliffe and colleagues at 

Stanford University [SHOR, 76].   It is probably the most famous early expert system, 

described by Mark Musen as being "the first convincing demonstration of the power of 

the rule-based approach in the development of robust clinical decision-support 

systems" [MUSE, 99].  

The EMYCIN (Essential MYCIN) expert system shell, employing MYCIN's control 

structures was developed at Stanford in 1980. This domain-independent framework 

http://www.openclinical.org/aisp_help.html
http://www.openclinical.org/aisp_help.html#gardner99
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was used to build diagnostic rule-based expert systems such as PUFF, a system 

designed to interpret pulmonary function tests for patients with lung disease. 

ONCOCIN 

A rule-based medical expert system for oncology protocol management developed 

at Stanford University in 1976.   Oncocin was designed to assist physicians with the 

treatment of cancer patients receiving chemotherapy. ONCOCIN was one of the first 

DSS which attempted to model decisions and sequencing actions over time, using a 

customised flowchart language. It extended the skeletal-planning technique to an 

application area where the history of past events and the duration of actions are 

important. 

DXplain 

 DXplain is a decision support system which uses a set of clinical findings (signs, 

symptoms, laboratory data) to produce a ranked list of diagnoses which might explain 

(or be associated with) the clinical manifestations.    DXplain provides justification for 

why each of these diseases might be considered, suggests what further clinical 

information would be useful to collect for each disease, and lists what clinical 

manifestations, if any, would be unusual or atypical for each of the specific diseases.    

DXplain includes 2,200 diseases and 5,000 symptoms in its knowledge base.   It 

was developed in 1984 by Laboratory of Computer Science, Massachusetts General 

Hospital, and Harvard Medical School.   (http://www.lcs.mgh.harvard.edu/dxplain.htm).  

It is still available today. 

QMR  :  Quick Medical Reference 

QMR is a diagnostic decision-support system with a knowledge base of diseases, 

diagnoses, findings, disease associations and lab information, with information from the 

primary medical literature on almost 700 diseases and more than 5,000 symptoms, 

signs, and labs." QMR was designed for 3 types of use: "as an electronic textbook; as 

an intermediate level spreadsheet for the combination and exploration of simple 

diagnostic concepts; as an expert consultant program" [MILL, 89].  

It was developed (1980) by the University of Pittsburgh and First Databank,  

California (http://www.firstdatabank.com/). 

 

http://www.lcs.mgh.harvard.edu/dxplain.htm
http://www.lcs.mgh.harvard.edu/dxplain.htm
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=2695783&dopt=Abstract
http://www.firstdatabank.com/
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PRODIGY:   

Prescribing RatiOnally with Decision support In General practice studY  

PRODIGY is a computerised prescribing decision support system for general 

practitioners. It provides information for patients, supports the regular review of clinical 

management, and presents prescribing recommendations as well as advice on non-

drug treatments for a range of conditions. 

This system is integrated with computerised patient records and offers evidence-

based treatment advice, prescribing recommendations and patient information leaflets.   

Support is offered for a wide variety of clinical conditions, covering 70% of GP 

consultations [PURV, 98]. 

APACHE 

APACHE was one of the first medical decision support systems to be 

commercialised - in 1988 by Apache Medical Systems Inc, a company founded 

specifically to carry this out. APACHE III is today marketed by Cerner Inc. 

ARDEN: 

 Started in 1989 [ARBO,07], it is one of the most successfull attempts of creating a 

standard syntax for rule representation in CDSS.  It used Medical Logic Modules 

(MLM) as standard units to represent the rules.  Arden is still in use commercially 

today, and major clinical systems vendors such as McKesson and Siemens offer 

support for the Arden syntax.   Its latest version 2.6 has been accepted as a standard 

by the American National Standards Institute (ANSI). 

GLIF: Guideline Interchange Format  

   GLIF is often seen as an extension to ARDEN, with more extended records and 

flexibility.  It is yet to be seen in commercial systems.From 2000, GLIF was being 

tested in Stanford, Columbia and Harvard [OHNO, 98].   

ISABEL 

Isabel Healthcare provides a diagnosis decision support application that assists 

physicians with getting the diagnosis right the first time. Accessed over the web or fully 

integrated with an Electronic Medical Record (EMR) system.  Started in 2003 as an 

http://www.openclinical.org/aisp_apache.html
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independent provider, it is still in use commercially today and has new version that is 

supported on smart phones and mobile apps (www.isabelhealthcare.com). 

Shareable Active Guideline Environment project (SAGE) [RAM, 04]: 

  The system was started in 2005, and it uses API to connect the decision support 

side to the clinical data, hence the terminology service phase. It uses a standard API 

interface to connect to the clinical data, which is called the Virtual Medical Record 

(VMR). It requires the data to be stored in a standard strict format to be able to access 

it through the systemd 

 SEBASTIAN: 

  First attempts took place in 2005, and although it shares SAGE's API approach, it 

has a more generic API interface, that acts as a translator between the Decision 

Support system and the Clinical data, posing less restrictions on the clinical side.  This 

means, the SEBASTIAN API interface can be integrated more easliy into existing 

clinical systems. 

SANDS (Service-oriented Architecture for NHIN Decision Support):  

  Another system that is based on a service-oriented architecture [NADK, 07], that 

seemlessly integrates into current clinical systems.  It has been applied in several case 

studies in the US [WRIG, 08b]. 

 

The above brief history shows the evolution of clinical decision support systems over 

the decades.  Many practical considerations govern the design of these systems..  In 

most systems, simpler rule based or logical expressions are used.  This allows for 

practical implementation and testing.  More complex methods require far more time 

and data, and are very complex to verify.  This leads to our system, GRiST, which is 

introduced in the next section.  GRiST uses more complex and higher level hierarchical 

structures that mimic clinical decision process which makes it different from all above 

systems. 

 

₪    ₪    ₪ 
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2.4 GRiST: Galatean Risk Screening Tool 

2.4.1 Overview 

The Galatean Risk Screening Tool, GRiST is a web-based Clinical Decision Support 

system for risk assessments in Mental Health [BUCK, 07B].    The project aims to 

improve mental-health risk assessments by developing a much needed, universally 

accessible, and innovative computerised decision support system (DSS).  The DSS will 

contain a risk-screening tool that records client data (cues) and provides risk estimates 

for suicide, self-harm, self-neglect, and harm to others. The tool is intended for use 

without specialist training and by any relevant professionals, not just those within health 

and social care. It will provide a new educational and clinical resource linking validated 

human expertise from mental-health professionals with statistical information extracted 

from a dedicated client database.  

Current research has resulted in a pilot screening tool that collects relevant cues 

relating to risk but does not itself quantify risk.   The project seeks to build on the work 

by creating a DSS with the following facilities: a database of client risk information; a 

psychological model of how expert clinicians process cues to predict risk; graphical 

tools for displaying the flow of uncertainty through the psychological model from cues 

to risk estimates; data-analysis tools to determine the empirical relationships between 

cues and risks in the database; and a web-based DSS providing a supportive 

environment for using the tool, including quantification of risk, explanations for how the 

quantifications were obtained, and supporting material that may help inform the users' 

actions. 

The linkage of human expertise with empirical data analysis will show how clinical 

decisions can be improved and enable explanations of risk to be presented in a form 

comprehensible to all people working with mental-health clients.   Health and social 

benefits include multidisciplinary cooperation between health-care providers, fewer 

inappropriate referrals, and the reduction of unidentified risk.   In addition, the methods 

and technology developed can be generalised to many areas of expert decision-

making.  

Risk screening in the mental health field is a particularly complex procedure but 

lacks much assistance beyond paper-based approaches [BUCK, 07] , [BUCK, 07b].    

Unfortunately, computerised decision support systems to assist mental-health clinicians 
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are hindered by limited knowledge about the cognitive processes involved in risk 

assessment, which compounds the inherent difficulty of knowledge elicitation [BUCK, 

02], [BUCK, 08] .   The Galatean Risk Screening Tool, GRiST [GRIST, 10], addresses 

the problem by directly investigating how mental-health clinicians carry out 

assessments and incorporating their expertise within a decision support system, by 

using a psychological model of classification [BUCK, 02].    

However, when applied to a large, complex, and hierarchical knowledge structure, 

the number of parameters that need setting for accurate simulation of expert 

judgements is extremely large; several thousand for GRiST.    The main components of 

the GRiST system are shown in Figure 2.7. 

The GRiST server holds the learned parameters and the software for learning and 

evaluations.  It uses an image of the patient data and records on the client side.  

Clinicians can tune the learning parameters and check the quality of the learning.  End 

users use the system to enter new patient records or run online assessments using the 

learned parameters on the GRiST server.  All the components are accessible via the 

Internet through various security and authentication layers. 

 

Figure 2.7: A GRiST system layout 



 
School of Engineering and Applied Science 

 

 

                                                                                                  
S. E. Hegazy                                                                                              PhD Thesis 

45                                                                   

 

2.4.2 Structure 

The basic structure of the decision support system expertise in GRiST is a weighted 

decision tree [BUCK, 08].   Input is represented by questions that are associated with 

each leaf node of the tree as shown by Figure 2.8.   See Appendix A for more details 

on the GRiST Tree structure.    The questions form part of an electronic data-gathering 

tool and the value given in response to a question is passed into a function associated 

with the leaf node for that question to produce Membership Grades (MG), which is then 

propagated up the tree. Importance of items and concepts in the tree are represented 

by weightings or Relative Influences (RIs) that moderate the contribution of MGs to 

risk.    

The GRiST server contains the elicitation engine, web interface, security handlers 

as well as report generators.   Patient records are kept separate on the organizations‟ 

servers and are only linked through coded keys to GRiST.  Clinicians can tune GRiST, 

and customize the interface.   The end users can use the system on site or through a 

web interface. 

The structure of the tree has been developed from the psychological model that has 

been induced from over 100 experts in the UK.  Input is represented by questions that 

are associated with each leaf node of the tree.   The questions form part of an 

electronic data-gathering tool and the value given in response to a question is passed 

into a function associated with the leaf node for that question to produce an MG, which 

is then propagated up the tree. Importance of items and concepts in the tree is 

represented by weightings (RIs) that moderate the contribution of MGs to risk.    

The RIs also need to be set so that they reflect the expertise of mental-health 

practitioners. Getting them to do it themselves as part of the knowledge elicitation 

process is an arduous task when the tree may have several thousand nodes.  

This makes it unlikely that a large enough set of participants can be obtained to 

ensure the consensus for each RI is reliable, as opposed to eliciting the leaf node 

parameters, which are far fewer.   This could be seen as a generic problem, and the 

algorithms developed in this work can be extended to other domains of knowledge with 

similar structures. 
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2.4.3 Interface 

GRiST incorporates various online web interfaces that can be accessed via a 

security gateway.  It also provides parameter elicitation tools, as well as expertise 

representation and modification.  It has a suite of reporting and graphing tools [BUCK, 

07], to assist users and visualize data. 

GRiST is currently being used in four NHS Trusts in the UK, and more trusts are 

adopting it.  It was recommended by the Department of Health as one of only three 

tools in Mental Health DSS best Practice Guide [GRIST, 10].  Appendix C contains 

some more information about the GRiST interface and snapshots of the various tools 

we developed. 

 

 

 

Figure 2.8:  The General GRiST DSS Tree. 
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2.4.4 Features 

The GRiST CDSS consists of the following elements:  

 A tool for gathering risk assessment data.  

 A structured data storing and reporting tool. 

 A psychological model of clinical expertise that will generate 

quantifications of risk associated with the data.  

 Statistical and pattern-recognition tools for generating mathematical risk 

assessments to support the clinical ones.  

 A database of client risk information and associated clinical judgements 

of risk.  

Client data will be analysed by the DSS to produce estimates of the degree of risk 

exhibited in areas such as suicide, self-harm, self-neglect, and various forms of risk to 

others such as violence and neglect of dependants. The data-gathering tool and overall 

DSS will be designed for use by any person who may need to make risk assessments 

of clients from the population of working-age adults. Hence it will not require 

specialised knowledge or extensive training. 

GRiST stores the questionnaires in a structured way that is easy to handle and 

analyse, it also provides various reporting tools. 

 

2.4.5 Parameter Learning in GRiST 

In most CDSSs developed so far, (as in the previous overview), there are two main 

types of CDSS engines:  Automated parameter learning and user specified 

parameters.   

The user specified parameter allocation process is when the experts provide the 

data and information for the system to use.  A straightforward example is rule based 

systems, where previous cases are explicitly provided by the experts and the system 

then matches up new cases with known ones.  The main problem with such systems is 

that they rely highly on the accuracy of the rules provided by the experts.  If the rules 
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are inaccurate, then the systems output will be inaccurate as well.   There is also no 

way of scrutinizing these systems‟ performance.   

Another drawback is that the system does not automatically evolve or learn from 

new cases and as the database grows.  So in reality, it is a hard-coded static system.  

Any new rules have to be added by the experts.  One major advantage of such 

systems, especially in the clinical field, is the ease of justifying the results semantically, 

as the rules have been entered by the experts originally. 

On the other extreme, automated parameter learning does not involve experts or 

human intervention.  A good example for that are data mining techniques, which mainly 

use statistical methods to induce relationships in the data, regardless of the semantic 

relationships.   This means that some of the results may not be possible to justify 

clinically.   The system does not take any expert opinions into account and is reliant 

purely on numbers and statistics to draw conclusions. 

One major advantage of these systems is their adaptability and ongoing evolution.  

Particularly in the incremental versions, the system updates its parameters with every 

new case, and by doing so, it evolves and improves its error margins and eventually 

renders the error negligible.  

The major problem in such automated systems is that it is virtually impossible to 

justify the results clinically as they do not rely on a semantic foundation.  It is also very 

difficult to sway clinicians to use or trust the system, as they do not understand the 

basis and have no input into it.   This alienates such systems from the clinical domain.  

Many believe that this human factor was one of the main reasons such systems were 

never advanced as far as they should have. 

In GRiST, we have combined the two approaches for the first time.  Clinicians have 

the tools to input and tweak the initial parameters in the tree, such as the membership 

functions at the leaf nodes, and the automated process that we introduce in the work, 

calculates the rest of the required parameters in the tree (Relative Influence RI, 

values).  (See Figure 2.9). 

The RI values themselves can then be further manipulated by the clinicians to asses 

the effect of such changes and to link to the semantic expertise and rules.  Having the 

automated process allows the system to evolve and update its parameters 
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incrementally. This makes it flexible and up to date.  It also allows for error estimation 

and even checking the consistency of the original data. 

This has the advantage of both types of design approaches, as it involves clinicians 

in the process, allowing for semantic justification of the results, and at the same time 

allows for evolution and incremental learning.   It gives the opportunity to analyse the 

data and produce error margins and accuracy and consistency measures to evaluate 

the systems performance without alienating clinicians.  

In GRiST, two main types of parameters will need to be elicited: relative influence 

values and membership grades.  RI values, which determine how much each child 

contributes to the risk in the parent node.   Due to the large number of these (3000+), 

this will be done automatically using the algorithms we developed in this work.  

The other parameter is the Membership Grade (MG) function, which determines the 

relationship between the inputs from the questionnaire with the actual value that will be 

used for the risk component at the leaf nodes.  This is provided by the experts using 

the online tools we developed as part of this project, which are illustrated in Appendix 

C. 

   In our project, parameter value learning is the main challenge, due to the large 

number of parameters, as explained above. 

  There are several techniques for learning parameter values in a decision support 

system.   The main ones are data mining, Bayesian Belief Networks, Neural Networks 

and Decision Trees. 

 In data mining, previously unknown relationships are induced from the data based on 

statistical analysis, and the results are represented using statistical parameters such as 

confidence and sample size [LARO, 06].  It is useful in case the required relationships 

are not exactly known and the results depend highly on the data.  This means the 

outcomes will dramatically differ depending on the data set, and different parameters 

will be obtained with different sets of data.  This is different from our problem, where 

the parameters are known and provided by the experts, whereas the values are 

unknown. 

 In Bayesian belief networks, the relationships between the parameters and the nodes 

are represented by probabilities [JENS, 07].  The Bayesian belief networks can be 

extended to decision graphs, which provide a more general and flexible way of 
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representing the network [JENS, 07].   This is a different currency from that we use in 

our system, which are weights that represent contributions to the total risk.   

 Neural networks are one popular way to learn parameter or weight values in a decision 

support system or a decision support system in general [SIMO, 07].  The main 

drawback in that case as far as our system is concerned is the lack of transparency in 

the layers.  The neural network does not provide the internal structure of the network.  

Instead it calculates the weights with no explanation of the internal structure apart form 

the number of layers.  This means we cannot map our system onto the network, as our 

internal tree is predefined and supplied by the expert.  Neural networks therefore, make 

it difficult to justify the results and are thus not suitable for our work. 

 Decision trees are used to represent knowledge, and extract relationships on a path 

that were not obvious from the data.  Most decision tree algorithms however, focus on 

the construction of the tree itself, as classifiers, to rearrange the tree and generate a 

structure, such as Quinlan et. Al., whose ID3 is the basis for many Decision tree 

algorithms [QUIN, 84].   Other recent research suggested using different techniques 

from the top-down classifiers to induce the tree structure from data, such as [BARR, 

12] .  This is not necessary in our case, as the tree is already provided by the experts.   

  The function of the tree after construction can be described as either classification or 

regression [BREI, 84].   In the case of classification, the tree classifies the input value 

into one of x predefined classed, thus using a range rather than an exact number.  In 

the case of regression, the output of the tree is a number or a value.    

 Our system is unique in terms that it uses both expert inputs and automated 

algorithms to calculate the parameter values.  Most of the systems we presented use 

either one or the other, and in case of parameter learning, they are mostly automated. 

As in all real life systems, GRiST faces the problem of dealing with distorted and 

missing data.  This along with the approximation errors, need to be minimized and 

quantified to be able to have an acceptable representation of the expertise and at the 

decision support phase. 

These will be the focus and the contribution of this work. 
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Figure 2.9:  The GRiST CDSS Model 
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2.5 Summary 

 

In this chapter, we presented an overview of Clinical Decision Support Systems, 

including their history, classification, components, as well as their different design 

methodologies.  Most real life CDSS involve eliciting parameters based on experts 

knowledge and using these parameters at the inference stage to assess new cases. 

We also gave a description of GRiST, the clinical decision support system that we 

will be using throughout this work as a case study for the algorithms presented in the 

next two chapters.  GRiST is currently deployed by several major NHS trusts in the UK.  

We use the data obtained from GRiST to test our algorithms. 

 We also illustrated how GRiST is different from other clinical decision support 

systems and subsequently, why commonly used techniques are not suitable to solve 

our problem. 

The next chapter presents our methodology in developing our algorithm to elicit the 

parameters in the GRiST tree, namely the Relative Influence values.  
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Chapter 3 
Methodology 

 
 
 

 
 

 
 
 
 

This Chapter covers the following: 
 Parameter Learning 
 ARRIVE Algorithm 
 iARRIVE Algorithm 
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3.1 Introduction 

 

This chapter investigates the elicitation of parameters in a hierarchical structure 

representing clinical expertise in the form of a decision support tree.   The work is 

based on the GRiST (Galatean Risk Screening Tool).  GRiST is a tool that provides the 

clinician with risk assessments based on a psychological model.  Although the methods 

and algorithms presented in this work are applied to GRiST, many are applicable to 

other knowledge engineering domains. 

We present our ARRIVE (an Algorithm for Robust Relative Influence Values 

Elicitation).    We then present an extension, iARRIVE, an incremental version, which 

allows updating the values based on new cases.  At the end of this Chapter, we 

present case studies and error analysis of the algorithm. 

 

3.2 Tree Analysis 

3.2.1 GRiST Tree 

The Galatean Risk Screening Tool, GRiST, addresses the problem of modelling the 

clinical knowledge by directly investigating how mental health clinicians carry out 

assessments and incorporating their expertise within a decision support system, by 

using a psychological model of classification [BUCK, 02]. However, when applied to a 

large, complex, and hierarchical knowledge structure, the number of parameters that 

need setting for accurate simulation of expert judgements is extremely large; several 

thousands for GRiST [BUCK, 08]. 

The basic structure of the decision support system expertise in GRiST is a weighted 

decision tree.   Risk is represented by fuzzy-set membership grades (MGs) [ZADE, 65]  

that are associated with each node of the tree.   Data associated with a patient 

assessment (case) generates a MG at the matching leaf node using a function that 

depends on some parameters given by the experts for each leaf node.  

The MGs then propagate up the risk hierarchy and eventually to the top level risks, 

where the MG associated with a risk represents the simulated clinical risk judgement. 
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The relative influence of each node in the hierarchy is a parameter that decides how 

much risk is propagated up the tree by a node compared to its siblings [BUCK, 08].  

This parameter also needs to be set so that it reflects the expertise of mental-health 

practitioners. Asking them to provide it themselves as part of the knowledge elicitation 

process is an arduous task when the tree may have several thousand nodes. This 

makes it unlikely that a large enough set of participants can be obtained to ensure the 

consensus for each RI is reliable, as opposed to eliciting the leaf node parameters, 

which are far fewer.  

In this section, we devise an algorithm that induces the RIs from the clinical 

judgements given by expert mental-health practitioners for patient cases. If we can do 

this, it means the RIs are modelled on the clinicians‟ own risk judgements because the 

RIs are set to the exact values required for simulating those judgements.   This 

depends on knowing the MGs at the leaf nodes along with the associated clinical risk 

judgements, which means the elicitation process only requires experts to provide 

parameters for the leaf nodes.  

It is important, if not mandatory, for having an automated system to elicit RIs 

because their sheer number is likely to mean experts don‟t do it accurately themselves.   

Even if they did, there would need to be additional elicitation rounds to obtain 

consensus on the collated data. 

   Figure 3.1 shows a generic GRiST tree, where: 

LRn : denotes the RIs in level n. 

Mn: is a set of the MGs (Membership Grades) in level n. 

Mxy: denotes the Membership Grade of node y in level x.  Mxy  is part of Mn  .  y=0 

to Zjh , where Zjh is the number of children of node number h-1 at level j. 

Rti : denotes the RI of node number i at level t on the total MG at level t-1 which 

equals M(t-1)y .  y is an index representing the number of the parent node of Rti . 

To find M, the total membership grade of the tree (which represents the overall 

diagnoses or risk of the patient‟s mental health), there are several methodologies we 

could follow. 

One way would be to train the model using known cases and, assuming that leaf 

MG values and M are given, we could use a Neural Networks simulation.  
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 Note that in GRiST:  1
0

Zxn

y

xyR  ,   is an inherent property in the GRiST tree. 

 This will mean that R00  = 1.   

This is due to the fact that the GRiST model assumes that each node contributes to 

the total risk, and to the intermediate risk to the parent node.  Thus, the children share 

the contribution to the risk in the parent by a percentage, and the total maximum 

contribution is 100% (or 1). 
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Figure 3.1:  The General GRiST DSS Tree. 
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3.2.2 Mathematical Model 

  To model the tree mathematically, we follow the model GRiST introduced to 

calculate the overall result (membership, M). 

M = R00 M00  

R00 = 1, thus,  M = M00  

M =   R00  (R10 M10 + R11 M11 + R12 M12 +   ………  + R1Z10 M1Z10 ) 

    =   R00  (R10 (  R20 M20 + R21 M21 + R22 M22 +   ………  + R2Z10 M2Z20 )   +  

                   R11 (  R2(Z20+1) M2(Z20+1) + R2(Z20+2) M2(Z20+2) + R2(Z20+3) M2(Z20+3) +   ………  + 

R2(Z20+Z21) M2(Z20+Z21) )    + 

              R12 (  ………………………….  ) + 

             ………………………………….+ 

              ……………………….+ 

             R1Z10  ( ………………………….. )  ) 

Eqn. (3.1) 

By simplifying the above equation, we obtain the following (multiplying the brackets): 

   M =  R00  R10  R20  M20   +  R00  R10  R21  M21   +  

             R00  R11  …….   +  R00  R10  ………  + 

                 R00  R12  …….   +  R00  R12  ………  + 

                  …………………………………… 

Eqn. (3.2) 

If we continue this process, till we reach the leaves, the resulting expression will look 

like the Eqn (3.2), with all Rxy multiplied in front of the leaf MGs then added together. 

Note that there is a certain pattern for the multiplication expression.  We will clarify 

how we will make use of it in Section 3.3 as it is part of our algorithm induction.   To 

illustrate the above, we use a simpler example of a tree with two levels.   
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Example 1: 

As shown in Figure 3.2, for simplicity, we will rename the leaves as follows: 

a, b, c, d, e, f, g =  ( M20  to M26 ) 

Eqn.( 3.3) 

Note that, MG values will be present as we are using pre-assessed cases for 

training.  

M =   R00  (R10 M10 + R11 M11 + R12 M12 ) 

    = R00  (R10 (  R20 a + R21 b ) +   R11 (  R22 c + R23 d ) + R12 (  R24 e + R25 f + R26 g) 

   Or: 

  M =  R00 R10 R20 a   +   R00 R10 R21 b    +   

             R00 R11 R22 c   +   R00 R11 R23 d     +  

               R00 R12 R24 e     + R00 R12 R25 f   + R00 R12 R26 g    

Eqn. (3.4) 

Since, a to g are given, the unknowns are R‟s. 

 The above M is given by the experts (consultation results carried out by the 

clinicians on previous patients), and this is available for many patients that were 

assessed before (training set).    Hence, we have several of the above equations 

(several patients‟ records). 
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Figure 3.2: A simple two level GRiST tree. 

 

We can look at the above mentioned system of equations as a system of linear 

simultaneous equations.  So what we have done, in effect is transforming the original 

problem with RIs as the unknown into a new domain, with less variables, and where 

the RIs are not separate variables, but combinations of RIs. 

Even though in the GRiST tree, some of the leaf questions may be repeated , the 

MGs are only used as coefficients to the new variables, and thus the new variables can 

still be treated as independent.  It is important to keep the repeated MGs to preserve 

the structure representation on the tree.  Because we use a multiplication along the 

path of the MG as the new variable (see below), this means the new variables will be 

independent and this is important for the simultaneous equations.   

  We now define new variables as the new unknowns to be solved.  The new unknowns 

are: 

 

A = R00 R10 R20 

B = R00 R10 R21 
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C = R00 R11 R22 

D = R00 R11 R23 

E = R00 R12 R24 

F = R00 R12 R25 

G = R00 R12 R26  

Eqn. (3.5) 

That is seven unknowns.  Note that R00 = 1 (from the RI properties). 

But originally, we need to find the values of R‟s, i.e., eleven unknowns (see Figure 

3.2). 

Seven linear equations will suffice to find the seven unknowns (A through G) as 

follows: 

 

  M1 =   a1.  A   +   b1. B   +    c1. C  +   d1.  D  +    e1. E  + f1. F + g1 .G    

  M2 =   a2 .A   +   b2. B   +    c2 .C  +   d2 . D  +    e2. E  + f2 .F + g2. G    

……………………… 

  M7 =   a7.  A   +   b7. B   +    c7. C  +   d7.  D  +    e7. E  + f7. F + g7 .G    

In General form: 

     Mi = ai . A +bi . B + ci . C+ di . D + ei . E + fi . F+ gi . G,            i=1,...,7 

Eqn. (3.6) 

Solving the above is straight forward (using matrices). 

Now, we have A to G. 

But originally, we had eleven unknowns, (eleven RIs), so to determine RIs, we need 

an extra four equations in addition to the above seven. 

For this use an inherent property of RIs (for GRiST) [BUCK, 02]: 

 

     1
0

Zxn

y

xyR  

Eqn. (3.7) 
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In our case this gives us: 

R10  + R11  + R12  = 1 

R20  + R21  = 1 

R22  + R23   = 1 

R24  + R25  + R26  = 1 

Eqn. (3.8) 

These are the extra four equations needed to fully determine the eleven RIs.  So we 

have eleven equations in eleven unknowns. 

Now, to find the solution, we will use A to G.  We will expand this step in the next 

examples. 

Note that the new unknowns have no meaning in the original GRiST tree.  They are 

merely the multiplication of the paths along the leaf nodes to the root.   They serve 

however in reducing the number of overall variables to solve.  This means the new 

problem has fewer unknowns and at the same time can be reformulated in a format for 

which many established techniques can be used to solve.  We have turned a problem 

of eliciting thousands of individual values into one of learning them from clinical 

judgements. And we have done this by reformulating the problem as a straightforward 

weight learning exercise that is then used to learn internal RIs recursively.  

  The unknowns can now be found using several methods and two of them are 

described in the following sections: We have chosen the Gaussian method for solving 

simultaneous equation as a straight forward solution, although it has many limitations, 

including limiting the number of equations and possibility of not having a solution in 

case of singular matrices.   We then present another solution, using multiple and 

polynomial regression, which is more practical and adaptable.  This is the method we 

applied to the real data in testing.   

Example 2: 

We illustrate that the pattern of equations and the number of equations holds for 

larger trees.  In this case using a three level GRiST tree.   The aim of this example is to 

demonstrate that the solution can be found, and there is enough information to fully 

determine the unknowns.  The full algorithm will be presented in the next section. 
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As shown in Figure 3.3.  For simplicity, we rename the leaves as follows: 

 a, b, c, d, e, f, g, h, i  =  ( M30  to M38 )   

Eqn. (3.9) 

These values will be provided by the experts (we are using assessed cases with 

known outcomes.  MG on the leaves are given by the experts).   Using the same 

procedure as in example two, and simple arithmatic manipulation, we will obtain the 

following: 

M =   R10 M10 + R11 M11  

    = R10 (  R20 (R30a + R31 b) ) +   R21 (  R32 c + R33 d  + R34 e) )  

    + R11 (  R22 (R35 f + R36 g) ) +   R23 (  R37 h + R38 i ) ) 

   Or: 

  M =  R10 R20 R30 a + R10 R20 R31 b  +   

   +   R10 R21 R32 c + R10 R21 R33 d + R10 R21 R34 e     

+    R11 R22 R35 f + R11 R22 R36 g  +   

+  R11 R23 R37 h + R11 R23 R38 i  

Eqn. (3.10) 
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Figure 3.3: A three level GRiST tree. 

Similar to the previous case we rewrite: 

A = R10 R20 R30 

B = R10 R20 R31 

C = R10 R21 R32 

D = R10 R21 R33 

E = R10 R21 R34 

F = R11 R22 R35 

G = R11 R22 R36 

H = R11 R23 R37 

I = R11 R23 R38 

Eqn. (3.11) 
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As there are 16 unknown RIs , for a fully determined equation system in addition to 

these nine equations we will use the seven equations provided as constraints on the 

RIs.  (see Figure 3.3). 

R10  + R11   = 1 

R20  + R21  = 1 

R22  + R23   = 1 

R30  + R31   = 1 

R32  + R33 + R34  = 1 

R35  + R36 = 1 

R37  + R38    = 1 

Eqn. (3.12) 

Note that R00 although considered an unknown in the general form of the model, it 

has to be equal to 1.  From the above two examples, it can be seen how the RIs can be 

fully determined using the proposed model. 

To generalize, we derive a general equation for the number of equations that can be 

obtained from a tree.  Use the example in Figure 3.4. where: 

  n= total number of nodes in the tree. 

RI= total number of RIs.   These are the connecting branches in effect. 

L= total number of leaf nodes (nodes without children).   

I= number of internal nodes (non-leaf).  I=n-L . 

We know that we get L equations for the Gaussian elimination (see previous 

section).  We need to show that we have extra equations for the solution to be 

possible, the number of those is at least Emin=RI-L. 

 From figure 3.4, we notice that each internal node, will add an extra equation.  This 

is because it will have children, and the sum of RIs at those children has to be 1  (Eqn. 

3.7).     So the number of extra equations we get in a tree is equal to the number of 

internal nodes (I).  But the number of internal nodes = I = n- L. 

From figure 3.4, we notice that RI= n-1.   This is because each node will have a 

parent ( and thus an RI linking it to its parent ) apart from the top node. 
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So the total number of extra equations we get in a tree will equal: 

E= n - L = (RI + 1) – L = (RI-L) + 1 = Emin+ 1. 

This proves that the system will be solvable in the general case. 

 

Figure 3.4: The relationship between the number of RIs, nodes (n), internal nodes 

(I) and leaf nodes (L) in a tree. 
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3.3 Parameter Learning 

 

3.3.1 Introduction 

In order to devise a procedure for solving the above equations and thus obtaining 

the RI values, we need to look at the pattern of the equations. 

If we look at the values of A to G in example two, we find that each corresponds to 

the multiplication of RIs from the bottom of the tree upwards starting at the leaf that has 

the same name but in lower case (i.e. leaf a or M20). 

The input to the algorithm would be n vectors of known and diagnosed cases given 

by experts.   That is the number of patient records.  In example 1, that vector will 

contain the following: 

 V = (M, a, b, c , d, e, f, g)  

Eqn. (3.13) 

The algorithm proposed here can be divided into two steps:  solving for the 

multipliers (A to G), and then solving for RIs. 

 

3.3.2 ARRIVE Algorithm 

3.3.2.1 Induction 

Step 1: Solving for Multipliers 

The first step of the algorithm will be solving n simultaneous linear equations, where 

n is the total number of leaves of the GRiST tree (in example 1 that is seven, a through 

g), see Figure 3.2. 

 

  M1 =   a1. A  +  b1. B  +  c1. C  +   d1. D  +   e1. E  + f1. F + g1 .G    
 
  M2 =   a2. A  +  b2. B  +  c2 .C  +  d2 . D  +   e2. E  + f2 .F + g2. G    
 
……………………… 



 
School of Engineering and Applied Science 

 

 

                                                                                                  
S. E. Hegazy                                                                                              PhD Thesis 

68                                                                   

 
  M7 =   a7. A  + b7. B   +  c7. C  +  d7.  D  +    e7. E  + f7. F + g7 .G    
 
Or: 

  

 

 Where X={A, B, C, …. G} 
             x= {a, b, c, …..g} 

Eqn. (3.14) 
 

 
Or in a matrix form: 
 

G

F

E

D

C

B

A

gfedcba

gfedcba

gfedcba

gfedcba

gfedcba

gfedcba

gfedcba

M

M

M

M

M

M

M

7777777

6666666

5555555

4444444

3333333

2222222

1111111

7

6

5

4

3

2

1

 

Eqn. (3.15) 
 

 
By solving the above equations, we obtain: 
 
  S= (A, B, C, D, E, F, G) 

Eqn. (3.16) 
 

 
 Now to determine RIs or Rxy , we will use vector S.  Note that R00 =1 
 

2612

2512

2412

2311

2211

2110

2010

R R

R R

R R

R R

R R

R R

R R

G

F

E

D

C

B

A

S  

Eqn. (3.17) 
 
Using the RI properties, we have these equations: 
 
R10  + R11  + R12  = 1 
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R20  + R21  = 1 
 
R22  + R23   = 1 
 
R24  + R25  + R26  = 1 

Eqn. (3.18) 
 

By substitution from S into the above we can solve the system.  This also has a 
pattern. 
 
A/ B =  (R10  . R20)  /  (R10  . R21)   

 

          = R20  /  R21 

 
So:   R21 = ( B / A ) R20   

Eqn. (3.19) 
 

Substituting in the relevant equation, we get: 
 
R20  + R21  = R20  + ( B / A ) R20     =1 
 
 Or:  R20  (1 + (B/A)) =1 
 
 Or: :  R20  ( (A+B) / A) = 1 
 
 Thus:     R20  = A / (A+B) 

Eqn. (3.20) 
 
 By substituting for R20 , we get:   
 

R21 =   1- R20   

Eqn. (3.21) 

By continuing in the same manner, we can obtain the rest of RIs.  The general form 

is deduced later in this chapter. 

What we ideally want is a systematic approach for solving these equations.  This 

would be the only way to automate the solution (especially with over 200 RIs in a 

GRiST tree) 

Step 2: Solving for RIs 

This is the second step of the algorithm. 

To do this, we look at a general leaf node and its children.  We assume this is the 

leftmost node in the tree (this doesn‟t make a difference, just makes notations easier).  

See Figure 3.5. 
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The challenge is to advice a systematic way for the solution. 

From the S matrix, we know that: 
 

..............

..............

..............

..............

R R ........ R

R R ........ R

R R ........ R

R R ........ R

R R ........ R

R R ........ R

R R ........ R

...

..

...

...
n61)0-(n10

n51)0-(n10

n41)0-(n10

n31)0-(n10

n21)0-(n10

n11)0-(n10

n01)0-(n10

G
F

E

D

C

B

A

S  

Eqn. (3.22) 

 

 
 
 

 Figure 3.5: A leaf node with seven children. 
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Now, we take a slice of the matrix, and call it S‟ for simplicity (it only contains entries 
starting with R10) : 
 

n61)0-(n10

n51)0-(n10

n41)0-(n10

n31)0-(n10

n21)0-(n10

n11)0-(n10

n01)0-(n10

R R ........ R

R R ........ R

R R ........ R

R R ........ R

R R ........ R

R R ........ R

R R ........ R

'

G

F

E

D

C

B

A

S  

Eqn. (3.23) 
 

 
We know from the GRiST tree properties that: 
 
Rn0  + Rn1  + Rn2  +  Rn3  + Rn4  + Rn5  + Rn6     = 1 

Eqn. (3.24) 
 

We will convert the above equation into a function of only one variable, e.g. Rn0  .   To 
do this we use S‟. 
 
B/A = Rn1  / Rn0   
 
 Rn1  = (B/A) . Rn0  
 
C/A = Rn2  / Rn0   
 
 Rn2  = (C/A) . Rn0  
 
D/A = Rn3  / Rn0   
 
 Rn3  = (D/A) . Rn0  
 
E/A = Rn4  / Rn0   
 
 Rn4  = (E/A) . Rn0  
 
F/A = Rn5  / Rn0   
 
 Rn5  = (F/A) . Rn0  
 
G/A = Rn6  / Rn0   
 
 Rn6  = (G/A) . Rn0  

Eqn. (3.24) 
 

Substituting in the sum: 
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Rn0 + (B/A) . Rn0  + (C/A).Rn0 + (D/A).Rn0 + (E/A).Rn0  + (F/A).Rn0  + (G/A).Rn0  = 1 
Or: 
Rn0  . ( 1 + B/A + C/A + D/A + E/A + F/A + G/A) =   1 
 
Further: 
 
Rn0  . ( A + B + C + D + E + F + G ) / A =  1 
 
 

  
GFEDCBA

A
     R n0  

Eqn. (3.25) 
 

If we repeat the above process for the rest of the RIs, we will get: 
 

GFEDCBA

B
     R n1  

GFEDCBA

C
     R n2  

GFEDCBA

D
     R n3  

GFEDCBA

E
     R n4  

GFEDCBA

F
     R n5  

GFEDCBA

G
     R n6  

 
Eqn. (3.26) 

 
Hence the general rule in the algorithm, to find a certain RI in the leaf nodes, would be: 
 

k

k
kS

kS
RI

)('

)('
 

Eqn. (3.27) 
 

  Where k is the leaf node index. 
 
 

Step three: Shrinking the tree 
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 Having found the RIs of the leaf nodes (see Figure 3.5), we can now reduce the 

children of node M(n-1)0 into one leaf of the bigger tree.   Since only the total MG value is 

propagated up the tree, we can now reduce S‟ further to obtain parent RIs. 

 From S‟, and given that now we know the values of RIs of the leaf: 

R10 . R20  …….. R(n-1)0 . Rn0  =   A 

R10 . R20  …….. R(n-1)0  =  A/ Rn0   =  A+B+C+D+E+F+G 

Eqn. (3.28) 

This is confirmed by the rest of the equations as they are now redundant (since we 

know the RIs of the leaf). 

 

R10 . R20  …….. R(n-1)0 . Rn1  =   B 

R10 . R20  …….. R(n-1)0  =  B/ Rn1   =  A+B+C+D+E+F+G 

Eqn. (3.29) 

Now S‟ is no longer needed for the parent node M(n-1)0. 

But the parent will have two or more children, and if this process is repeated for the 

other siblings of our node above, the parent will have the following equations: 

R10 . R20  …….. R(n-1)0  =  A+B+C+D+E+F+G 

R10 . R20  …….. R(n-1)1  =  H+ I + J 

R10 . R20  …….. R(n-1)2  =  K+ L + M + N + O 

…………………….. 

And so on. 

Or, in general form:  

     

    Where: c= number of children of   

Eqn. (3.30) 

The above equations are then solved again using the same algorithm (it can be 

seen it is recursive/ iterative). 
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When the top of the tree is reached, all RIs will be known. 

 

 

3.3.2.2 The Algorithm in a nutshell 

To generalize the algorithm as of the tree in Figure 1, we summarize it as follows. 

Inputs: 

V1 = (M1, Mn01, Mn11, …………, Mnk1 )  

To 

Vk = (Mk, Mn0k, Mn1k, …………, Mnkk )  

Eqn. (3.31) 

Where: 

  M1 to Mk :  are the k different cases outcomes.  K is defined below. 

  Mn0y :  is the input MG at the leaf on the nth level (lowest level) of the GRiST tree of 

the yth input vector (Vy).   We need k vectors to solve the resulting k simultaneous 

equations.  

  K = the number of leaf nodes of the GRiST tree. 

 

Outputs: 

     RI values. 

 

Procedure: 

Step one: 

Solve the following simultaneous equations: 
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Ak

A

A

A

Mk

M

M

M

...

...

...

3

2

1

M.........MMM

.......................

......................

........................

M...........MMM

M..........MMM

M........MMM

....

...

....

3

2

1

nkkn2kn1kn0k

nk3n23n13n03

nk2n22n12n02

nk1n21n11n01

 

Eqn. (3.32) 
 

 
The above matrix is kXk in dimension. 
The solution yields vector S: 
 

Ak

A

A

A

S

....

....

...

3

2

1

 

Eqn. (3.33) 
 

Step two: 
 
We use S‟ to denote a sub tree of each node at level (n-1). 
Hence we have:  S‟1 to S‟h   where h is the number of nodes at level (n-1) in the 
GRiST tree. 
For each subtree, S‟j, we solve to find its RIs. 
 
 

r

nr
rjS

rjS
R

)('

)('
 

Eqn. (3.34) 
 

Where r is the leaf node number (e.g. a, b, c,..).    r starts from 0 to the number of 

leaves of node j at level (n-1).    j = 0 ,…,h. 

 R has values from 0 to k at the leaf level of the tree. 

Step three: 
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Once RIs are found on that level, the tree can now be shrunk by a level, by 

replacing the leaf level and it parents with one new level. 

 MGs for the new level are calculated by the sum of corresponding (A+B+C+….) of 

each node.  (See Figure 3.5). 

So,  

    M(n-1)h =  
r

rjS )('  

Eqn. (3.35) 
 

Once the new parent MGs are found for the new level, we can go to step two and 

repeat step two and three for the new tree.  This process is continued n times.   At the 

end, we will have all RIs in the tree. 

A simple flowchart of the algorithm is outlined on the next page (Figure 3.6). 

If more training records are available, than the minimum required, then iARRIVE 

algorithm needs to be used, which is introduced in the next section. 

 

Complexity: 

  The main step of the algorithm is the Gaussian elimination of complexity O(n3) 

[ATKI, 89], where n is the number of leaf nodes in the tree.  Back propagation will 

involve k iterations, where k is the total number or RI values in the tree.   

 

₪    ₪    ₪ 
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Figure 3.6: ARRIVE flow chart.  
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3.3.2.3 Case Study 

In this study we will use our algorithm to calculate the RI values in the tree shown in 

Figure 3.6.  The tree has six leaves (A to F), hence we need six training cases.   We 

use a synthetic training data set, in the form of the following matrix equation (as in Eqn. 

(3.32)): 

 

  

F

E

D

C

B

A

4.05.05.06.01.03.0

2.09.03.04.03.02.0

3.07.06.05.04.03.0

7.08.07.03.01.02.0

2.06.04.05.02.01.0

6.03.02.04.03.01.0

1.0

8.0

7.0

9.0

4.0

3.0

 

Eqn. (3.36) 
Using Gaussian Elimination, we obtain: 
 A = -0.44   D = 0.44 
 B = 0.92   E = 0.964 
 C = -1.067   F = 0.196 

Eqn. (3.37) 
 

Note that we use 3 decimal points approximation for simplicity (rounding). 

Using Equation (3.34) and the propagation technique in (3.35), we obtain all the RI 

values as in Figure 3.7. 

To verify the model, we use the first training case (first line in (3.36)) as an input (in 

blue in each leaf node).  Propagating through the decision tree using the new RI 

values, we finally reach a decision (M = 0.298).   This is almost the same as the 

desired output in the original test case, in equation (3.36), i.e. 0.3.    The error is due to 

approximation and using only three decimal points precision.  (0.3 – 0.298 = 0.02).  

This amounts to only 6.66 %, which is acceptable in GRiST, as it makes no sense to be 

any more accurate than one decimal point with respect to RIs and their influence.   A 

more detailed analysis on real data is presented in the Chapter Six, Results. 
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Figure 3.7: A sample decision sub-tree. 

 
     
 
 
 
 

 

₪    ₪    ₪ 
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3.3.3 iARRIVE Algorithm 

 

In ARRIVE [18], we developed a mathematical representation for GRiST that 

provided the basis for a model to solve.   We then devised an algorithm to find the 

solution for that model and, ultimately, all RI values in the tree. The restriction of the 

ARRIVE model is that it requires exactly k cases, where k is the number of leaf nodes 

in the GRiST tree.  

This means that if more cases than k are available, we will have to filter the inputs to 

chose only k cases, to use the algorithm.   This can be done in several ways by, for 

example averaging techniques to combine several cases together or using a credibility 

or confidence index to choose the “best” k cases to use.  

The disadvantages are that some cases will either be discarded or have less 

influence on the overall solution and incorporating new cases into the RI values 

solution is difficult.   There is also the problem of learning from new cases, as in case of 

ARRIVE the whole procedure needs to be started over.  In order to overcome these 

restrictions, we have developed an incremental version of ARRIVE, we call iARRIVE 

[HEGA, 08]. 

Assume we have t previously known cases where t > k.   In this case, the matrix 

representation of the tree will look like: 
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Eqn. (3.38) 
or in the general mathematical representation: 
 
Mi = Mn0i.A1 + Mn1i.A2 + Mn2i.A3 + …. + Mnki.Ak                

Eqn. (3.39) 

where i=0 to t (t is the number of equations). 
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A1 to Ak are the unknowns, or the coefficients of Equation (3.39), and k = number of 

leaf nodes in the GRiST tree.   Since t > k (more test cases than the number of 

unknowns), Equation (3.39) cannot be solved as a Gaussian elimination problem.    

This is a multivariate regression problem with k variables (M) and k regression 

coefficients (A1 to Ak). 

The problem is finding the initial coefficients at the leaf nodes (A1 to Ak), which must 

be done using iARRIVE, but after that, we revert to the same approach as for ARRIVE 

to find the higher level RIs (step two and three).  The first step is only required to 

calculate the coefficients at the leaf nodes, and this can be done in different ways.  

After that, back propagation is used to calculated the RIs, regardless of how the leaf 

node coefficients where calculated in the first step.   This is a very important and useful 

characteristic of our methodology and overall approach to solving the RI problem.   

Once the problem is converted into a different domain, step 1, solving the simultaneous 

equations can be carried out using many possible methods.  We have chosen the once 

most suitable and straight forward to give a robust solution.   Once the new unknowns 

are determined, the second part of the algorithm is independent and finds the RI values 

recursively regardless of the way the unknowns are found in the initial step.   We 

believe that this is a powerful feature in our approach and makes the algorithm more 

flexible and adaptable to other problems and knowledge domains.   It also allows for 

two systems with identical inputs and outputs to be interpreted in different ways, by 

changing the internal tree connections in step two and three.  Note that step one does 

not take into account the path of the RIs, they are simply replaced with a new variable. 

There are many methods for solving multivariate regression problems (e.g. [SHEL, 

72], [GOVI, 06], [KLEI, 98]) and several software packages that provide the required 

functions such as linear, splines,  ([MATLAB], [NLREG], [CAMO, 08]).   For a more 

robust solution we have chosen Matlab [MATLAB]. 

For simplicity, we rewrite Equation (3.39) in a general form as: 

M = m1 .A1 + m2.A1 + m3.A1 + ….. + Mk.Ak                

Eqn. (3.40) 

Or in matrix form, for t cases:  

    [M] =[m].[A]                                



 
School of Engineering and Applied Science 

 

 

                                                                                                  
S. E. Hegazy                                                                                              PhD Thesis 

82                                                                   

Eqn. (3.41) 

This yields:  

[A] = ([m]‟.  [m]) -1  [m]‟.  [M]                                                

Eqn. (3.42) 

Hence we obtain all As and can continue as in ARRIVE to obtain RIs. 

To generalize the algorithm using the notation in Figure 3.3, we summarize it as 

follows: 

Inputs: 

V1 = (M1, Mn01, Mn11, …………, Mnk1 )  

  To: 

Vt = (Mt, Mn0t, Mn1t, …………, Mnkt )  

Eqn. (3.43) 

where M1 to Mt are the t different cases outcomes and  t > k. Mn0y  is the input MG 

at the leaf on the nth level (lowest level) of the GRiST tree of the yth input vector (Vy) 

and  y = 1 to t. K = the number of leaf nodes of the GRiST tree. 

Outputs: 

     RI values. 

Step one: 

Solve the following equations for A, using Multivariate (multiple) Regression 

methods: 
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Eqn. (3.44) 
 

The M matrix is t by k in dimension and the solution of Equation (3.44) yields vector 

S = A1 to Ak. 
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We then continue with steps two and three as in the previous section. 

 

Complexity of the algorithm: 

As in simple linear regression with least-squares, our algorithm has time 

complexity of O(k.n²) [ATKI, 89], where k is the sample size, and n is the number 

of parameters to be estimated, in our case that is the number of leaf nodes in the tree. 

 

 3.3.4 Error in Solution 

 In this section, we analyse the output prediction method and the error in the output 

decision due to missing data or sample inconsistencies (i.e., noise in input data, 

inaccurate inputs,..etc). 

To conduct analysis on the error in the output, due to using the newly inducted RIs, 

we can use the mapping of the interpolated function.  This will also give an indication of 

the quality (consistency) of the input data.  If the mapping fits most inputs, intuitively 

this means that the input data is clean, with not much noise. 

Assume A is the mapping matrix from iARRIVE : 
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Eqn. (3.45) 
  Mi =  ( M0i  M1i  M2i ………..  Mki) 

 
 Mi is an input matrix (one of the training cases) and M is the corresponding output 
judgement.   Assume m1 to mn are the test cases used to generate A, with M1 to Mn 
as the corresponding outputs. 
The error between any actual Mi and calculated M‟i would be: 
 
         iMMi '                                      

                                       i=1 to n. 
Eqn. (3.46) 

 
 But  M‟i = mi. A 
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Eqn. (3.47) 
 Hence the total absolute error for the n test cases would be: 
 

          
n

i

abs AmiMi
1

.                              

Eqn. (3.48) 
  The average error for this interpolation would be: 
 

        
n

AmiMi
n

i

ave

1

.

                                

Eqn. (3.49) 
 The total average percentage error would be: 
 

          100

.

.

%

1

1

n

i

n

i

Ami

AmiMi

                

Eqn. (3.50) 
This is very useful in terms of analysing the original data.  If the average percentage 

error is relatively high, this could indicate the accuracy (or lack of it) of the results.  At 

the same time, a higher error in the output may indicate a problem in the original 

training set.    

This could be due to noise in the original data, or discrepancies in the information 

obtained from the different experts.  This does not necessarily indicate that the original 

data is inconsistent or inaccurate.  In fact, it may be a matter of difference of opinions 

among the experts, which does occur in real life. 

 

 

3.3.5 Case Study 

 

We will use our algorithm to calculate the RI values in the tree shown in Figure 3.8.  

The tree has six leaves (A to F), hence we need at least six training cases.  In this 

example, we use nine.  

We use a synthetic training data set, in the form of the following matrix equation (as in 
(3.38)): 
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7.08.07.03.01.02.0

2.06.04.05.02.01.0

6.03.02.04.03.01.0

3.0

2.0

1.0

1.0

8.0

7.0

9.0

4.0

3.0

 

Eqn. (3.51) 
 

 
Figure 3.8:  A sample decision tree. 

 
 

Using multiple regression (Equation 3.42), we obtain: 

 A = -0.114   D = 0.461 
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 B = 0.923   E = 0.894 

 C = -1.103   F = 0.177 

Eqn. (3.52) 

Note that we use four decimal points approximation for simplicity (rounding). 

Using Equation (3.34) and the propagation technique in (3.35), we obtain all the RI 

values as in Figure 3.8. 

To verify the model, we use the first training case (first line in (3.51)) as an input 

(inside each leaf node (A, B, C, ..)).  Propagating through the decision tree using the 

new RI values, we finally reach a decision (M = 0.291).   This is almost the same as the 

desired output in the original test case, in equation (3.51), i.e. 0.3.    The error is due to 

approximation and using only three decimal points precision (0.3 – 0.291 = 0.009).  

This amounts to only 3%, which indicates a good interpolation and acceptable 

approximation. 

  The error is due to the use of first order polynomial regression and the inaccuracy 

of the original data.  By using higher order regression and analysing the data before 

hand, the error could be reduced further as will be shown in the next chapter. 

 

₪    ₪    ₪ 
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3.3.6 Proof of Concept 

The original structure and the GRiST model [BUCK, 08]  rely on set theory and fuzzy 

logic [ZADE, 65] .  One of the main assumptions that should hold if our algorithm and 

the mathematical model presented in this chapter are semantically correct, is the 

complement set.   From the definition of the Risk in GRiST, a complement of a certain 

risk would result from complementing all the inputs to that risk [BUCK, 08]  .  If the total 

risk for example is 0.8 (at the top of the tree), then the complement risk, defined as 1-

0.8 = 0.2 should result from complementing every input to the original tree that 

produced the 0.8 risk.  To illustrate this, assume the GRiST tree in Figure 3.9.   

 

Figure 3.9:  A sample GRiST tree. 

 

(A1, A2, A3, ....) represent the multipliers, as perEquation (3.33).   

 Thus : 
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A

A

A

A

A  

Eqn. (3.55) 
 

  A1= R10.R20.R30 

  A2= R10.R20.R31 

  A3= R10.R21 

  A4= R11.R22 

  A5= R11.R23 

Eqn. (3.56) 

The fundamental assumption is that the same tree, with complement inputs (mi`), 

should produce a complement judgement (M`).  (See Figure 3.10). 

  where :    mi`= 1 – mi 

   and M` = 1 – M 

To prove this, we go back to Equation (3.41): 

    M = m.A                                

Now we replace m with (m`=1-m): 

    M` = m`.A = (1-m).A                               

Eqn. (3.57) 

Or, from matrix calculus: 

   M`= I.A – m.A                         

Eqn. (3.58) 

Or: 
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Figure 3.10:  The complement tree of the tree in Figure 3.8. 

 
 

   M`= I.A – M                            

Eqn. (3.59) 

where I is the unity matrix:  

     I= (1  1  1  1  1)                                           

Eqn. (3.60) 

From matrix operations: 
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Eqn. (3.61) 
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5

1

.
i

AiAI                           

Eqn. (3.62) 

If the expression in Equation (3.62) evaluates to 1 then our model is correct, and the 

complement tree condition is satisfied. 

By substituting for RI values in (3.62) using (3.56) we obtain: 

  I.A = R10.R20.R30 + R10.R20.R31 

          + R10.R21 + R11.R22 + R11.R23              

Eqn. (3.63) 

By grouping: 

I.A = R10.R20.(R30 +R31) 

          + R10.R21 + R11.(R22 + R23)              

Eqn. (3.64) 
 

  From RI properties, Equation (3.7), we know that: 1
0

Zxn

y

xyR                                                    

So, Equation (3.63) becomes: 
 
I.A = R10.R20   + R10.R21 + R11                            

Eqn. (3.65) 
Grouping again: 
 
I.A = R10.(R20+R21) + R11             
                
 Or   I.A = R10 + R11                            

Eqn. (3.66) 

And from Equation (3.7) this yields: 

                I.A = 1                               

Eqn. (3.67) 

The above process is valid for any GRiST tree, as grouping is done bottom up. 

This proves that the complement tree assumption holds by substituting I.A from Eqn. 

(3.67) in Eqn. (3.57)  

    M`= 1 – M                      
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  Eqn. (3.68) 

This is a necessary proof of concept according the properties of GRiST [BUCK, 08].   

We have shown that our model is correct mathematically, and in this section, we have 

proven its semantic correctness on the basis of the constraints on GRiST and the way 

it handles fuzzy set membership grades [BUCK, 08]  . 

Equations (3.59) and (3.68) also prove the important property that If all input MG =1, 

the total M will also equal 1.   If input risk is maximum then output risk is also 

maximum.  If all input MGs are 0, the M=0. 

 

 

 

 

₪    ₪    ₪ 
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3.4 Summary 

 

  In this chapter we have tackled the main problems associated with parameter 

elicitation in hierarchical structures representing knowledge and expertise. 

We have introduced the GRiST decision tree structure and highlighted the 

challenges of determining the relative influence values or parameters in the tree. 

We introduced our ARRIVE (an Algorithm for Robust Relative Influence Values 

Elicitation) as well as an incremental extension of the method, iARRIVE.  Our algorithm 

consists of two stages; the first stage transforms the problem into a different domain 

with a new set of unknowns.  Once these are determined, the method uses back 

propagation to calculate the RIs in the tree.   This has many advantages, primarily the 

flexibility of using several possible methods to solve step one. 

In the next chapter, we address the problem of varying expert opinions and ways of 

concatenating their input and expertise to the tree in GRiST, which is vital for accurate 

RIs calculations using iARRIVE.   

 

 

 

 

₪    ₪    ₪ 
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Chapter 4 
Data Conditioning 

 
 

 
 

 
 
 
 

This Chapter covers the following: 
 Data Conditioning 
 Quantifying Experts inputs 
 MGM: Membership Grade Modulation Algorithm 
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4.1 Introduction 

 

Experts in general may have different opinions based on their experience, 

background and expertise.  This is very apparent in the clinical field.  In the case of 

GRiST, over 40 experts contributed to the knowledge elicitation process, which 

inevitably meant varied inputs. 

In this chapter, we develop the MGM (Membership Grade Modulation) Algorithm, 

which will be used to combine the various expert opinions into one usable function.  We 

also present general approaches to measure the consistency of the expert input and 

ways of filtering out or smoothing the overall expertise. 

In order to be able to map data from the GRiST questionnaire into usable 

information for the algorithms presented in the previous chapter, (i.e., numbers), we 

need a knowledge representation method. One possible candidate could be a rule 

base.  But due to the large variations in input data and the large number of possibilities 

(on average 200 questions, with 10 possibilities each on average), this is not feasible.   

Another reason is that any modification in the rule base would be very difficult to track 

and map. 

 

4.2 Membership Grades (MG) 

We have opted for fuzzy logic [ZADE, 65] to do the mapping from expert inputs to 

the questionnaires to the actual data used by iARRIVE.   Membership functions will 

provide us with membership grades (MG, or fuzzy-set membership grades) to map any 

inputs to numbers for the GRiST tree (Figure 4.1).   

The advantage of using fuzzy set membership grade functions [ZADE, 65] is that a 

simple amendment to them can alter the representation of expertise.  Experts provide 

graphs representing the effect of the input values on the decision or risk.  The functions 

(e.g. Figure 4.2) are provided by the expert clinicians and we have developed tools for 

helping to elicit them (See Appendix C).  Input patient values are mapped to their 

associated fuzzy function to obtain a value or MG. 

The main challenge is to concatenate the functions:  experts‟ opinions may vary but 

we could only use one function (MG) for each leaf node.   
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As in Figure 4.1, MG2 may originally have two different functions provided by two 

different experts.   In the real life case of GRiST, we had 44 Experts with potentially up 

to 44 different functions for the same MG.  These have to be concatenating somehow 

to come up with one function representing consensus (MG2). 

 

 

Figure 4.1: Membership functions as inputs to a GRiST tree. 
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Figure 4.2: A Membership Grade (MG) function. 

 

Our aim is to find a function that represents the concatenation of all opinions (note: 

this could be n experts with n opinions in the general case).    As this function is to find 

some sort of a consensus, it should provide a value V somewhere between the two 

values provided by the experts, V1, V2 (Figure 4.3).  We also need a measure of the 

accuracy of this solution. 

 

4.3 MGM: Membership Grade Modulation Algorithm 

4.3.1 Background 

In real life, no two people entirely agree.   This couldn‟t be truer in the medical and 

psychiatric fields.   Experts always have differences, based on their experience, 

background and many other factors.     In the GRiST model, in order to obtain the 

various parameters in the tree, we have had the cooperation of over 40 experts.     This 

meant that potentially, each of the MG functions in Figure 4.1 could have over 40 

different possibilities.    

The challenge is to find a method of combining them, to fairly represent all experts 

with acceptable deviations.   We also need to be able to judge the quality and the 

consensus in the original data supplied by the experts.  
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To do this, we developed the MGM Algorithm.  

 

4.3.2 The Algorithm 

Our algorithm is called the MGM: Membership Grade Modulation algorithm.   For the 

purposes of this work, MGM will represent the concatenated function that is calculated 

by the algorithm.   Assume the two functions provided by the experts are MG1 and 

MG2.   We need to find a function MGM that combines both. We represent a simple 

two function example in Figure 4.3. MG1 is the top line, MG2 is the lower line.   V1 and 

V2 represent two values for the same input based on two experts‟ functions 

(represented by two lines).   V represents the concatenation between the two values. 

 

 
 

Figure 4.3:  MGM tries to find V, a concatenation of V1 and V2. 
 

  One straight forward approach would be to find the average of V1 and V2, and this 

should represent the value V.   We will use this approach. 

       Thus :        
2

21 VV
V                            

Eqn. (4.1) 
 In a more general case, for n functions: 

              
n

Vk

V

n

k 1                                       
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Eqn. (4.2) 
 

To have a more consistent approach, we need to find MGM, a new function that 

represents the above equation.    To do this we use function properties [11], which 

means that functions can be added to each other like single values.   Thus:     

   

  
2

)(2)(1
)(

xMGxMG
xMGM                    

Eqn. (4.3) 
 
  In a generalized form, for n functions: 
 

      )(
1

)(
1

xMGk
n

xMGM
n

k

                                   

Eqn. (4.4) 
 

We now further analyze the graph in figure 4.3.    What if expert 1 is more prominent 

or has more weight or expertise in the field of this particular MG (or question in the 

GRiST questionnaire).     The function described in equation 4.4 assumes MG1 and 

MG2 have equal weight.     

To address this concern, we introduce a new parameter, w.    This will represent the 

weight of each function. This will determine its contribution to the overall new MGM, 

thus the experts‟ contribution.  We use normalized weights, as we need to represent 

the weight of each expert compared to the others in the set. Thus the sum of the 

weights should be 1.   We can then add the MGs multiplied by their respective weights 

to get the overall MGM.    Or: 

       )()(
1

xMGkwxMGM
n

k

k                                  

Eqn. (4.5) 
 

  Where:  
n

k

kw
1

1 

Eqn. (4.6) 
 

If all experts have equal weights, Equation 4.5 becomes Equation 4.4, as each 

weight will be 1/n. 
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This new function, MGM, represents the concatenation of all experts into one 

function, that can now be used straight forward in the GRiST tree to defuzzify input 

questionnaires and calculate risk. 

 

Extension: 

To generalize the MGM algorithm, we will use polynomial regression methods [KLEI, 

98] to fit a polynomial to the combined graph representing points from all MG graphs.  

Regression will produce an overall MG function that will best represent the combined 

data pool and minimize the overall error.    

Regression will produce an MG function that will best represent the combined data 

pool and minimize the overall error.  The order of this function can be set to obtain 

better representation, which gives more flexibility.  In practice, though, orders higher 

than three don‟t offer much improvement of the fit [DRAP, 98] (as we will show in the 

case study). 

The advantage of using regression in real life is that it will produce a function for the 

overall MG even if the original data is scattered (which is usually the case, as the input 

MG curve functions are unknown.   The input data or the MG functions are provided by 

the experts using our online graphical Elicitation Tool (See appendix C).    

These are represented as points connected by straight lines. This was designed 

based on the feedback of the clinical trial, to simplify the input process for clinicians.  

The graphs are stored as a collection of points and then digitized at a fixed frequency 

using the software. 

 

 

Complexity: 

As in simple linear regression with least-squares, our algorithm has time 

complexity of O(k.n²) [ATKI, 89], where k is the sample size, and n is the number 

of parameters to be estimated, in our case that is the number of leaf nodes in the tree. 
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4.3.3 Error Estimation 

As in the case of any real life expert system, the above algorithm depends highly on 

the consistency of the data.   Since the opinions of medical experts are highly unlikely 

to be unified, the functions supplied by the experts (MG) will vary, hence the need for 

MGM. If the differences are minor between experts, MGM will produce consistent 

results.    

The problem would arise in the case of large discrepancies in expert opinions and 

thus MG functions.   In this case, MGM might not represent any of them and the output 

would be confusing.   This is however not a flaw in the algorithm itself.   It is a natural 

conclusion which we could reach as well if we analyze the inputs.   If one expert says 

high and the other says low, it is natural that the outcome would be none, or close to 

zero (as they negate each other)!  We need a method to detect these discrepancies 

and raise alerts if they exist in the data. 

To quantify these discrepancies, we will use a distance measure to measure the 

average distance between curves.    This is a complicated process and might require a 

vast amount of calculation [KLEI, 98].  Instead we propose a different method that is 

more suited to our case here, as we only need an indication of the distance and not the 

exact value.  This will in turn give an indication of both the error in the output data and 

the consistency of the experts‟ elicitation.  See Figure 4.4. 

To measure the distance between two curves we will use the area between them as 

an indication (Figure 4.5).  Assuming the two graphs are fairly similar, (i.e. similar 

slopes and shape) which is the general case in our test set as we assume the clinicians 

will agree to some extent but may deviate at certain points) , the larger the area 

between the two curves, the larger the average distance.    

To calculate the area enclosed between any two curves, we can look at it as the 

difference between the area under curve A and the area under curve B.  An area under 

a curve (see Figure 4.5) can be calculated by integrating the curve between two points 

[GIAQ, 03].   For an MG, this would be: 

                 )(

max

min

xMGA
x

                                   

Eqn. (4.7) 
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Figure 4.4a:  A poor set of MGs results in poor MGM. 

 

 

Figure 4.4b:  A good set of MGs results in consistent MGM. 
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Hence, to calculate the area between MG1 and MGM (see Figure 4.5): 
 
 

   )()(

max

min

max

min

111 xMGMxMGA
xx

                

Eqn. (4.8) 

 

Figure 4.5:  Area between two curves. 

Note that we are interested in the positive value for the area and need the absolute 

value.  For n MGs, the indication of total error and the accuracy of results would be: 
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Eqn. (4.9) 
 

The overall relative error would be a good indication per MG (although not 

comparable across different MGs), as it eliminates the need for units (it is relative) and 

makes adjusting the thresholds more natural for experts.  The normalized form would 

be: 
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Eqn. (4.10) 
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This gives an overall indication of the consistency of the input functions by the 

experts and thus the quality of the risk assessment process as a whole. 

The threshold of the error can be set by clinicians from trials, or by simply 

eliminating the graphs with the highest error. 

Another interesting aspect for using the error from the above equations is to use it 

as an indication for the experts‟ opinion weight:  The more the deviation from the MGM, 

the less weight this expert should have.  These weights can then be used in Equation 

4.4 to generate the overall updated MG (or more accurate).  This works as a recursive 

procedure, which should reduce the overall error. 

The error for expert k is: 

 

)()(

max

min

max

min

xMGMxMG
xx

kk                  

Eqn. (4.11) 

We will define the weight of an expert‟s opinion as the complement of the error, 

divided by the total of all experts‟ errors (to normalize the weights, and ensure that the 

total of weights equals 1). 

            
n

j j

k
kw

1

1                                  

Eqn. (4.12) 
 

This equation gives the weight of each expert compared to others, based on their 

errors.  The higher the relative error of an expert compared to the total error from all, 

the less their weight is. 

 

4.3.4 Case Studies 

Case Study 1: 

We apply the MGM algorithm on the data in Figure 4.6.   Six MG functions obtained 

from six experts need to be concatenated into a single MGM function representing the 

set.   The MGM of synthetic data is shown in Figure 4.7 using the mean method for 

consensus.  The combined MG is shown as the thicker line along with the six MG 
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functions from which it was derived. The case study in the next section shows the 

MGM using polynomial regression.  

In this example, we apply the polynomial algorithm on real life data, obtained from 

the GRiST system, and the graphical online MG Elicitation tool [11]. For simplicity, we 

will show the MGs supplied by nine different clinicians, where each expert plotted an 

MG function that best represents the weights of each answer to the questionnaire and 

its contribution to the overall decision.    In the actual elicitation exercise, between 40 

and 50 experts provided MG distributions for each question, which shows the 

importance of an automated process to combine the MGs. 

The data from the visual tool had to be prepared first and validated, in what we call 

the data cleaning stage.  

The original graphs were saved as a collection of points joined up by straight lines, 

which posed a problem for the regression operation. For example, take the hypothetical 

Expert 1 in Figure 4.6.  

The original data supplied by the elicitation tool would have defined four joined lines 

and be in the form: E1= (0,0) (0.2,0.4) (0.4,0.6) (0.8,0.4) (1,0.6).   

This means that each expert graph could have a different number of points 

depending on the number of lines they used to describe the MG graph.  

So the tool had to resample each graph at a set step (and thus equal frequency) to 

get the same number of sampled points per expert for the same MG.  

For E1 in Figure 4.6, the resulting sampled set of points using a step of 0.1 would 

be: E1= (0,0) (0.1,0.2) (0.2,0.4) (0.3,0.5) (0.4,0.6) (0.5, 0.55) (0.6,0.5) (0.7,0.45) 

(0.8,0.4) (0.9,0.5) (1.0,0.6).  

When this is done for all experts, they will have the same weight in the regression 

process because all the points from all experts for a certain MG have to be combined 

into one graph as one set.   

If one expert had more points on the graph, this would give the expert exaggerated 

influence or pull on the MGM.   The data pre-processing thus ensures that at each 

point X there will be n Y values, where n is the number of experts in the trial.  The 

functions are then concatenated by performing regression on the overall set of points.    

The sampling step is one of the tuning parameters that can be adjusted for more 
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accurate results.   It depends on the shape and the complexity of the original functions 

but, for our mental-health domain, a step of 0.5 was sufficient. 

Figure 4.8 shows the combined MGM using polynomial regression. The R-squared 

coefficient represents the quality/accuracy of the regression process.  It represents the 

percentage of the data that can be explained by the fitting function..  It is also called the 

Determination Coefficient [KLEI, 98].    The larger it is, the less the fitting error is 

present.   

This means that the polynomial represents the data better.  In our case, R2 = 0.5689 

is larger than the linear regression; hence it is a better function.  Case study two will 

illustrate the effect of the order of regression on the results accuracy. 

In the above example, the combined MGM will be of the form: 

     MGM = y = -1.2461x2 + 1.6348x + 0.0582 

Eqn. (4.13) 
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Figure 4.6: MG functions provided by six different experts for the same input to the tree. 
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Figure  4.7:  The six MGs and Combined MG using the Mean Method. 
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Figure 4.8:  The Combined MG using Regression,  

Order n=1 (top) and n=2 (bottom). 
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Case Study 2: 

In this section, we apply the algorithm on real life data, obtained from the GRiST 

system, and the graphical online MG Elicitation tool, See Appendix C. 

For simplicity, we will show the Membership Grades supplied by nine different 

clinicians, where each expert plotted an MG function that best represents the weights 

of each answer to the questionnaire and its contribution to the overall decision. 

In the actual elicitation exercise, between 40 and 50 experts provided MG 

distributions for the question answers. This shows the importance of an automated 

process to combine the MGs. 

Figure 4.9 shows the original MG functions submitted by nine experts for MG2, 

which represents the effect of the number of suicide attempts so far on the overall risk.  

As shown in Figure 4.9, some experts agreed on function forms while others disagreed 

which is expected. 

 

Figure 4.9:  The original MGs as provided by the nine experts for MG2. 

Figures 4.10 to 4.12 show the output of the MGM (combined membership grade) for 

MG2, using first, second, third, fourth, fifths and sixth order regression, as well as the 
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quality of the fit (R2) and the equation of the MGM.  The R-squared coefficient in the 

figures represents the quality/accuracy of the regression process or fit (in MS Excel).  

The higher it is, the better the polynomial regression represents the combined data. 

The improvement in quality of fit is reduced as order increases but the improvement 

tends to diminish for higher orders (see Figure 4.11 and 4.12, where   R2   = 0.79 , 

0.0795 and 0.807, for regression orders 4,5 and 6 respectively, which is not a large 

improvement over 0.7761 in respect to complexity).   Third order should be sufficient, 

which, for this example provides a solution for MGM as follows: 

   MGM = y = 0.0112 * X3 + 0.7322 * X2 + 0.7322 * X + 0.0126 

  R2 = 0.7761                                     

Eqn. (4.14) 

  

Figure 4.10:  The combined MGM for MG2 in regression order 1 and 2. 
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Figure 4.11:  The combined MGM for MG2in order 3 and 4. 

 

 

    

Figure 4.12:  The combined MGM for MG2 in order 5 and 6. 

 

 

 

See appendix B for the complete MGM analysis results, which includes GRiST data 

supplied by 43 Experts. 
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An example is shown in Figure 4.13 below.   It also indicates the comments of some 

of the experts during the elicitation process using the online tool, in the table below.   

Our tool stores all the data in a database [BUCK, 07], which can then be used to draw 

the curves in MS Excel. 

MG Label:    age-risk to dependents 

 

Start: (18,0.08)                         End: (50,0.16)                     Max.: (30,0.88) 

 

Comment Clinician No. 

skipped - no experience 12 

0.5 at 18, 0.2 at 50 16 

not relevant 18 

WOULD NOT ANSWER QUESTION AS COULD NOT 
ISCOLATE OTHER FACTORS 

28 

WOULD NOT ANSWER 31 

Query impact - not done 5 

 
Figure 4.13:  An MGM from the actual trials with 43 experts. 
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4.3.5 Analysis of MGM 

It is very important to analyse the results of MGM.   The output of the algorithm is a 

single function that should provide a reasonable representation of the combined effect 

of all the functions supplied by the experts to represent that particular MG.  We also 

assume that the original MG functions a pretty much similar, which will help the MGM 

result.  This is fair assumption in a clinical system as we assume some general 

consensus among clinicians, though the details can vary. 

 In fact, the actual combined function, MGM, does not represent any of the input 

functions (i.e., it is a new function, that doesn‟t agree with any of the original ones, see 

Figure 3.19 to 3.21).   This is because, by definition, it is the best possible compromise 

or fit, to produce the minimum error between all the expert functions and the new 

MGM. 

Although this is mathematically and statistically acceptable, it could pose semantic 

problems when it comes to the meaning of the actual data.  In GRiST, for example 

some of the MG functions have specific semantic restrictions on them, relating to the 

medical data.    For example, some of the functions are required to have a minimum of 

0, and a maximum at 1. 

A combined function using the MGM could lose those localized minima and maxima, 

due to the nature of regression and curve fitting.  As the process smoothes the sharp 

changes, it is very likely that the new MGM will not have those properties.  This begs 

the question of exploring alternative techniques for combining the MG functions, for 

example Fuzzy theory analysis.   

The fuzzy operations [ZADE, 65] on the MGs will have their limitations too, as they 

will mostly either flatten the combined MGM function or raise the whole curve, resulting 

in loss of one or both feature points (i.e., Min. and Max.).  In some cases, it may create 

new Maxima and Minima, which would be confusing for the GRiST tree. 

Standard intersection: 

(A ∩ B) = min [A(x), B(x)] 
 Eqn. (4.15) 

 
Standard union: 

(A ∪ B) = max [A(x), B(x)]  
Eqn. (4.16) 
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This is illustrated graphically in Figure 4.14 ( www.doc.ic.ac.uk). 

A future avenue to explore would be to investigate the possibility of combining MGM 

with the fuzzy set operations, in order to better reflect the semantic minima and 

maxima restrictions specific to the GRiST model. 

 

Figure 4.14a: Union in fuzzy sets ( A U B). 

 

Figure 4.14b: Intersection in Fuzzy Sets. 

 

  

http://www.doc.ic.ac.uk/
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4.4 Summary 

 

  In this chapter we have investigated one of the main problems associated with 

expert systems; namely discrepancies in expert input.  Since all experts differ in their 

opinions and backgrounds, their input to the systems will inevitably be varied.   This is 

very much true and in fact is a problem in the clinical domain.  In case of GRiST, this is 

evident in the membership grade functions elicitation process.  MGs are fuzzy functions 

used to map inputs (logical or numerical) into meaningful quantifiable values that are 

used as inputs to the system. 

We explored the problem of concatenating experts‟ opinions as the input filters to 

the GRiST tree leaf nodes.  We call these the membership grade functions.    

As the project involved over 40 experts, each leaf node could have potentially over 

40 different functions supplied by the different experts.   These functions are then used 

to decode inputs by users into meaningful data that are used to calculate the RIs, and 

when the system is eventually deployed.   The challenge is to combine these functions 

to produce one MG function that represents the combined information with acceptable 

accuracy.   To do this, we developed the MGM Algorithm. 

As it is impossible to represent all the functions in the set accurately (because they 

may differ between experts), we have also presented accuracy and error estimations of 

the MGM, and showed the acceptable levels of errors.   

In the next chapter, we further analyse the iARRIVE method, and tackle the real life 

problem associated with missing and noisy data.    We presented error analysis of the 

algorithm and a real life case study.  

 
 

₪    ₪    ₪ 
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 Predicting Output 
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 Error Analysis 
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5.1 Introduction 

 

The problem of missing data is widespread in any application that involves 

questionnaires or large amounts of information entered by the users.   An additional 

problem is often the accuracy of the input data and how much noise it contains. 

In the specific case of GRiST, with an excess of 200 questions, it is inevitable that 

some of the data will either be missing (i.e. not entered/ answered) or distorted (i.e. 

inaccurate).   In the data available to us from the Mental Health Trusts we work with in 

the UK, a number of cases do contain missing data. 

The model we have developed so far in the ARRIVE and iARRIVE algorithms 

assumes the data set is complete in order to be able to calculate the values or RIs 

throughout the tree.    It is also vital to calculate the errors in the output due to our 

prediction. 

But in real life data, missing values are inevitable. The location of the missing inputs 

could vary dramatically, according to the interviewer, his level of knowledge and 

relevance of the questions to the specific case.  Hence we need somehow to deal with 

the problem of missing data.  This needs to be done both at the training stage and the 

analysis/decision support stage. 

This chapter introduces some ways of handling the missing data in GRiST, with 

some error analysis associated with it.  This will give a good indication of the 

performance of our algorithm iARRIVE, as well as the behaviour of the decision 

support system in real life situations and accompanying missing data. 
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5.2 Handling Missing Data 

 

In general, there are several approaches to handling missing data in a system.  And 

as a rule, there will be an error associated with the output due to the missing data. 

The main categories those methods fall into are: 

1. Substitution: 

In some systems, missing data is substituted by a default value, for example, 0.  

An example would be vending machine software that assumes 1 as default for 

example.   Thus no user input will be substituted by 1. 

2. Intelligent Substitution: 

In this case, a missing value is always replaced by a certain value, which is not 

necessarily 0, min or max.  This could be a value obtained from analysing the 

system such as the  mean.  Note that this value will depend on the data itself, and 

could therefore vary along the system‟s life time as an adaptive process.   It will 

also require prior knowledge of the system and learning some of its characteristics.  

Previous cases need to be known in order to calculate the mean. 

3. Prediction: 

This is a more intelligent approach, where the system attempts to predict 

missing data.   This is done based on the current condition of the system, e.g. 

values of other parameters or inputs.   For example, for a system on patient 

information in a hospital, if a person‟s weight is missing, then based on the person‟s 

height the system may be able to estimate or predict the weight. 

 This approach requires intensive analysis of the system beforehand but has the 

advantage of producing more justifiable results, as they are based on the system at 

hand and actual local data. 

4. Elimination: 

In this case, the system attempts to reconfigure its structure with new 

parameters to reach a decision without the missing input, thus bypassing the 

missing data all together.  This approach may appear to be appealing but it can be 

argued that the resulting system will be different to the original one.  It is also 
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difficult to trace the error resulting in this case because the system is effectively 

restructured.  It will be very difficult to compare the new system to the old one.  It 

also requires intensive knowledge of the system. 

5. Modulation: 

Depending on the structure of the system, it might be possible to reach a partial 

decision without the missing data.  This requires the system to have independent 

paths that could be separated, and not one overall output.  This approach does not 

solve the missing value problem, but allows the system to produce the part of the 

decision based on the available inputs. 

The table below compares the different approaches with advantages and 

disadvantages. 

Method Complexity Accuracy Advantages 

Substitution Trivial low Simple,  Fast  

Intelligent 

Substitution  

Low Medium/ 

low 

Fast , Proven 

Prediction Medium Medium Flexible  

Elimination High Medium/High Emulates human 

decision making 

Modulation Very High High Better in Complex 

systems 

Table 5.1:  A comparison of various input predicting techniques. 

 

The substitution approach is trivial and would not be plausible, whereas the 

elimination and modulation approaches will both result in losing a chunk of the 

semantic structure of the tree, which would not be acceptable. 

In the next sections we will demonstrate the use of two of the above techniques on 

our system.   The most commonly used one is the intelligent substitution, and the more 
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efficient prediction approach.   In both methods, inputs can be statistically and 

mathematically justified, which makes them more appealing to clinical applications, 

where decisions require transparency and traceability.  They also provide better 

prediction, despite the more processing that is required.  They are also both adaptable 

and change with the data, and update the values based on new cases.  

 

5.3 Predicting Output 

In many cases, it is useful to predict the output, even as an indication, even if some 

of the inputs are missing. This is particularly useful in the case of risk analysis, as we 

have known risk thresholds.  So if we reach a certain predefined threshold, we can stop 

the interview process and safely give an indication of the outcome, such as high risk 

and low risk, without actual values [GIGE,96].  This means that the actual numerical 

value may not be exact but the range in which it falls will provide sufficient information 

for decision making.  This highly depends on the domain, and it is valid in GRiST 

[BUCK, 08]. 

This could also be helpful in speeding up the input process and give early alerts to 

high risk areas even before completing the analysis. To do this, we introduce the idea 

of Break Points (BP).   

 

5.3.1 Break Points 

An interesting analysis of the GRiST tree would be to predict the risk based on some 

of the input and not all.   That is, if the user doesn‟t input all the MGs, or answers all the 

questions.  This could be in the case of end users who are not experts or don‟t find all 

questions relevant.   

Is there a way through the properties of our model to predict the nature of the risk 

using an incomplete set of inputs?   Indeed there is. Consider the tree in Figure 5.1.     

Assume we only have m1 and m2 given.   We will try to use them to have an indication 

of the risk. To do this, we will define a BP as a Break Point.    It is the value threshold at 

a node above which the total M will be high risk (or above the risk threshold supplied by 

experts).   If a node reaches that value, even without knowing the rest of the node 

values, we can assume the total risk to be high. 
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Figure 5.1: The threshold points, BP. 

Now we need to find the values of the Break Points in the tree.  To do this, we use 

threshold risk inputs supplied by the experts (m1 to m5).  These indicate high risk 

regions in the data.   These could also be calculated from previous data as average 

values (see later in this section). 

Ai are the multipliers as in (3.5).  

   A1= R10.R20.R30 

 A2= R10.R20.R31 

 A3= R10.R21 

 A4= R11.R22 

 A5= R11.R23 

Eqn. (5.7) 
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We know from our algorithm that the total Mental Health risk at the top of the tree, in 

GRiST is of the form (See Chapter Three, iARRIVE algorithm) : 

     Risk = M = A1.m1 + A2.m2 + A3.m3 + A4.m4 + A5.m5 

Eqn. (5.8) 

Now, for a sub tree of A1 and A2, assume the total MG would be m12,  

      m12 =R30.m1 + R31.m2 

Eqn. (5.9) 

Now to find the threshold of m12 that makes the total risk higher than certain 

threshold M, assuming the rest of the values are average (m3 to m5), we can rewrite 

the above equation as (see Chapter 3, iARRIVE algorithm): 

    M = m12.R22.R10 + A3.m3 + A4.M4 + A5.m5 

Eqn. (5.10) 

 Let: 

    A20= R22.R10 

Eqn. (5.11) 

 To find the minimum m12 (call that BP20) that satisfies Eqn. (5.10): 

 

    
20

A5.m5  A4.M4  A3.m3 - M
20

A
BP  

Eqn. (5.12) 
 

That is the threshold value above which the risk would most probably be above the 

high threshold M, set by the experts.   So if during a questionnaire, after answering m1 

and m2, m12 is larger than BP20, then there is a high probability that the total risk M 

would be high even without knowing the answers to the rest of the questions. 

In general, to calculate the break points of any node in the tree, we can generalize 

the above equation: 

 

  
xy

ii

xy
A

mAM
BP

.
  

Eqn. (5.13) 
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 where:   xyi BPm  subtree. 

and 
 

      hjxy RIA  

Eqn. (5.14) 
  
  As a generalization, M would be BP00. (Total Risk threshold Break Point), and is 
supplied by the experts. 
 
 
 

5.4 Predicting Inputs 

We have analyzed above the situation where one or more of the input values are 

missing, and how we were able to predict cut off points (BP) which would give a rough 

indication of the total risk (not the actual value).   But it would be useful to find a 

method of predicting the value of the total risk, even though some inputs are missing, 

that is applying the GRiST classification algorithm but with missing values that are 

supplied via prediction.  Predicting the error in that calculation would be greatly 

beneficial too.   

To do this, we need a method to predict the values of the missing data, based on 

analysis and association from previous cases.    Several methods have been 

developed to do this, starting with the simple mean method, on towards AI methods.   

In the following sections we introduce the application of a couple of these methods to 

our algorithm.  

  5.4.1 Using the Mean  

This is classed as intelligent substitution, as described in Section 5.2.  The missing 

values mi are substituted with their statistical average, m`i.  To calculate m`i, we use 

previously known cases, or expert opinions.  We also calculate the standard deviation 

of each m`i.   let that be σi. 

The total M for a GRiST tree where mi are known and mi‟ are missing would be: 

    
i

iitt mAmAM `..   

Eqn. (5.15) 
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     where t is an index spanning the known values at input level (leaf nodes),  and i is 
the index of leaf nodes with missing values with the mean value substitute in them. 
 
 where: ξ is the error due to using m`i. 
   
Let M` be the calculated risk with the known values, thus: 
 

     tt mAM .`  

Eqn. (5.16) 
 So: 
 

  
i

ii mAMM `.`  

Eqn. (5.17) 
The maximum error we should get on average, would be σi, thus the maximum error in 
M would be: 
 

  
i

iiA .  

Eqn. (5.18) 
 Hence the Maximum Percentage Error (MPE) would be: 
 

  100

.

%
M

A
i

ii

 

Eqn. (5.19) 
 

So, we can actually calculate the percentage error based on the missing data. 

We can now take this a step further and calculate the error associated with each 

input.  That is, the error in M if a certain input was missing and substituted by its 

average, m`i. 

This would be very useful in determining the important inputs or questions.  The 

higher the error associated with missing a question‟s data, the more important that 

question is to the decision process.  Thus we can analyze the structure of the tree, and 

order the questions by their importance.  This would give an insight into the nature of 

the tree through the data.    Questions can be given weights and priorities, thus guiding 

the clinicians‟ clues to the important ones, which should not be missed in analysis.   It 

will also help us study in depth the psychological model underpinning GRiST. 

To determine the errors associated with each input or question, (Figure 5.2), we use 

the above error equation, assuming only one question was left out, for that specific 

input.  Hence from Figure 5.2, we get: 
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  100
.

% 11
1

M

A
 

  100
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% 22
2

M

A
 

  100
.

% 33
3

M

A
 

  100
.

% 44
4

M

A
 

  100
.

% 55
5

M

A
 

Eqn. (5.20) 
 

   We can also calculate the complement, which would be the accuracy of the algorithm 
in calculating M given missing inputs, which would be: 
 
    %M= 100 - %ξ 

Eqn. (5.21) 
  This would indicate the accuracy of the results. 

 

 
Figure 5.2: Errors associated with missing inputs. 
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5.4.2 Using Correlation 
  

In statistics, correlation (often measured as a correlation coefficient, ρ) indicates the 

strength and direction of a linear relationship between two random variables [EDWA, 

76].   That is in contrast with the usage of the term in colloquial speech, which denotes 

any relationship, not necessarily linear. In general statistical usage, correlation or co-

relation refers to the departure of two random variables from independence. In this 

broad sense there are several coefficients, measuring the degree of correlation, 

adapted to the nature of the data [BRUC, 72]. 

In our case it would be interesting to see if any of the inputs to the tree are related or 

correlated in any way.      

In the previous Figure 5.2, for example, if we know that inputs m2 and m4 are 

always equal; then if m2 is missing, we can always substitute m4=m2 and avoid any 

missing data.  This will not only give us an accurate result in the prediction, but could 

also save time, as we can then avoid asking one of the questions (inputs) all together.  

This will reduce redundancy and make our process more efficient.  It will also give us a 

better insight into the GRiST tree and the various dependencies in the data and 

structure.   This is similar to principal component analysis [EDWA,76], but whereas in 

our case one can work on every input, principal component analysis only works on the 

top correlated sets (sets with highest correlations).   

Correlation is one measure we can use to do this.   It gives an indication of the 

relationship between each two inputs of the GRiST questionnaire.  Thus we can see 

which inputs are related, or correlated, or behave in a similar way.  This information 

could then be used to substitute the missing input or remove that question from the 

input all together as it may be redundant in the first place. 

In case of a small number of inputs, e.g. two, this could be visually checked by plotting 

them and checking if they follow a trend.  Figure 5.3 shows several sets of (x, y) points, 

with the correlation coefficient of x and y for each set. Note that the correlation reflects 

the noisiness and direction of a linear relationship (top row), but not the slope of that 

relationship (middle), nor many aspects of nonlinear relationships (bottom). N.B.: the 

figure in the centre has a slope of 0 but in that case the correlation coefficient is 

undefined because the variance of Y is zero. 

A correlation coefficient is obtained by dividing the covariance of the two variables 

by the product of their standard deviations [EDWA, 76].  
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Figure 5.3: Different Correlation Coefficient values and their meaning [WIKI,11] 

 

 

   The correlation coefficient ρX, Y between two random variables X and Y with 

expected values (mean) μX and μY and standard deviations σX and σY is defined as: 

 

 

Eqn. (5.22) 

Or: 

Since μX = E(X), σX
2 = E[(X - E(X))2] = E(X2) − E2(X) and likewise for Y, and since 

E[(X − E(X))(Y − E(Y))] = E(XY) − E(X)E(Y), we may also write: 

 

Eqn. (5.23) 

Using correlation in estimating the missing values could be important as we show 

later, as variables with strong correlation can be used to substitute each other‟s values. 

 

5.4.2.1 The Coefficient of Determination 

Another important measure for dependency between two variables is the coefficient 

of determination [EDWA, 76]. 
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The coefficient of determination is the ratio of the explained variation to the total 

variation [SHEL, 72].     It has a value between 0 and 1.   It represents how strong two 

variables are linearly associated.   That is, 0.9 means that 90% of the data is close to 

the line of best fit, or the regression line represents the data in 90% of the cases 

reasonably. 

 

5.4.2.2 The Correlation Matrix 

In the case of higher dimensions (as in GRiST, with almost 200 inputs), the number 

of possible combinations is huge (the factorial of 198), hence we need the correlation 

coefficient matrix as a formal method to indicate dependencies and trends within the 

inputs. 

To deduce this, we first need to look at the covariance and covariance matrix. 

The covariance between two random variables X and Y, with means     

and    is defined as [PLAC, 60 ] : 

 
Eqn. (5.24) 

where E is the Mean operator. This can also be written as: 

 
Eqn. (5.25) 

Or alternatively 

 
 

Eqn. (5.26) 
 

Random variables whose covariance is zero are called uncorrelated. 

If entries in the column vector: 

 
Eqn. (5.27) 
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X are random variables (in our case, GriST inputs at leaf nodes), each with a finite 

variance, then the covariance matrix Σ is the matrix whose (i, j) entry is the covariance: 

 
Eqn. (5.28) 

Where: 

 
Eqn. (5.29) 

is the expected value (mean) of the ith entry in the vector X. In other words, we have 
[BRUC, 72]: 

 
 

Eqn. (5.30) 

 The covariance matrix alongside Eigen Vectors are the basis of Principle 

Component Analysis, which is used widely in pattern recognition techniques and trend 

analysis [EDWA, 74].    When n is very large, the matrix is very useful in storing the 

data and provides an easy access technique.  It is built in many commercial software 

packages (e.g. using Matlab). 

Hence the correlation matrix, from the definition of correlation, would be: 

     

xnxnxxnxxn

xnxxxxx

XnXnCovXXnCovXXnCov

XnXCovXXCovXXCov

),(
...........

)2,()1,(
...................................................

........................................................

),1(
.............

)2,1()1,1(

21

12111

 

Eqn. (5.31) 
 
 
 
 
 
 

5.4.2.3 The Correlation Matrix for GRiST 
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Analysis of the Correlation matrix of the inputs to GRiST will give us an indication of 

the hidden relationships between the various variables (inputs) and thus redundancies 

and tendencies within the data.   This will enable us to substitute missing data or even 

refine the tree structure based on the findings.  Redundant questions can be pruned 

and inputs can then be predicted. 

Variables with high positive values for correlation are the ones of interest, as this 

indicates a linear relationship in the same direction (i.e. increase together and 

decrease together).   The Correlation Coefficient always has an absolute value of less 

than one.    

To obtain the correlation matrix for a sample GRiST tree, we use the example 

shown in Figure 5.4. 

 
Figure 5.4: A sample GRiST tree with MG inputs A1 to A5. 

 

A1 to A5 represent matrices of various test cases (i.e. various patients) to the 

knowledge tree.  We now need to find the Correlation matrix for that tree.  To do this, 

we need to use equation 5.31.  We need to calculate the correlation between each two 

inputs, i.e.: Corr(m1,m2) , Corr(m1,m3) ,,…etc. 
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This will give us: 
 

)5,5()4,5()3,5()2,5()1,5(

)5,4()4,4()3,4()2,4()1,4(

)5,3()4,3()3,3()2,3()1,3(

)5,2()4,2()3,2()2,2()1,2(

)5,1()4,1()3,1()2,1()1,1(

mmmmmmmmmm

mmmmmmmmmm

mmmmmmmmmm

mmmmmmmmmm

mmmmmmmmmm

 

Eqn. (5.32) 
Where: 
 

)()()()(

)(*)()*(),(
),(

2222 myEmyEmxEmxE

myEmxEmymxEmymxCov
mymx

mymx

 

Eqn. (5.33) 
 
 

 5.4.2.4 An Example 

We will now demonstrate the above with a practical example, using a very simple 

sample tree.   Consider the inputs of the tree in Figure 5.5 below, with five different test 

cases, to the three inputs, m1, m2, m3.    The input cases matrices are A1, A2, A3 

respectively. 

Where: 
 

7.0

4.0

5.0

6.0

3.0

1A    ,    

8.0

5.0

6.0

7.0

4.0

2A    ,    

5.0

1.0

3.0

4.0

2.0

3A  

Eqn. (5.34) 
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Figure 5.5:  A sample tree with three inputs (m1,m2,m3) and five test cases. 
 
 
The Correlation matrix will be on the form: 
 

       
)3,3()2,3()1,3(

)3,2()2,2()1,2(

)3,1()2,1()1,1(

mmmmmm

mmmmmm

mmmmmm

 

Eqn. (5.35) 
Now: 

    
)()()()(

)(*)()*(),(
),(

2222 myEmyEmxEmxE

myEmxEmymxEmymxCov
mymx

mymx

 

Eqn. (5.36) 
We need to find, E(m1), E(m2), E(m3), and all the various combinations.   The results 
using MS Excel are shown in Table 5.2. 
 
An example is shown below: 
 

       
)2()2()1()1(

)2(*)1()2*1(
)2,1(

2222 AEAEAEAE

AEAEAAE
mm  

 

                         = 1
02.0

02.0

36.038.025.027.0

6.0*5.032.0
 

Eqn. (5.37) 
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This is an expected result, as we deliberately choose the data to be correlated to show 
the results graphically. 
 
  Note that:      
 
    1),( xx  

Eqn. (5.38) 
By calculating the rest of the entries, the Correlation matrix for this example would be: 
 

19.09.0

9.011

9.011

 

Eqn. (5.39) 
 
 

Set A1 A2 A3 A1*A2 A1*A3 A2*A3 
       

Case 1: 0.3 0.4 0.2 0.12 0.06 0.08 

Case 2: 0.6 0.7 0.4 0.42 0.24 0.28 

Case 3: 0.5 0.6 0.3 0.3 0.15 0.18 

Case 4: 0.4 0.5 0.1 0.2 0.04 0.05 

Case 5: 0.7 0.8 0.5 0.56 0.35 0.4 

       

E( ): 0.5 0.6 0.3 0.32 0.168 0.198 

       

Var( ): 0.025 0.025 0.025 0.0306 0.01667 0.02092 

       

StD( ): 0.158114 0.158114 0.158114 0.174929 0.129112 0.144637 

       

Corr( ):    1 0.9 0.9 

       

Det ( ):    1 0.81 0.81 

   
Table 5.2:  Results of calculating the various coefficients. 

 
Table 5.2 shows some basic calculations and the relationship between the different 
coefficients for the example shown above.  Most Mathematical software packages 
provide these functions; the table was constructed using MS Excel. 
 
 
 



 
School of Engineering and Applied Science 

 

 

                                                                                                  
S. E. Hegazy                                                                                              PhD Thesis 

134                                                                   

5.4.3 An Algorithm for Predicting Inputs by Correlation (APIC) 

   

This was a simple straight forward example, where a clear correlation is present 

between A1 and A2.   This means that A1 follows A2 in trend, but not in value.   So A1 

and A2 are dependent.   A1<>A2.  

This means there is a relationship between the values of A1 and A2.   In other 

words, a formula should exist describing A1 in terms of A2 or vice versa.  

The above matrix also shows a certain relationship between A3 and both A1 and 

A2, although it is not as strong.   This is clearer from the value of the Coefficient of 

determination, R2 (A2,A3) = 0.81 

How do we use Correlation and Determination coefficients to predict missing inputs? 

The following section explains an algorithm for doing this. 

 

5.4.3.1 Induction 

 Let‟s assume the missing value in one of the data sets is A1.   The first step would 

be to find the variable (input) with the largest Correlation to A1.   In the above 

Correlation matrix, we simply look at the first row (A1), and find the maximum value.  

We need to ignore the diagonal values, as they are always equal to 1 (Correlation of a 

variable to itself).  

 The maximum value should be larger than a predefined threshold to assume 

enough correlation to justify dependency.   This is to be found based on the data and 

domain.   Typically, values above 0.5 are considered acceptable in statistical 

applications [DRAP, 98].     

  In the above example, the second value (representing the second column is the 

largest. Hence A1 is more strongly correlated to A2 than to any other variable in the 

inputs (in this example we only have three variables, but this could be n). 

 Now, we know that a strong relationship exists between A1 and A2, we need to find 

a formula that would describe this relationship.   If we do, then using any new input to 

the system, A2, we can predict the value of A1. 
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We will look at this problem from a different perspective.  Looking at the graphs 

representing each pair of the inputs, we can clearly see which ones have a trend.     m1 

and m2 clearly follow a line, which is consistent with our Correlation matrix findings. 

We thus can deduce the formula using curve fitting or more general, regression 

[CHAT, 77].  

The order of the fitting or the type of the fitting function is pretty much dependent on 

the data; this could be linear, or non-linear.  This requires knowledge of the domain and 

testing using different fitting functions to reach the ones that yield minimum error. 

To determine the best order to use, we need to run the regression algorithms 

several times using various orders and calculating the resulting interpolation error in 

each case.   This will give us the function best suited to that specific set of data or 

domain [DRAP, 98].  The stopping criteria will depend on the domain and statistical 

nature of the data.  This is illustrated later in the chapter. 

We demonstrate the algorithm using Linear Regression (or Polynomial Interpolation 

for the general case).   In this case, from the graph, it is obvious that the relationship 

between m1 and m2 is a linear one. 

 

 
 

Figure 5.6:  m1 versus m2 
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Figure 5.7:  m1 versus m3 
 
 

 
 

Figure 5.8:   m2 versus m3 
 
 

 

Using simple fitting algorithms (or complicated ones for higher order), we can 

calculate the formula coefficients. 

Matlab [MATLAB] and other mathematical software provide efficient functions to 

generate the parameters of the fitted curves using higher order Polynomial regression.    

m1 vs m3

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8

m1

m
3

Series1

m2 vs m3

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

m2

m
3

Series1



 
School of Engineering and Applied Science 

 

 

                                                                                                  
S. E. Hegazy                                                                                              PhD Thesis 

137                                                                   

It also provides functions to assess the quality of the fitted curves and parameter 

estimation errors. 

In our example: 

Assume the polynomial is of the form: 

          m2 = a+ b.m1 

Eqn. (5.40) 

Thus: 

 By applying polynomial fitting, we get: 

a= 0.1 

b= 1 

Eqn. (5.41) 

 Thus the relationship between m1 and m2 can be described as: 

m2 = 0.1 + m1 

Eqn. (5.42) 

Hence, if we have an input data set, with a missing m2, we can always calculate or 

predict the value of m2 using the above equation. 

The error resulting from the approximation of APIC can then be calculated as in the 

Mean method we presented in previous sections.  This is revisited in the next section. 

 A flowchart of the algorithm is shown in Figure 5.9. 
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Figure 5.9:  APIC Algorithm flowchart.  
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 We will assume a linear relationship between inputs for simplicity.    Analysis of 

different applications and different types of data/domains will give a better 

understanding of the nature of the required interpolation.   

The same algorithm can be applied with higher order regressions, which gives the 

flexibility to use this method depending on the nature of the data and the model in 

hand.   The complexity of the algorithm will be of order n2 
as the calculation of the 

correlation matrix will need to go through al the pair combinations of input. 

 

5.4.3.2 Estimation Errors in APIC 

The algorithm above presents an acceptable solution to the problem of missing data 

at the leaf node level (inputs).   The output of the algorithm will be a viable substitution 

of the missing input with a justifiable prediction.   

It is important however, to present the user with an indication about how the 

obtained output might differ from what would have been obtained had there been no 

missing data in the first place.    To do this, we calculate the average error resulting 

from substituting the missing input with a predicted one. 

For a specific input of the tree (leaf node) MG, assuming M‟ is a vector representing 

the different outputs obtained using prediction (i.e. removing the actual value and 

replacing it with a predicted one), and M is the actual output  vector using the original 

value, then the percentage error in output would be: 

 

  100

'

1

1

n

i

n

i

Mi

MiiM

                

Eqn. (5.43) 

 Where i=1 to n, n represents the number of available training test cases. 

The above formula should be calculated for all inputs, so that we have an error 

estimator for each missing output based on prediction. 

The result of APIC would be two vectors:  a Formula Vector (FV), associating a 

formula with each missing input and an Error Vector (EV) associating an error estimate 

with each predicted input.  
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5.4.3.3 Case study 

 In this section, we demonstrate the algorithm with a more realistic numerical 

example, and show the effect of using different regression orders on the accuracy of 

the result.   We use ten different cases as an input. 

 The R-Squared coefficient shown in Table 5.3 is an indicator of the quality of the 

Regression process, so the higher the value of R-Squared, the better the polynomial 

would describe the given data set.  This will lead in turn to a better prediction, when the 

function obtained is used to predict the missing outputs. 

The first step is to check the Correlation of the input sets, and determine the best 

related two inputs.  In this case, it is A1 and A2 with maximum correlation of 

Corr(A1,A2)= 0.715626.  See Table 5.3.   

The table also contains some other statistics like the Standard deviation and Mean. 

This is confirmed by examining graphs 5.10 to 5.13 (the line represents the linear 

trend of the graph, just as a guide to show how scattered the points are). 

The next step is to use multiple regression to find a formula that describe the 

relationship between A1 and A2.   Figure 5.13 show the result using different orders for 

the regression polynomial.     It is clear that the higher the order of the polynomial; the 

better the regression result is (R-squared is larger) [KLEI, 98].  In practice, second or 

third order polynomials usually yield acceptable results with reasonable computational 

overhead [DRAP, 98]. 

In real life examples, as we will demonstrate later in this chapter, first order or linear 

regression may be sufficient, as the improvement in the Determination Coefficient is 

negligible with higher orders. 
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Set A1 A2 A3 A1*A2 A1*A3 A2*A3 
       

Case 1: 0.1 0.2 0.1 0.02 0.01 0.02 

Case 2: 0.2 0.1 0.5 0.02 0.1 0.05 

Case 3: 0.3 0.2 0.7 0.06 0.21 0.14 

Case 4: 0.4 0.3 0.4 0.12 0.16 0.12 

Case 5: 0.5 0.6 0.8 0.3 0.4 0.48 

Case 6: 0.6 0.4 0.1 0.24 0.06 0.04 

Case 7: 0.7 0.7 0.3 0.49 0.21 0.21 

Case 8: 0.8 0.6 0.2 0.48 0.16 0.12 

Case 9: 0.9 0.4 0.8 0.36 0.72 0.32 

Case 10: 1 0.5 0.5 0.5 0.5 0.25 

       

       

E( ): 0.55 0.4 0.44 0.259 0.253 0.175 

       

Var( ): 0.091667 0.04 0.071556 0.03841 0.049046 0.020672 

       

StD( ): 0.302765 0.2 0.267499 0.195985 0.221462 0.143778 

       

Corr( ):    0.715626 -0.02077 0.015684 

       

Det ( ):    0.512121 0.000431 0.000246 

 
 

Table 5.3:  A sample input set. 
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Figure 5.10: m1 versus m2 
 

 
 

Figure 5.11: m1 versus m3 
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Figure 5.12: m1 versus m2 
 

 
 

Figure 5.13a: m1 versus m2 using first order regression. 
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Figure 5.13b: m1 versus m2 using second order regression. 
 

 
 

Figure 5.13c: m1 versus m2 using third order regression. 
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Figure 5.13d: m1 versus m2 using fourth order regression. 
 

 

5.4.3.4 APIC and Analysis of the Tree 

The above example showed us a very important aspect of the algorithm we have 

presented.    Not only can the algorithm give an indication of the missing values, but it 

would be very useful in analyzing the tree structure itself. 

Knowing, for example that m1 is linearly correlated to m2, we can actually reduce 

the tree inputs, by omitting m2 and using the correlation formula to generate m2 

through the m1.    

This could dramatically reduce the number of user inputs to the tree, thus reducing 

the overall error of the decision making process. 

This would provide a good tool for analysing the tree and not only predicting missing 

inputs.   It is hence useful both in the training stage as well as the decision support 

stage.  Eventually this could lead to restructuring the tree based on the data, which 

could act as a feedback algorithm.   This is beyond the scope of this work and can be 

addressed in future work. 
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4.4.3.5 APIC and iARRIVE 

We have demonstrated how the APIC algorithm can be used to predict some of the 

missing inputs with a certain error margin.    We can now extend the use of the 

algorithm, to be used in conjunction with iARRIVE to populate some of the missing data 

in the original training set.   This means, using APIC in the pre-processing and training 

stage as well as the Decision support stage. 

Assume we start with a basic training set, called the seed.   This seed may not be 

complete itself, meaning some of the inputs may be missing across the samples.   We 

can argue that although some of the inputs are missing, we can still obtain a starting 

point solution for the RI calculation using iARRIVE by using APIC to replace the 

missing inputs. 

The initial RI values will contain errors, but over time, and by adding new data to the 

system incrementally (using iARRIVE), this error will eventually dilute and converge 

towards zero.   This is an inherent property in multiple regression and curve fitting, as 

the far or erroneous points tend to lose their impact on the overall trend the larger the 

number of points used in the regression [DRAP, 98]. 

The APIC will need to be modified though, as we won‟t have the luxury of picking 

the most correlated pair out of all possible combination of the inputs in all the cases.   

Only the cases with complete inputs to the variable in question are paired.  In other 

words, only the inputs that have corresponding values in the various test cases.   An 

example is shown in table 5.4. 

When calculating the correlation between Input1 and Input2 for example, only the 

cases with corresponding entries in both inputs are used (highlighted in Table 5.5).     

The same applies when calculating the correlating between Input1 and Input3 for 

example (Table 5.6).   
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Test Case Input1 Input2 Input3 Input4 Input5 

1 0.3 0.4  0.6  

2 0.2  0.6 0.3 0.1 

3 0.5 0.2 0.4  0.3 

4  0.5 0.2 0.6 
0.4 

5 0.6 0.8 0.3 0.4 
 

6 0.4 0.5   0.7 

7 0.7 0.2 0.5 0.5 0.4 

8   0.6  0.3 

9 0.4 0.6  0.4  

10 0.5 0.3  0.2  

11  0.7 0.3 0.8  

12 0.6    0.5 

 
Table 5.4 :    A sample training set. 

 
 

 

Test Case Input1 Input2 Input3 Input4 Input5 

1 0.3 0.4  0.6  

2 0.2  0.6 0.3 0.1 

3 0.5 0.2 0.4  0.3 

4  0.5 0.2 0.6 0.4 

5 0.6 0.8 0.3 0.4  

6 0.4 0.5   0.7 

7 0.7 0.2 0.5 0.5 0.4 

8   0.6  0.3 

9 0.4 0.6  0.4  

10 0.5 0.3  0.2  

11  0.7 0.3 0.8  

12 0.6    0.5 

 
Table 5.5:  The cases used for correlating Input1 and Input2. 

 
 

This will inevitably mean that some correlations will be calculated using fewer and 

different test cases than others.   In the case of Input1 and Input2, we have seven 

viable cases (1,3,5,6,7,9 and 10), whereas in case of Input1 and Input3 we only have 

four (2,3,5 and 7).  (Note that in our real life training set, presented in the Results 

Chapter we have over 700 test cases). 
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Test Case Input1 Input2 Input3 Input4 Input5 

1 0.3 0.4  0.6  

2 0.2  0.6 0.3 0.1 

3 0.5 0.2 0.4  0.3 

4  0.5 0.2 0.6 0.4 

5 0.6 0.8 0.3 0.4  

6 0.4 0.5   0.7 

7 0.7 0.2 0.5 0.5 0.4 

8   0.6  0.3 

9 0.4 0.6  0.4  

10 0.5 0.3 
 0.2  

11  0.7 0.3 0.8  

12 0.6    0.5 

 
Table 5.6:  The cases used for correlating Input1 and Input3. 

 
 

 This does mean that errors will be present at the training stage, firstly due to the 

inconsistent correlation calculation and secondly because of using APIC itself.   But in 

the absence of real values, this would be the only way forward.   And because the 

regression process will tend to smooth the curves or average the noise, it means 

entries that are far off or inconsistent will tend to be diluted and their effect will be 

minimized.  The larger the number of records the less the error becomes.  The overall 

error should eventually converge to zero as we add more training sets to iARRIVE. 

Another argument to support this approach is that the original seed itself, even if 

complete, may contain errors and inaccurate data.    As we have demonstrated in 

iARRIVE, the errors in the seed can even be exposed once the training of the initial RI 

calculations is complete (through the regression coefficient, R2). 

All in all, the various errors will dilute over time, and the more data we have; the less 

errors we will get. 
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5.4.3.6 Case Study 

In the following example, we demonstrate the application of APIC with more than 

two variables. 

In this example, we present a case study showing training data with several missing 

inputs at different input cases (rows) as in Table 5.7.    

The missing values are shown in shaded cells.  All calculations were performed 

using MS Excel 2007. 

We will extend APIC here to more than two variables, so we will analyse the 

relationship between two, three and four variables.  In order to be able to assess the 

strength of the relationship of more than two variables, we will be using the 

determination coefficient, r2, which works for two or more variables. 

This means that if only one variable value is missing in a row, we could potentially 

predict its value from the other two.   This will be possible as we will use multivariate 

Regression [KLEI, 98], [SHEL, 72] to find the formula that relates the missing variable 

to the other two. 

If two values are missing, then we could only use the value of the remaining variable 

in the row to predict the missing value. 

So, in effect, we need to generate a table with all the formulas connecting a variable 

(in this example A) with all other combinations of the one, two and three variables.    

We also need to judge the relationship strength using the r2 coefficient. 

We need to find:  A= f(B),  A= f(C),  A = f(D), A= f(B,C), A= f(C,D) , A= f(B,D), and 

A= f(B,C,D). 

The table can then be used to predict the missing A value, depending on which 

other values are present.   It is clear from the table that the missing data is randomly 

chosen, so some rows (input cases) have one or two values. 

In order to apply APIC, we need to use only complete rows for the regression analysis 
first:  So if we are analysing the relationship between A and B, we will only use rows 
with A and B present.    We use multiple linear Regression to generate the formulae 
that link A with B, C and D and all their combinations.   We have explored higher order 
regression, but the improvement was not significant and did not justify the complexity of 
the process (as in Figures 5.14 to 5.16). 
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A B C D 

1 2 4 53 

2 3 7 50 

3 6 6 52 

4 7 12 48 

5 11 17 33 

6 13 21 29 

7 12 19 44 

8 13 26 52 

9 20 29 18 

4 9 11 26 

7 14 9 33 

2 5 8   

8 17   37 

5 13 15 43 

7 12 19 51 

  6   24 

9   20 44 

6 15 9   

4 9 8 20 

1   4 48 

  5 8 41 

4 10 12 49 

  15 6   

7 11 26 46 

5 12   29 

  5 10 30 

6 11     

9 17 20 39 

1 3   29 

 
Table 5.7: Original inputs with missing data. 

 

 

The order of regression will depend on the data on hand and can be used as a 

tuning parameter which gives more flexibility to the algorithm. 
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A B 

1 2 

2 3 

3 6 

4 7 

5 11 

6 13 

7 12 

8 13 

9 20 

4 9 

7 14 

2 5 

8 17 

5 13 

7 12 

6 15 

  4 9 

4 10 

7 11 

5 12 

6 11 

9 17 

1 3 

   
SUMMARY 
OUTPUT 

 

  Regression Statistics 

Multiple R 0.933507 

R Square 0.871436 

Adjusted R Square 0.865314 

Standard Error 0.877982 

Observations 23 

 
A = 0.4755 B + 0.1519 

 
Figure 5.14a: Analysis of the relationship between A and B 
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Figure 5.14b: Analysis of the relationship between A and B using APIC in order 1, 2 
and 3. 
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A C 

1 4 

2 7 

3 6 

4 12 

5 17 

6 21 

7 19 

8 26 

9 29 

4 11 

7 9 

2 8 

5 15 

7 19 

9 20 

6 9 

4 8 

1 4 

4 12 

7 26 

9 20 

 

SUMMARY OUTPUT 

  Regression Statistics 

Multiple R 0.84015 

R Square 0.705853 
Adjusted R 
Square 0.690371 

Standard Error 1.428496 

Observations 21 

 
 

A = 0.2853 C + 1.1351 
 
 

Figure 5.15a: Analysis of the relationship between A and C. 
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Figure 5.15b: Analysis of the relationship between A and C using APIC in order 1, 2 
and 3. 
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A D 

1 53 

2 50 

3 52 

4 48 

5 33 

6 29 

7 44 

8 52 

9 18 

4 26 

7 33 

8 37 

5 43 

7 51 

9 44 

4 20 

1 48 

4 49 

7 46 

5 29 

9 39 

1 29 

   

SUMMARY OUTPUT 

  Regression Statistics 

Multiple R 0.176587 

R Square 0.031183 
Adjusted R 
Square -0.01726 

Standard Error 2.662701 

Observations 22 

 
 

A = -0.0426 D + 6.9639 
 

Figure 5.16a: Analysis of the relationship between A and D. 
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Figure 5.16b: Analysis of the relationship between A and D using APIC in order 1, 2 
and 3. 
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A B C 

1 2 4 

2 3 7 

3 6 6 

4 7 12 

5 11 17 

6 13 21 

7 12 19 

8 13 26 

9 20 29 

4 9 11 

7 14 9 

2 5 8 

5 13 15 

7 12 19 

6 15 9 

4 9 8 

4 10 12 

7 11 26 

 9 17 20 

     

Regression Statistics 

Multiple R 0.954692 

R Square 0.911438 

Adjusted R Square 0.900367 

Standard Error 0.74281 

Observations 19 

 
A=0.3469  B + 0.10777  C - 0.00242 

 
 
 

Figure 5.17: Analysis of the relationship between A, B and C using APIC. 
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A C D 

1 4 53 

2 7 50 

3 6 52 

4 12 48 

5 17 33 

6 21 29 

7 19 44 

8 26 52 

9 29 18 

4 11 26 

7 9 33 

5 15 43 

7 19 51 

9 20 44 

4 8 20 

1 4 48 

4 12 49 

7 26 46 

9 20 39 

 

Regression Statistics 

Multiple R 0.865372495 

R Square 0.748869555 

Adjusted R Square 0.71747825 

Standard Error 1.374804361 

Observations 19 

 
A=0.281247 X C - 0.0236 X D - 2.1163 

 
 

Figure 5.18: Analysis of the relationship between A, C and D using APIC. 
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A B D 

1 2 53 

2 3 50 

3 6 52 

4 7 48 

5 11 33 

6 13 29 

7 12 44 

8 13 52 

9 20 18 

4 9 26 

7 14 33 

8 17 37 

5 13 43 

7 12 51 

4 9 20 

4 10 49 

7 11 46 

5 12 29 

9 17 39 

1 3 29 

    

Regression Statistics 

Multiple R 0.957579049 

R Square 0.916957635 

Adjusted R Square 0.907187945 

Standard Error 0.746893096 

Observations 20 

 
A= 0.5205 B + 0.0454 D - 2.0438 

 
 
 

Figure 5.19: Analysis of the relationship between A, B and D using APIC. 
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A B C D 

1 2 4 53 

2 3 7 50 

3 6 6 52 

4 7 12 48 

5 11 17 33 

6 13 21 29 

7 12 19 44 

8 13 26 52 

9 20 29 18 

4 9 11 26 

7 14 9 33 

5 13 15 43 

7 12 19 51 

4 9 8 20 

4 10 12 49 

7 11 26 46 

9 17 20 39 

 
 
 

Regression Statistics 

Multiple R 0.960498932 

R Square 0.922558199 

Adjusted R Square 0.904687014 

Standard Error 0.724515184 

Observations 17 

 
 
 

A= 0.4191 B + 0.078349 C + 0.032946 D - 1.60792 
 
 

Figure 5.20: Analysis of the relationship between A,, B,  C and D using APIC. 
 
 
 
 
 
 
 

It is clear from the results (Table 5.8) that the more variable values are available, the 

better the quality of the prediction (R2).   
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We call these functions: the Prediction Functions (PF) of A.  We call table 5.8 the 

Prediction Table (PT). 

 

R2 Function Cases 

0.92255819 
A= 0.4191 B + 0.078349 C + 0.032946 D - 

1.60792 
17 

0.91695 A= 0.5205 B + 0.0454 D - 2.0438 20 

0.911438 A=0.3469 B + 0.10777   C - 0.00242 19 

0.8714 A = 0.4755 B + 0.1519 
23 

0.748869 A=0.281247  C - 0.0236  D - 2.1163 19 

0.7059 A = 0.2853 C + 1.1351 
21 

0.0312 A = -0.0426 D + 6.9639 
22 

 
Table 5.8:  The Coefficient of Determination for various estimators of A. 

 
 

In Table 5.9, we show the predicted values for A and the formulas used to generate 

them.  We use the highest possible formula in the table (i.e., with the largest 

Determination Coefficient – we sorted the PT based on that), that contains the largest 

number of variables (i.e. values) present in the current row.  This will ensure higher 

correlation and better prediction. 

In the final test example, we predict one of the existing A values (original values are 

bold in the first row in the table below), as a test case.   We use one, two and three 

variable to predict it, and it is clear that the larger number of known values means a 

better prediction and less error.   This agrees with our finding in the A table and the R2 

values associated with each formula.   

This is largely due to the fact that the error spreads and in cases cancels or at least 

reduces each other.   Also more variables mean more information. 

The same process should be repeated for B, C and D, resulting in PF‟s for all 

variables.  It is important to note that we need to conduct the analysis on B, C and D 

with the original data (i.e. with the missing values), otherwise we could influence the 

original data by our inferred values for A for example. 
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A B C D 
 1 2 4 53 
 2 3 7 50 
 3 6 6 52 
 4 7 12 48 
 5 11 17 33 
 6 13 21 29 
 7 12 19 44 
 8 13 26 52 
 9 20 29 18 
 4 9 11 26 
 7 14 9 33 
 2 5 8   
 8 17   37 
 5 13 15 43 
 7 12 19 51 
 2.1688 6   24 A= 0.5205 B + 0.0454 D - 2.0438 

9   20 44 
 6 15 9   
 4 9 8 20 
 1   4 48 
 

2.4632 5 8 41 
A= 0.4191 B + 0.078349 C + 0.032946 D - 
1.60792 

4 10 12 49 
 5.8477 15 6   A=0.3469 B + 0.10777   C - 0.00242 

7 11 26 46 
 5 12   29 
 

2.2581 5 10 30 
A= 0.4191 B + 0.078349 C + 0.032946 D - 
1.60792 

6 11     
 9 17 20 39 
 1 3   29 
  

Table 5.9: The predicted values of A using APIC and the corresponding Prediction 
Functions (PF) used for each. 
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8 13 26 52 Original Data 

     

7.5883 13 26 52 
A= 0.4191 B + 0.078349 C + 0.032946 D - 

1.60792 

7.0835 13   52 A= 0.5205 B + 0.0454 D - 2.0438 

6.3334 13     A = 0.4755 B + 0.1519 

8.5535   26   A = 0.2853 C + 1.1351 

 
Table 5.10:  Verifying the APIC on existing data. 

 
 

 The output of the APIC would be n Prediction Tables (PTs) representing all the 

variables in the input set.  These can then be used predict missing values in the initial 

training set, that is used to deduce the model, i.e. RI values. 

  These tables can then be used to predict missing values at the assessment stage 

too. 

  A simple flowchart of the process is presented in Figure 5.21. 
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Figure 5.21:  Complete APIC flowchart. 
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5.4.3.7 Analysis: 

the number of variables in the case of GRiST is very large at over 200.   This means 

the number of combinations is huge and the number of cases is likewise large (tens of 

thousands and increasing all the time).  This begs the question of when to stop adding 

cases or variable combinations?  To find the formula connecting a certain variable, A1 

with the rest, say A1 = f(A2, A3, ......, An) requires a certain number of complete input 

rows.   

The minimum number of complete rows needed to predict a formula using 

regression is equal to the number of variable used (n).     

It is clear from the examples n the previous section, that the larger the number of 

variables, the less number of complete rows will be available. 

This could be a challenge in real data where many cases are incomplete, especially 

in medical records.  This means that some combinations may be impossible to predict.  

In this case, we will need to get the formula for the next available combination in the 

table, with fewer variables.  E.g.: A1 = f(A2, A3, ...., A(n-1) ).  This is shown in Table 

5.8 in the previous section, where variable A can be found using several formulas of 

combinations on B, C and D, depending on the available data in the other three 

variables. 

The other issue would be the accuracy of the regression process:  This depends 

highly on the number of complete training cases used.    This means that one 

relationship or formula could be more accurate simply because of the higher number of 

cases involved in the regression process. 

On the other hand, a formula with less number of cases but a higher Determination 

Coefficient, i.e., stronger relationship, would mean a better prediction. 

Another factor would be the number of variables involved.  As we showed in the 

previous section, the more variables we have in the relationship, the more accurate the 

prediction would be.   

 It would be interesting to study the effect of the number of complete cases on the 

determination coefficient.  It would also be important to study the effect of the number 

of cases on the prediction and link to the number of variables.  The complexity of the 

algorithm will also depend on this analysis.   This is out of the scope of this work, and 

can be addressed in future work. 
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5.4.3.8 Error in results: 

The following error analysis is performed on the previous case study (5.4.3.6) .  

Table 5.11 shows the actual A values, and corresponding predictions using each of the 

formulae in Table 5.8.  

 

A A= F(B) A= F(C) A=F(D) A=f(B,C) A=f(C,D) A=f(B,D) A=f(B,C,D) 

1 1.1029 2.2763 4.7061 1.12246 1.990488 1.4034 1.289814 

2 1.5784 3.1322 4.8339 1.79267 2.905029 1.7877 1.845123 

3 3.0049 2.8469 4.7487 2.7256 2.576582 3.44 3.089966 

4 3.4804 4.5587 4.9191 3.71912 4.358464 3.7789 3.847376 

5 5.3824 5.9852 5.5581 5.64557 6.118699 5.1799 5.421331 

6 6.3334 7.1264 5.7285 6.77045 7.338087 6.0393 6.441143 

7 5.8579 6.5558 5.0895 6.20801 6.421593 6.1998 6.359535 

8 6.3334 8.5529 4.7487 7.3093 8.201522 7.0835 7.590646 

9 9.6619 9.4088 6.1971 10.06091 9.847663 9.1834 9.639229 

4 4.4314 4.2734 5.8563 4.30515 4.596417 3.8211 3.882415 

7 6.8089 3.7028 5.5581 5.82411 3.868723 6.7414 6.051839 

5 6.3334 5.4146 5.1321 6.12383 5.320205 6.6749 6.432293 

7 5.8579 6.5558 4.7913 6.20801 6.256393 6.5176 6.590157 

4 4.4314 3.4175 6.1119 3.98184 3.894276 3.5487 3.449692 

4 4.9069 4.5587 4.8765 4.75982 4.334864 5.3858 5.137622 

7 5.3824 8.5529 5.0043 6.6155 8.343122 5.7701 6.55477 

9 8.2354 6.8411 5.3025 8.05028 6.82084 8.5753 8.368654 

 
Table 5.11:  The actual values of A versus predicted values using APIC. 

 

Note that in order to test the formulae we only used the complete rows (or inputs) in 

the original input set. 

Table 5.12 shows the absolute errors between the corresponding sets.  Table 5.13 

then shows the calculated relative error in each cell, compared to the actual values of 

A.   This is then used in each column (i.e. formula) to calculate the average relative 

error for each of the formulae, and the results are shown in Table 5.14. 

It is clear that the results are consistent with the original Determination Coefficients 

in Table 5.8, with minor deviations.   Which is logical, as the better the fit, the less the 
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error.  The best result on average was using A=f(B,C,D), with average relative error of 

11%.  This may sound high, but due to the small number of input parameters (only 

four) and the relatively small number of input test cases (in GRiST we have over 2000 

test cases), this level of error is acceptable. 

 With larger number of data sets, the error should be reduced as more data will be 

available for the regression and thus spikes of inconsistent data will have less weight in 

the total process.    

 

 

E1 E2 E3 E4 E5 E6 E7 

0.1029 1.2763 3.7061 0.12246 0.990488 0.4034 0.289814 

0.4216 1.1322 2.8339 0.20733 0.905029 0.2123 0.154877 

0.0049 0.1531 1.7487 0.2744 0.423418 0.44 0.089966 

0.5196 0.5587 0.9191 0.28088 0.358464 0.2211 0.152624 

0.3824 0.9852 0.5581 0.64557 1.118699 0.1799 0.421331 

0.3334 1.1264 0.2715 0.77045 1.338087 0.0393 0.441143 

1.1421 0.4442 1.9105 0.79199 0.578407 0.8002 0.640465 

1.6666 0.5529 3.2513 0.6907 0.201522 0.9165 0.409354 

0.6619 0.4088 2.8029 1.06091 0.847663 0.1834 0.639229 

0.4314 0.2734 1.8563 0.30515 0.596417 0.1789 0.117585 

0.1911 3.2972 1.4419 1.17589 3.131277 0.2586 0.948161 

1.3334 0.4146 0.1321 1.12383 0.320205 1.6749 1.432293 

1.1421 0.4442 2.2087 0.79199 0.743607 0.4824 0.409843 

0.4314 0.5825 2.1119 0.01816 0.105724 0.4513 0.550308 

0.9069 0.5587 0.8765 0.75982 0.334864 1.3858 1.137622 

1.6176 1.5529 1.9957 0.3845 1.343122 1.2299 0.44523 

0.7646 2.1589 3.6975 0.94972 2.17916 0.4247 0.631346 

 
Table 5.12: The absolute errors between actual and predicted values. 
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R1 R2 R3 R4 R5 R6 R7 

0.1029 1.2763 3.7061 0.12246 0.990488 0.4034 0.289814 

0.2108 0.5661 1.41695 0.103665 0.452515 0.10615 0.077439 

0.001633 0.051033 0.5829 0.091467 0.141139 0.146667 0.029989 

0.1299 0.139675 0.229775 0.07022 0.089616 0.055275 0.038156 

0.07648 0.19704 0.11162 0.129114 0.22374 0.03598 0.084266 

0.055567 0.187733 0.04525 0.128408 0.223015 0.00655 0.073524 

0.163157 0.063457 0.272929 0.113141 0.08263 0.114314 0.091495 

0.208325 0.069112 0.406413 0.086338 0.02519 0.114563 0.051169 

0.073544 0.045422 0.311433 0.117879 0.094185 0.020378 0.071025 

0.10785 0.06835 0.464075 0.076288 0.149104 0.044725 0.029396 

0.0273 0.471029 0.205986 0.167984 0.447325 0.036943 0.135452 

0.26668 0.08292 0.02642 0.224766 0.064041 0.33498 0.286459 

0.163157 0.063457 0.315529 0.113141 0.10623 0.068914 0.058549 

0.10785 0.145625 0.527975 0.00454 0.026431 0.112825 0.137577 

0.226725 0.139675 0.219125 0.189955 0.083716 0.34645 0.284406 

0.231086 0.221843 0.2851 0.054929 0.191875 0.1757 0.063604 

0.084956 0.239878 0.410833 0.105524 0.242129 0.047189 0.07015 
 

Table 5.13:  The relative errors between actual and predicted values for A. 
 
 
 
 
 
 
 

A= F(B) A= F(C) A=F(D) A=f(B,C) A=f(C,D) A=f(B,D) A=f(B,C,D) 

0.131642 0.236979 0.561083 0.111754 0.213727 0.127706 0.110145 
 

Table 5.14:  Average relative errors for each prediction function. 
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5.5 Summary 

 

In this Chapter, we have tackled the problem of missing data both at the training 

stage (induction) in iARRIVE and the decision stage.     This is a very important part of 

any decision support system, as data may be incomplete, inconsistent or both.    

We have introduced a method to predict missing inputs in a decision tree, APIC.  

We have used this algorithm and a variation of it using regression and the coefficient of 

determination to predict missing inputs both at the training stage and the decision 

support stage. 

We have conducted error analysis at the training stage as well as the decision 

support stage.    We have also calculated estimates for error due to missing inputs. 

In the next chapter, we present the results obtained using real patient data, from our 

GRiST system.  We applied the algorithms presented in the past few chapters on real 

data and presented an error analysis on the obtained results. 

 

 

 

 

 

₪    ₪    ₪ 
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Chapter 6 
Results 

 
 
 

 
 
 
 

 

This Chapter covers the following: 

 Introduction 

 Using Real Data  

 Data Description     

 Result Analysis 

 Error Distribution 

 Summary     
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6.1 Introduction 

 

  In previous chapters, the methodology and the development of iARRIVE algorithm 

were discussed, as well as some of the practical issues that might face the 

implementation of iARRIVE.  The Data Pre-processing Chapter covered some of the 

issues associated with missing values.  In this chapter, we apply those algorithms to 

real data obtained from GRiST.  

  The System has been implemented in MatLab, using the clinicians inputs, in both the 

elicitation stage (Membership Grades (MG) parameter elicitation) as shown in 

Appendix B, and the actual patient data (the answers to the patient questionnaires).   

  This chapter shows the results obtained through the system.  The implementation and 

code is presented in Appendix D. 

 

 

6.2 Using Real Data 

 

 The data used for the trial came from live databases currently used by NHS Mental 

Health trusts deploying GRiST in the UK. All patient records were anonymous because 

no patient identification information was stored in the tables and neither were there any 

derived data that could somehow be used to trace back to the patient. From the 

research perspective, then, these are completely abstract rows of patient cues linked to 

clinical risk judgements that have no real-world connection.  This is an important ethical 

feature and requirement by the trusts for data protection issues. 

 

 

6.3 Data Description 

 

  The available database of over 10,000 records had to be prepared and cleaned 

before the iARRIVE algorithm could be applied.   Data cleaning included discarding 

incomplete assessments and bad records.  Missing data is a problem as the learning 

algorithms presented in Chapter three (iARRIVE) require a complete set of variables to 

work on. 
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  Bad patient records include records with vital values missing (e.g. assessment date, 

patient‟s age) as well as missing Risk judgements (which are crucial for the learning 

algorithm because they represent the solution of the equation for the input cues).   

Techniques had to be used for some early screening through the database queries and 

tree structures to prune some of the bad records.  In Chapter 5, the APIC algorithm 

was presented to deal with the missing values problem.   An outline of the Data 

Cleaning process is presented in section 6.3.2 below. 

  After the data cleaning and pruning stage, to get to the best possible seed for 

iARRIVE algorithm, the outcome was that the data pool was reduced to 2000 records, 

and after elimination, 771 satisfactory patient records were used. 

 The Suicide Risk Tree was deployed for this trial.  Each record contained 184 

questions or leaf nodes, which represent the answers to the patient questionnaire.    

These are listed in table 6.1. 

 
Table 6.1:  The leaf nodes codes for Suicide Risk in the patient data sample. 

 

suic-most-rec_answer 

suic-first-occ_answer 

suic-how-many_answer 

suic-escalate_answer 

suic-planning_answer 

suic-note-prev_answer 

suic-discovery_answer 

suic-lethality_answer 

suic-ser-succd_answer 

suic-regret_answer 

suic-leth-insght_answer 

suic-plan-real_answer 

suic-plan-dtail_answer 

suic-steps-takn_answer 

suic-prosp-leth_answer 

suic-int-inform_answer 

suic-eol-prep_answer 

suic-pot-trig_answer 

suic-p-trig-mtch_answer 

suic-id-control_answer 

suic-id-hi-risk_answer 

suic-id-freq_answer 

suic-id-strngth_answer 

insight-resp_answer 

gen-distress_answer 

gen-jealous_answer 

gen-plans-future_answer 

gen-life-not-livng_answer 

grandiosity_answer 

worthlessness_answer 

gen-motivation_answer 

gen-voice-hal_answer 

gen-paranoid-del_answer 

gen-impaird-cog_answer 

gen-rsk-behavr_answer 

gen-unint-risk-behavr_answer 

gen-sleep-dist_answer 

gen-diet-eating_answer 

gen-diet-weigt-ext_answer 

gen-diet-weigt-chg_answer 

gen-diet-drink_answer 

gen-unusl-rec-bhvr_answer 

gen-chall-bhvr_answer 

gen-day-struct_answer 

gen-day-actvty-lev_answer 

gen-rapport_answer 

gen-responsve_answer 

gen-gut-assmnt_answer 

gen-relat-detr_answer 

gen-relat-detr-chg_answer 

gen-move-freq_answer 

gen-home-type_answer 

gen-isol-accom_answer 

gen-neigbrhd-rsky_answer 

gen-accom-hm-care_answer 

gen-accom-habitbl_answer 

gen-perc-debt-anx_answer 

gen-poverty_answer 

gen-job-chg-frq_answer 

gen-rec-bad-job-ch_answer 

gen-rsk-behavr_answer 

gen-unint-risk-behavr_answer 

gen-sleep-dist_answer 

gen-diet-eating_answer 

gen-diet-weigt-ext_answer 

gen-diet-weigt-chg_answer 

gen-diet-drink_answer 

gen-unusl-rec-bhvr_answer 

gen-chall-bhvr_answer 

gen-day-struct_answer 

gen-day-actvty-lev_answer 

gen-alc-misuse_answer 
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suic-rel-belief_answer 

sn-hair-clothes_answer 

sn-hygiene_answer 

sn-recnt-app-chnge_answer 

sn-skin_answer 

gen-sh-cuts_answer 

gen-rapport_answer 

gen-responsve_answer 

gen-gut-assmnt_answer 

gen-risk-aggrsv_answer 

gen-risk-upbeat_answer 

gen-coherence_answer 

gen-distrss-b-lang_answer 

gen-low-mood_answer 

gen-threat-move_answer 

gen-detached_answer 
gen-avoid-eye-
contact_answer 

gen-eye-movement_answer 

gen-congruence_answer 

suic-s-h-behv_answer 

suic-fam-hist_answer 

gen-mood-swings_answer 

gen-negative-self_answer 

gen-angry-emotns_answer 

gen-anx-emotns_answer 

gen-helpless_answer 

gen-sad_answer 

gen-distress_answer 

gen-jealous_answer 

gen-plans-future_answer 

gen-life-not-livng_answer 

grandiosity_answer 

worthlessness_answer 

gen-mood-swings_answer 

gen-negative-self_answer 

gen-angry-emotns_answer 

gen-anx-emotns_answer 

gen-helpless_answer 

gen-sad_answer 
 

gen-risk-aggrsv_answer 

gen-risk-upbeat_answer 

gen-coherence_answer 

gen-distrss-b-lang_answer 

gen-low-mood_answer 

gen-threat-move_answer 

gen-detached_answer 
gen-avoid-eye-
contact_answer 

gen-eye-movement_answer 

gen-congruence_answer 

gen-phys-withd_answer 

gen-mental-withd_answer 

gen-dep-stage_answer 

gen-mentl-insght_answer 

gen-mania_answer 

gen-voice-dang-s_answer 

gen-voice-dang-o_answer 

gen-prob-act-voice_answer 

gen-paran-del-spec_answer 

gen-paran-del-pers_answer 

gen-prob-act-par-del_answer 

gen-cog-think-mem_answer 

gen-concentr_answer 

gen-learn-disab_answer 

gen-assertive_answer 

gen-empathy-abil_answer 

gen-dependence_answer 

gen-controlling_answer 

gen-coping-abil_answer 

gen-hostile_answer 

gen-impulse_answer 

gen-reliable_answer 

gen-phys-withd_answer 

gen-mental-withd_answer 

gen-motivation_answer 

 

 

 
 

gen-drug-misuse_answer 

gen-insght-behvr_answer 

gen-resp-impct-oth_answer 

gen-nd-hlp-diff_answer 
gen-phys-hlth-deg-
diag_answer 

gen-phys-hlth-pain_answer 

gen-phys-hlth-disa_answer 

gen-com-imp_answer 

gen-phys-hlth-det_answer 

gen-meds-concord_answer 

gen-serv-perc-supp_answer 

gen-serv-last-acc_answer 

gen-med-perc-benft_answer 

gen-relat-detr-chg_answer 

gen-rec-bad-job-ch_answer 
gen-phys-hlth-deg-
diag_answer 

gen-sex-abse-last_answer 

gen-sex-abse-as-ch_answer 

gen-phys-abse-last_answer 

gen-phy-abse-as-ch_answer 

gen-emot-abse-last_answer 

gen-emo-abse-as-ch_answer 

gen-financial-abuse_answer 

gen-forensic-proc_answer 

gen-env-grew-up_answer 

gen-eating-dis_answer 

gen-educ-expr_answer 

gen-age_answer 

gen-gender_answer 

gen-marital-status_answer 

gen-accom-num-dep_answer 

gen-dep-ygnst-age_answer 

partner-share-acc_answer 

gen-accm-share-nd_answer 

gen-ethnicity_answer 
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  Mathworks MatLab [MATLAB] was used as the software tool to write functions to 

decode the data based on MG functions provided by the clinicians, and then 

concatenated using the MGM method to find the MG distributions (See Chapter 3: 

Methodology and Appendix B), and constructed MG decoding tables. (See Appendix D, 

Code). 

  The data was then processed through iARRIVE and results were mapped to the 

corresponding RI data nodes. 

  In total 264 Relative Influence (RI) values were calculated using iARRIVE (the 

required parameters for the GRiST tree), samples of which are shown in Table 6.2. 
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Table 6.2: Some RI codes and values as obtained through iARRIVE. 
 
RI (Child Node Code) Value RI (Child Node Code) Value 

'sui-specific' 0.606124 'gen-risk-upbeat' 0.01168 

'suic-past-att' 0.23874 'gen-coherence' -0.11421 

'suic-occur' 0.378099 'gen-body-face' 0.05991 

'suic-most-rec' 0.723837 'gen-distrss-b-lang' 0.262224 

'suic-patt-att' 0.276163 'gen-low-mood' 0.122345 

'suic-first-occ' 0.030976 'gen-threat-move' 0.247395 

'suic-how-many' 0 'gen-detached' 0.675741 

'suic-escalate' 0.969024 'gen-eyes' -0.3077 

'suic-prep-serious-at' 0.403698 'gen-avoid-eye-contact' 1.158217 

'suic-planning' 0.753293 'gen-eye-movement' -0.15822 

'suic-note-prev' -0.1029 'gen-congruence' 0.707489 

'suic-ser-method' 0.34961 'gen-eng-world' 0.091814 

'suic-discovery' 0 'gen-phys-withd' 0.057365 

'suic-lethality' 1 'gen-mental-withd' 0.942635 

'suic-person-per' 0.218203 'gen-dep-stage' 0 

'suic-thght-prev' 1.552644 'gen-ser-mentl-ill' 0.023203 

'suic-ser-succd' 0.98832 'gen-mentl-insght' 1.943942 

'suic-regret' 0.01168 'gen-mntl-cur-sympt' -0.94394 

'suic-leth-insght' -0.55264 'gen-mania' 0.006366 

'suic-curr-sit-behav' 0.576298 'gen-voice-hal' 0.797625 

'suic-curr-int' 0.285192 'gen-voices-type' 0.030976 

'suic-plans' 0.590171 'gen-voice-dang-s' 0.98832 

'suic-plan-real' 0.723837 'gen-voice-dang-o' 0.01168 

'suic-plan-dtail' 0.008555 'gen-prob-act-voice' 0.969024 

'suic-steps-takn' 0 'gen-paranoid-del' 0.196009 

'suic-prosp-leth' 0.267609 'gen-type-paranoid-del' 0.731781 

'suic-int-inform' 0.474671 'gen-paran-del-spec' 0.98832 

'suic-eol-prep' -0.06484 'gen-paran-del-pers' 0.01168 

'suic-int-p-trig' 0.271298 'gen-prob-act-par-del' 0.268219 

'suic-pot-trig' 0.681865 'ment-fac' 0.060473 

'suic-p-trig-mtch' 0.318135 'gen-impaird-cog' -0.61372 

'suic-ideation' 0.44351 'gen-cog-think-mem' 0.98832 

'suic-id-control' 0.401986 'gen-concentr' 0.01168 

'suic-id-hi-risk' 1.097995 'gen-learn-disab' 1.61372 

'suic-id-freq' -0.5339 'gen-personality' -0.02257 

'suic-id-strngth' 0.033918 'gen-assertive' 0.870153 

'suic-bhvr-const' 0.332884 'gen-empathy-abil' 0.835195 

'insight-resp' 0.568532 'gen-dependence' 0.097702 

'suic-rel-belief' 0.431468 'gen-controlling' 1.853626 

'suic-app-behvr' -0.2576 'gen-coping-abil' 0.354964 

'suic-phys-indic' 0.049272 'gen-hostile' -2.32981 

'sn-appearnce' 0.554234 'gen-impulse' -1.66238 

'sn-hair-clothes' 0.723837 'gen-reliable' 0.980552 

'sn-hygiene' 0.008555 'motive-eng' -0.04439 

'sn-recnt-app-chnge' 0 'gen-eng-world' 0.547588 

'sn-skin' 0.267609 'gen-phys-withd' 0.98832 

'gen-sh-cuts' 0.445766 'gen-mental-withd' 0.01168 

'gen-presentation' 0.950728 'gen-motivation' 0 
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6.3.2 Data Cleaning 
 
 In an ideal world, all the patient records would be complete and the algorithm will use 
the data as it is to calculate the RI values.   This however, is almost never the case, 
especially with pilot and test systems such as GRiST and in a complicated clinical 
environment.  As part of the work, the following measures were used as guidelines for 
cleaning the data prior to the simulation process. 
  For a start, some of the patients records may be incomplete due to being unfinished, 
as the assessments could take several days or weeks.   On the other hand, some 
records may be awaiting feedback or test results.  These records can be called normal 
but incomplete.   These will not be used in our sample pool. 
  The records that have data missing after the case has been closed can be referred to 
as incomplete.  This causes a big problem, as the level of incompleteness varies from 
a few minor missing fields to vital data fields that will require eliminating the whole 
record from the test data pool.   Two main types of incompleteness were identified in 
the data used in this trial:  Major and minor. 
  In chapter 5, the APIC algorithm was presented as one way of dealing with missing 
data.  This however, should not be applied on key data fields as the error margins 
could increase significantly and result in loss of accuracy.  This is called Major void.   
These are fields that are crucial for the RI calculation process.  If one of these fields is 
missing, the whole record is deemed invalid for this trial.  An example of that would be 
the missing Risk Judgement, patient‟s date of birth and assessment date.  These are 
all vital fields for the decoding process, and the iARRIVE, and if missing the record is 
considered invalid. Experts need to identify these fields and this information is then 
used in the cleaning process. 
  The number of missing fields in a record also represents a measure for how corrupt 
the record is.   This is the second measure for corruption used, provided no Major 
corruption is present.   It is referred to here as Minor void.   This number is very 
subjective and will depend on the nature of the data and its sensitivity.  This should be 
separately studied by the Clinical experts for each of the GRiST sub trees.  This is out 
of the scope of this work.   Basically, the more data missing, the less accurately you 
can predict them from the present data, and as a broad guide, any records with less 
than half of its data missing is considered invalid. 
  After these fields are identified, database queries had to be modified to return only the 
„good‟ records.  In this case, SQL was used.  The data was then imported into MS 
Excel, and converted into the right CSV (Comma Separated Variables) format.  The 
CSV file was used as the source for MatLab, representing the data matrix.   Missing 
value algorithms (APIC) and Membership Grade (MG) defuzzifaction or decoding were 
also implemented in MatLab.  This is presented in Appendix D: Code.   The final stage, 
was the iARRIVE, which was implemented as part of the MatLab environment as well. 
MatLab [MATLAB] was chosen as the preferred mathematical tool, especially when 
dealing with complex matrix operations and regression, as in the case of this trial. 
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6.4 Results Analysis 
 
 
  In this section, analysis of the obtained results is presented, which was performed in 
spread sheet (MS Excel).   We evaluate the performance of the iARRIVE algorithm on 
real data.  This includes the error analysis of the Risk prediction system based on the 
newly obtained RI.   For comparison the results are presented in terms of the actual 
judgement compared to the judgement obtained using the new RI parameters 
calculated by iARRIVE. 
  We have used some of the seed to test the results, i.e., using the calculated RI values 
to predict risk judgements for known cases from the seed.   This is due to the fact that 
we need good or acceptable records for the testing.  Being a hierarchical structure, any 
missing data affects the overall decision, and we need to use reasonable records for 
testing.  The seed used for training was the best available, so it made sense to use it.    
 
 We used the ten fold cross validation on a data set of 700 records, divide into ten sets 
of 70 records each and cross validated.  This was performed using MatLab software 
[MATLAB].  The results are shown in averages across the sets.    The errors are then 
calculated and presented in graph formats.   
  The error is analysed as a Normal Distribution and some statistics are produced 
based on this assumption.  This is a valid assumption and is widely used in statistical 

analysis of real life systems. [DIXO, 83].    This is used for illustration purposes and 

the actual distribution of the error could be the subject of future work.    
Figure 6.1 shows the actual risk judgements on the X-axis plotted against the 
calculated judgements using iARRIVE on the Y-axis.  Note that each actual risk has 
several calculated ones on the Y-axis.  This is due to the fact that several actual cases 
could share the same risk value, but when estimated using the calculated RI 
parameters, they are bound to vary slightly due to errors and approximations. 
  The trend line on the graph shows how accurate is the overall representation of the 
GRiST system using the new calculated RI values in representing the original data, and 
thus the clinical expertise.   The optimum would be at y=x , which would be at a 45 
degree angle, with zero offset.  This would only happen if the outcome exactly mirrors 
the inputs.  In this trial, the trend line is  trailing at R2=0.439, which means the fit has a 
tendency towards linearity, and the predictions follow the original risks.   
  The errors in general are quite high, due to the small sample size and the fact that 
these test cases were assessed by more that one clinicians.  This means that the 
original data itself is not consistent.   However, even with these issues in mind, the 
errors are within acceptable limits as shown later.  
  Figure 6.2 shows the absolute error distribution in the sample.  The X-axis 
represented the case numbers (patient records) and the Y-axis represents the absolute 
error in predicting that case, i.e., the difference between the predicted and the actual 
risk value.     The horizontal trend line shows the average error overall, which stands at 

1.178326 .   .    It is also clear from the graph that most errors are less than 2. 

    Figure 6.3 does the same as figure 6.2, except it uses Relative error instead.  The 
average relative error sits at 0.420951. 
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Figure 6.1 : Actual Risk Judgements vs calculated/ predicted judgements using 
iARRIVE. 
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Figure 6.2: Absolute Error distribution across the training set. 

The line represents the average at  1.178326. 
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Figure 6.3: Relative Error distribution across the training set.  The line represents the 
average at 0.420951 
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  Figure 6.4 shows the absolute error distribution across the sample.  For example, 
27% of the predicted values have an absolute error between 0.5 and 1.  In other words, 

they will deviate from the actual value by d, where 0.5<d<1. 
  Figure 6.5 summarizes figure 6.4, and shows that 84% of the predicted values have 
an absolute error of less than 2, and 16% have an absolute error of more than 2. 
 
 

 
 

Figure 6.4: Absolute Error distribution across the test sample.   
 
 

 
 

Figure 6.5: Distribution of absolute error in the training set, given in the % of the 
predicted values. 
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6.5 Error Distribution 
 
  As mentioned above, the Error is assumed to have a Normal Distribution.   This is a 
valid assumption and is widely used in statistical analysis of real life systems. 

[DIXO,83].      In this case, the properties of a normal distribution can be used to 

analyse the results in a formal way.  Figure 6.6 shows several Normal distributions with 
their associated parameters. 
 
The function that describes any Normal Distribution is: 
 

                             (6.1) 

where μ is the mean and σ 2 is the variance. The distribution with μ = 0 and σ 2 = 1 

is called the standard normal.  [DIXO, 83]  

 

 
Figure 6.6: Normal Distribution properties based on its parameters [WIKI, 11]. 

 
  Figure 6.7 shows the actual distribution of error in this trial, based on the following 
parameters, which were obtained from the previous section based on analysing the 
results: 
 

Parameter Description Value 

μ Average Error   1.178326 
σ Standard Deviation 1.114911 
n Sample size (Cross Validation, 10 fold) 700 

 
 

http://en.wikipedia.org/wiki/File:Normal_Distribution_PDF.svg
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Figure 6.7:  The Error represented in a Normal Distribution form. 
 
 
  Note that the average error is not zero, hence the graph in Figure 6.7 is shifted to the 
right.   This is the standard graph for a normal distribution and therefore inherits all its 
properties. 
  From the properties of the Normal Distribution, about 68% of values drawn from a 
normal distribution are within one standard deviation σ away from the mean (Dark area 
in Figure 6.8, in the middle); about 95% of the values lie within two standard deviations 
(lighter area); and about 99.7% are within three standard deviations. This fact is known 

as the 68-95-99.7 rule, or the empirical rule, or the 3-sigma rule.  [EDWA, 74].  
 
 

 
 

Figure 6.8:  The probabilistic distribution of Data in a Normal Distribution [WIKI,11]. 
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In this case, this means: 
 
 68.2 % 0f the absolute errors will be between:      

  ( 1.178326 + 1.114911)   and  ( 1.178326 - 1.114911)    
 
Or:  
              2.293237  and  0.063414 
 
   And 95.4% of the errors will be between:   3.408148 and  -1.0515 
 
The above is illustrated in the charts in Figure 6.9. 

 
 
 

 
 
 

Figure 6.9: Probable Percentage of errors in Confidence Intervals of 1*SD (right) and 
2*SD (left).  SD is Standard Deviation, in this case equals 1.114911. 

 
 
 This is acceptable in GRiST, as the classes of assessment judgement have a gab of 2 
between them on the classification scale [BUCK,07], which starts at 0 (no risk) and 
ends at 10 (maximum risk).   Risk is divided into five classes between 0 and 10, and 
each class occupies 2 partitions.  See figure 6.10.   This means that the new classifier 
is likely to produce a correct classification.   
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Figure 6.10:  The GRiST Risk classification scale. 
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Performance Analysis of GRiST: 
 
It is important to put the results into perspective in the context of Clinical Decision 
making.   As GRiST relies on classification of the risk into areas (as above), we need to 
asses the systems performance in terms of assessing the real life cases.  The problem 
would arise if the clinician assesses a case as high risk, but GRiST produces a low or 
medium diagnosis.  On the other hand, if the system gives a high risk diagnosis 
(value), and the clinician assesses the case as low risk, then there is considerable 
discrepancy.   This section illustrates the system‟s performance on the test data out of 
this perspective.    The problem arises when some cases produce an error greater than 
two and lie on the border between a high and medium risk, or low and medium (as in 
Figure 6.10).  We call these critical or border line cases. 
 
Total number of test cases:    700  Cross validated, 10-fold. 
Mean  Absolute Error:    1.178326 
Total number of Cases with absolute Error above 2 :     110     ( 16%) 

- Out of those: 
A. Number of Cases Clinically above 7 but GRiST predicted under  7:     18    

( 2.6% of the total number of cases) 
B. Number of Cases Clinically below 5 but GRiST predicted above 5:     21  

(3% of total) 
Cases A and B are demonstrated in Figure 6.11. 
 
 

 
Figure 6.11: The system performance in real life situations, showing impact on 

clinicians decision. 
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6.6 Summary 
 
 
 
  This Chapter presented the results obtained from a system implementing our 
algorithms along with the error analysis associated with these results.  The trial used 
10,000 patient records that were pruned and cleaned to produce a satisfactory seed for 
the RI calculations  The results show that the classification error margins on the real 
patient data was acceptable and confirms that the iARRIVE method is a very promising 
solution for the parameter elicitation problem in a hierarchical knowledge structure such 
as the GRiST tree.   The results were satisfactory   despite the issues with the real data 
discussed in previous chapters, such as missing values, inaccurate inputs and the 
general inconsistency of the data.   Analysis of the results in the case of GRiST shows 
the iARRIVE to be a suitable solution for the system.  This is based on the 
classification requirements for GRiST.  These thresholds and error margins may differ 
for other systems, but the algorithms we presented are flexible and adaptable enough 
to accommodate various adjustments as to suit the system requirements. 
  The incremental nature of the algorithm means new data can be easily used to adjust 
the parameters and reduce error margins on the long run.  
  Our algorithms have been theoretically verified in Chapter 3, Methodology and in this 
chapter; we have tested them on real data obtained from the GRiST patient records.   
The system has also incorporated experts‟ opinions, as described in Chapter 4, Data 
Conditioning.  This yields an extremely desirable and rare combination in Clinical 
Decision Support Systems (CDSS):  expert opinions coupled with learning from the 
data.  Our algorithms have achieved this. 
  The values of the errors have been discussed and were found within acceptable limits 
for our domain of application.  It is however inevitable to have errors and in some cases 
medium to large, due to the fact that the data was supplied by more than one clinician, 
which makes the point of reference different for the different records, and as clinical 
judgement in mental health is a matter of opinion. 
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Chapter 7 
Conclusions  
and Future Work 
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7.1 Conclusions 

 

In this work, we have tackled the problem of parameter elicitation and knowledge 

representation in complex hierarchical structures.    The application domain is Clinical 

Decision making, namely the GRiST Risk Screening Tool, which assesses the risk 

associated with mental-health problems.   This is a very complex problem, in which the 

lack of data and information about the actual decision making process makes it subject 

to speculation.  GRiST, however, is based on psychological analysis conducted over 

five years in collaboration with over 100 experts in the mental-health field.  The actual 

data used for testing in this work, was supplied by 44 experts in our data input 

sessions. 

GRiST models human expertise in a fuzzy-set system that has a multitude of 

parameters for weighting influences of branches in the tree. The research has explored 

ways of learning those weights from the data and explored the problems.   The system 

combines automated parameter learning with human input to create the decision tree. 

We have explored the problems associated with approximation, missing data and 

errors resulting from each scenario.   This is inevitable in any real life system.   It is 

particularly evident in the clinical decision making domain. 

We have also applied some of our algorithms on real data, and we have developed 

our own software to gather and condition the data collected. 

We have explored some of the challenges associated with real patient data, such as 

the quality of the data and the missing data problems.   All the data is supplied by 

clinicians, which means human error is inevitable.  We have explored ways of verifying 

the data and excluding the odd sets that are way off the trend.   This means that the 

pre-processing stage is extremely important as the new more accurate data set 

produced from pre-processing will inevitably produce a better learning result than the 

original set provided by clinicians.   We have presented methods and algorithms to do 

this.  We call this the data cleaning stage. 

The missing data problem was the second problem in the pre-processing stage.  

Many of the records provided by clinicians contained missing fields.  This may have 

been due to errors in input, or unavailable data.  This problem had to be dealt with as it 
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will severely affect the results of the RI calculations and could lead to an unsolvable 

problem.   We have presented algorithms and methods to deal with this specific 

problem.  

We also considered the advantages of exploring the results of RI elicitation in re-

shaping the tree and streamlining the model.  Some of the tree branches may become 

redundant or obsolete and others may rise in importance.  This will provide an 

important insight into the tree structure and dynamically improve the representation of 

expertise using the actual data.  This is very powerful as in the case of GRiST for 

example; the tree has over 250 different nodes.   In our test data, we used a subtree 

with 184 leaf nodes. 

We have published four IEEE papers based on this work and one journal paper.   

One of our papers [HEGA, 08] won the Best Paper award at the conference. 

 

7.2 Future Work 

 

In this work, we have presented a way of eliciting parameters based on the GRiST 

decision support system.  The methods and algorithms presented here however, can 

be easily adopted for other knowledge engineering domains.  Future work may include 

extended error analysis of the elicitation and consensus algorithms, exploring the 

possibility of combining probabilities into the system, and the effect of having more data 

on the overall convergence process and error margins.   Using probabilities would 

extend the system‟s ability to model more complex data and thus may give a better 

understanding of the parameter elicitation process in real life.  

Another possible field would be exploring the relationships within the tree and 

eliminating redundancy automatically.    This could lead into self organizing GRiST 

trees and the introduction of formal optimization parameters that can be used to judge 

the quality of a certain tree or combination.  For example, using the RI values, and the 

standard deviation of each or a group of values in a sub tree, could indicate the quality 

of the subtree.  If the deviation is high, that could mean that that subtree requires 

further analysis or pruning.  In some cases, a tree could end up as a branch, with one 

node, which eliminates the rest of the nodes due to their insignificance.  
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Some of the mathematical and statistical methods used in our algorithms and 

methods could be extended.  This could mean further error analysis and optimization of 

the results.  For example using higher order non-linear models for regression in our 

APIC algorithm could be one avenue.  This might produce more accurate results if the 

original data was non-linear.  To identify the type of model more suited for the data, 

more statistical analysis on the data need to be conducted. 

A further possible area for research could be further exploring the semantic 

representation of the results and linking back to the original model and clinical 

expertise which will be a form of self-evaluation of GRiST.    This would be evident in 

our MGM algorithm for obtaining meaningful consensus while adhering to the semantic 

restriction posed by the clinicians in terms of minima and maxima of the inputs. 

The error calculations we presented in some areas of this work could be explored in 

more detail.   Comprehensive error analysis would be very beneficial to assess not only 

the full potential of this work, but to determine the quality of the original data provided 

by clinicians.  This could be used as an assessment tool to check the quality and 

consistency of the clinical data provided by clinicians.  Any inconsistency can then be 

challenged and fed back to the clinicians and ultimately to the system.  This would 

create a system life cycle, and the system will learn and feedback which makes it a 

dynamic and adaptable system.    
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Appendix A 
 
GRiST Tree Structure 
 

 
 
 

 
 

 

 

  In this section, we present parts of the detailed structure of the GRiST tree, [BUCK, 

07].  The aim is to show the complicated semantics and structure that the system has 
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to elicit parameters for.  This work is concerned with the abstract representation of the 

tree, hence no further details were included. 

   

 
 

Figure  1 :  Mind map framework used to code risk knowledge from individual 
interviews. 

 
 
 

 
 

Figure 2. Part of the fully-expanded „„pattern of episodes‟‟ concept within suicide risk of 
the combined map.   Numbers after node names represent the identification numbers of 

different experts who mentioned the node. 
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Figure 3. Part of the combined-coding mind map for suicide risk, where the numbers 
after the node names represent the total number of different experts who mentioned 

that node or any of its subcomponents (nodes within rounded rectangles are concepts 
without their internal structure displayed). 
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Table I. Numbers of experts citing top-level risk components. 
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Appendix B 
 
Results 
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MGM Consensus Analysis   

In this section, we list some of the results we obtained from the MGM algorithm, 

applied to all MG, based on data supplied by 44 Clinicians using the online elicitation 

tool. 

We have opted for third order regression, as it best represented the set, although 

the analysis were conducted on the data using order one through five. 

In some cases the resulting MGM seems like a straight line, but this is due to the 

small variations in the original data.  We left it as it is to show that we have not 

approximated the MGM to a straight line, but it was the actual result of the algorithm. 

 As the original graphs supplied by our online tool were saved as a collection of 

lines, this posed a problem for the regression operation.   The lines were described 

only by their start and end points, with no actual equations.  This meat that each expert 

graph could have different number of points depending on the number of lines they 

used to describe the MG graph.  This makes it difficult to store in our database too.  So 

the tool had to interpolate the lines an generated the line equations, then resample 

each graph at a set step (and in turn frequency) to get the same number of sampled 

points per expert for the same MG.   This ensures that each expert has the same 

weight in the regression process and that the system is fair. This is because in order to 

perform the MGM and the regression; all the point from all experts for a certain MG 

have to be combined into one graph as one set.  If one expert had more points on that 

graph, this would affect the regression and that expert will have more influence or pull 

on the MGM.   This ensures that at each point X there will be n Y values, where n is the 

number o experts in that trial. 

   The functions are then concatenated using MGM, using an automated tool that we 

developed by performing regression on the overall set of points.   The sampling step is 

one of the tuning parameters that can be adjusted for more accurate concatenation.  It 

depends on the shape and the complexity of the original functions.   In this trial, we 

have used a step of 0.5 which was sufficient. 

The graphs were pre-pre-processed and sampled using our tool before being 

concatenated using MGM in MS Excel.   It is in third order polynomial regression, as 

second order was not sufficient to represent the dramatic change due to a small 

number of the experts disagreeing with the rest, which meant that the overall pool of 
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points has been split into what looks like two different graphs.    Fourth order did not 

present much improvement over the third order.  

MG Label:     abuse to the person-most recent episode of physical abuse 

MG Code:     gen-phys-abse-last 

 

 
Start: (0,0.98)                         End: (24,0.2)                     Max.: (0, 0.98) 

 

Comment Clinician No. 

0.5 at 24 14 
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0.2 at 24 18 
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NOT ANSWERED` 30 

people are so different and we can generalise, so question not 
answered 

41 

min 0.1, 0.7 at 24 5 

0.4 at 24 9 

y = 1E-05x3 - 0.0006x2 - 0.0257x + 0.9758
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MG Label:     abuse to the person-most recent episode of emotional abuse 

MG Code:     gen-emot-abse-last 

 

 
 

Start: (0,0.99)                         End: (24,0.2)                     Max.: (0, 0.99) 
 

Comment Clinician No. 

0.7 at 1 14 

0.8 at 24 16 

0.5 at 24 18 

More recent more risky 22 
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recent - not done 

4 
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MG Label:     abuse to the person-most recent episode of sexual abuse 

MG Code:     gen-sex-abse-last 

 
 

 
 

Start: (0,0.99)                         End: (5,0.3)                     Max.: (0, 0.99) 
 

Comment Clinician No. 
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MG Label:    age of youngest dependent  

MG Code:     gen-dep-ygnst-age 

 
 

 
 

Start: (0,0.97)                         End: (18,0)                     Max.: (0, 0.97) 
 

Comment Clinician No. 

 

 
Note:  No Datum was given,, in Expert 0.    Not all experts elicited this one. 
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MG Label:    age-harm to others or damage to property 

MG Code:      N/A 

 

 
 
Start: (12,0)                         End: (50,0.13)                     Max.: (25, 0.98) 

 

Comment Clinician No. 

0.3 at 12, 0.2 at 50 16 

Query impact - not done 5 
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MG Label:    age-risk to dependents 

MG Code:       N/A 

 

 
 

Start: (18,0.08)                         End: (50,0.16)                     Max.: (30,0.88) 
 

Comment Clinician No. 
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MG Label:    age-self neglect 

MG Code:       N/A 

 

 
 

Start: (15,0.04)                         End: (80,1)                     Max.: (80,1) 
 

Comment Clinician No. 

0.1 at 15 16 

not relevant 18 
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MG Label:     age-self-harm 

MG Code:       N/A 
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Comment Clinician No. 

0.8 at 60 14 
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MG Label:     age-suicide 

MG Code:       N/A 

 

 
 

Start: (15,0.48)                         End: (80,1)                     Max.: (80,1) 
 

Comment Clinician No. 
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MG Label:     age-vulnerability of service user 

MG Code:       N/A 

 

 
 

Start: (18,1)                         End: (78,1)                     Max.: s+e 
 

Comment Clinician No. 

0.5 at 48 12 

0.2 at 48 16 

not relevant 18 
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no min 0.1 at 48 5 
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MG Label:     current intention to commit suicide-level of detail and clarity of 

suicide plan 

MG Code:       suic-plan-dtail 

 

 
 

Start: (0,0.054)                         End: (10,0.98)                     Max.: (10,0.98)       
                

Comment Clinician No. 

not relevant 17 

NOT ANSWERED 29 

not asked in error 38 

Depends on individual. Some people are meticulous planners, some 
aren't. Not answered. 

42 
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MG Label:     demographics-age of youngest dependent 

MG Code:       gen-dep-ygnst-age 

 

 
 
Start: (0,0.98)                         End: (17.8,0)                     Max.: (0,0.98)       

                

Comment Clinician No. 

0.1 at 18 18 

  

 
  

y = -0.0001x3 - 0.0008x2 - 0.0045x + 0.9801
R² = 0.9626
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MG Label:     demographics-number of dependents 

           MG Code:       gen-accom-num-dep 

 

 
 

Start: (0,0.066)                         End: (8,0.93)                     Max.: (8,0.93) 
 

Comment Clinician No. 

skipped - depends on ages,support,resources 12 

not relevant 18 

can not isolate from other factors so would not answer 41 

0=0.5 1=0.3 8=0.2 0.5 at 0 5 

  

 
  

y = 1E-16x3 - 2E-15x2 + 0.1084x + 0.066
R² = 0.7533
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MG Label:     demographics-number of non-dependents sharing 

accommodation 

           MG Code:       gen-accm-share-nd 

 

 
 

Start: (0,0)                         End: (5,1)                     Max.: (5,1) 
 

Comment Clinician No. 

not relevant END HERE 12 

0.5 at 5 END HERE 14 

not relevant END HERE 18 

Not relevant, not answered End here 20 

End here 22 

THIS WAS THE LAST QUESTION 28 

interview ended here 37 

could not isolate from other factors so could not answer interview 
ended here 

41 

0=0.5 2=0.3 5 

  

 
 

Note: Graphs overlap, as Experts agreed with original. 
  

y = 0.2x + 3E-16
R² = 1
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MG Label:     harm or damage-first time a destructive act against property 

occurred? 

           MG Code:   hto-first-time-destructive-ep 
 

 
 

Start: (0,0.81)                         End: (5,0.19)                     Max.: (0,0.81) 
 

Comment Clinician No. 

0.4 at 5 17 

No more or less. If it happens often, it should have been addressed, 
so highlights fault in system. So not answered.  END HERE 

42 

0.3 at 5 5 

Makes no difference - not done 6 

  

 
  

y = -0.0007x3 + 0.005x2 - 0.132x + 0.8115
R² = 0.3877
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MG Label:     harm or damage-first time animal abuse occurred 

           MG Code:   hto-first-time-animal-ep 
 

 
 

Start: (0,0.917)                         End: (10,0.13)                     Max.: (0,0.917) 
 

Comment Clinician No. 

Skipped - no experience 11 

0.8 at 10 17 

Need to know why, not answered 21 

10 YEARS WAS PLACED AT 0.4 BUT WE HAD TO PLACE AT 
ZERO 

26 

not answered 40 

0.3 at 10 5 

No difference, all maximum 6 

Equally concerned - not done 8 

 
  

y = -8E-05x3 + 0.0014x2 - 0.0854x + 0.9171
R² = 0.5846
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MG Label:     harm or damage-first time emotional episode of harm to others 

occurred 

           MG Code:   hto-first-time-emotional-ep 
 

 
 

Start: (0,0.54)                         End: (10,0.45)                     Max.: (0,0.54) 
 

Comment Clinician No. 

Equal 17 

could not isolate from other factors so would not answer 38 

Depends on mental health at the time of first episode. Harm can be 
indirect means of self-harming. Not answered. 

42 

0.1 at 10 5 

0.2 at 10 6 

  

 
  

y = 0.0001x3 - 0.0023x2 + 0.0013x + 0.543
R² = 0.0092
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MG Label:     harm or damage-first time fire-setting episode occurred 

           MG Code:   hto-first-time-fire-setting-ep 
 

 
 

Start: (0,0.91)                         End: (5,0.13)                     Max.: (0,0.91) 
 

Comment Clinician No. 

0.5 at 5 11 

0.8 at 5 17 

Not interested in ANY first time questions, not answered 19 

5 YEARS SHOULD BE PLACED AT 0.2 BUT WE HAD TO SET AT 
ZERO 

26 

not answered 40 

0.3 at 5 5 

No difference, all maximum 6 

Equally concerned - not done 8 

 
  

y = 0.0012x3 - 0.0102x2 - 0.1326x + 0.9111
R² = 0.578
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MG Label:     harm or damage-first time sexual assault occurred 

           MG Code:   hto-first-time-sexual-ep 
 

 
 

Start: (0,0.87)                         End: (10,0.2)                     Max.: (0,0.87) 
 

Comment Clinician No. 

0.5 at 10 17 

0.3 at 10 23 

SHOULD BE LINKED TO NUMBER OF OCCURENCES 10 YEARS 
SHOULD BE PLACED AT 0.4 BUT HAD TO BE PLACED AT ZERO 

26 

not answered as could not isolate other factors 40 

0.5 at 10 5 

Makes no difference, maximum at all points 6 

  

 
  

y = 0.0001x3 - 0.003x2 - 0.0525x + 0.8723
R² = 0.4328

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12

Experts

Original

Poly. (Experts)



 
School of Engineering and Applied Science 

 

 

                                                                                                  
S. E. Hegazy                                                                                              PhD Thesis 

224                                                                   

MG Label:     harm or damage-first time violent episode of harm to others 

occurred 

           MG Code:   hto-first-time-violent-ep 
 

 
 

Start: (0,0.82)                         End: (5,0.22)                     Max.: (0,0.82) 
 

Comment Clinician No. 

equal not relevant 17 

5 YEARS SHOULD BE SET AT 0.2 BUT WE HAD TO SET AT ZERO 26 

NOT ANSWERED, THIS WAS THE LAST QUESTION 29 

clinician wasn't sure so did not want answer 38 

If repeating harm to particular person, why? Command hallucination 
perhaps? 

42 

0.5 at 5 5 

  

 
 

 
 

  

y = 0.0004x3 - 0.0081x2 - 0.088x + 0.8173
R² = 0.3409
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MG Label:     harm or damage-how many harm or damage episodes 

           MG Code:   hto-number 
 

 
 

Start: (0,0)                         End: (8,1)                     Max.: (8,1) 
 

Comment Clinician No. 

END HERE 13 

  

 
  

y = 0.0005x3 - 0.0095x2 + 0.1714x - 0.0063
R² = 0.9046
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MG Label:      harm or damage-most recent destructive act concerning 

property 

            MG Code:   hto-recent-destructive-eps 
 

 
 

Start: (0,1)                         End: (12,0.04)                     Max.: ( 0,1) 
 

Comment Clinician No. 

0.4 at 12 10 

0.5 at 12 11 

0.3 at 12 17 

not answered 40 

0.3 at 12 5 

Scale should be a couple of years,0.5 at 12 8 

 
  

y = -3E-05x3 + 0.0004x2 - 0.0808x + 1.0013
R² = 0.8559
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MG Label:      harm or damage-most recent episode of animal abuse 

            MG Code:   hto-recent-animal-eps 
 

 
 

Start: (0,1)                         End: (12,0.03)                     Max.: ( 0,1) 
 

Comment Clinician No. 

0.4 at 12 10 

0.6 at 12 11 

0.5 at 12 17 

0.7 at 12 19 

TWO YEARS WAS SET AT 0.2 BUT WE HAD TO SET AT ZERO 26 

not answered 40 

0.3 at 12 5 

No difference, all maximum 6 

Equally concerned - not done 8 

  

 
  

y = -5E-05x3 + 0.0009x2 - 0.0824x + 1.0008
R² = 0.8478
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MG Label:      harm or damage-most recent episode of emotional harm to 

others 

            MG Code:   hto-recent-emotional-eps 
 

 
 

Start: (0,1)                         End: (24,0)                     Max.: ( 0,1) 
 

Comment Clinician No. 

0.3 at 24 10 

0.2 at 24 17 

LAST QUESTION INTERVIEW ENDED HERE 32 

0.8 at 24 34 

could not isolate from other factors so would not answer 38 

couldn't answer 40 

Not asked. 42 

0.1.at 10 5 

Scale should be 5 years, 0.5 at 24 6 

  

 
  

y = -2E-06x3 + 0.0001x2 - 0.0438x + 1.0007
R² = 0.9788
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MG Label:      harm or damage-most recent episode of fire setting 

            MG Code:   hto-recent-fire-setting-eps 
 

 
 

Start: (0,1)                         End: (24,0.05)                     Max.: ( 0,1) 
 

Comment Clinician No. 

0.5 at 24 10 

0.5 at 24 11 

0.5 at 24 17 

2 YEARS WAS PLACED AT 0.2 BUT WE HAD TO PLACE AT 
ZERO. 

26 

not answered 40 

0.3 at 24 5 

No difference, all maximum 6 

Equally concerned - not done 8 

  

 
  

y = -3E-06x3 + 0.0001x2 - 0.0411x + 1.002
R² = 0.8822
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MG Label:      harm or damage-most recent episode of sexual assault 

            MG Code:   hto-recent-sexual-eps 
 

 
 

Start: (0,1)                         End: (24,0.06)                     Max.: ( 0,1) 
 

Comment Clinician No. 

0.3 at 24 10 

0.6 at 24 24 

0.4 at 24 17 

0.5 at 24 23 

TIMESCALE SHOULD BE 24 MONTHS, 2 MONTHS AT 0.4 BUT 
WAS PLACED AT ZERO 

26 

Recency lasts until the episode has passed, and an episode can last 
any amount of time (note: clinician's definition of episode seems to be 
of mental instability than of sexual assault). So not answered. Drugs 
and other factors may have impact. We must be 

42 

0.5 at 24 5 

Should be 5 years, 0.8 at 24 6 

  

 
  

y = 3E-06x3 - 0.0002x2 - 0.0353x + 1.0012
R² = 0.8226

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Experts

Original

Poly. (Experts)



 
School of Engineering and Applied Science 

 

 

                                                                                                  
S. E. Hegazy                                                                                              PhD Thesis 

231                                                                   

MG Label:    harm or damage-most recent episode of violent harm to others   

            MG Code:   hto-recent-violent-eps 
 

 
 

Start: (0,1)                         End: (24,0.04)                     Max.: (0,1 ) 
 

Comment Clinician No. 

0.3 at 24 11 

0.1 at 24 17 

24 MONTHS SHOULD BE PLACED 0.2 BUT WE HAD TO SET AT 
ZERO 

26 

interview ended here 38 

need to look at the time frame again so not answered 40 

Not asked. 42 

0.5 at 24 5 

Difficult because mental health could have improved over time, 0.5 at 
5 

6 

  

 
  

y = -5E-06x3 + 0.0002x2 - 0.0412x + 1.0034
R² = 0.9061
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MG Label:      self harm-first time self-harm episode occurred 

            MG Code:   sh-first-time-ep 
 

 
 

Start: (0,0.89)                         End: (24,0.1)                     Max.: ( 0,0.89) 
 

Comment Clinician No. 

0.5 at 24 17 

Not answered 19 

COULD NOT ISCOLATE OTHER FACTORS SO DID NOT ANSWER 29 

could not isolate from other factors so would not answer 38 

Not asked. 42 

0.1 at 30 5 

  

 
 
  

y = 3E-06x3 - 0.0003x2 - 0.0264x + 0.8867
R² = 0.5963
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MG Label:      self harm-how many self-harm episodes 

            MG Code:   sh-number-eps 
 

 
 

Start: (0,0.53)                         End: (20,0.95)                     Max.: ( 20,0.95) 
 

Comment Clinician No. 

0.8 at 20 17 

COULD NOT ISCOLATE OTHER FACTORS SO DID NOT ANSWER 29 

NOT ANSWERED 32 

0.9 at 0 34 

any self harm attempt could be very risky, so number of attempts not 
relevant - would not answer 

38 

must be looked at in conjunction with time frame so not answered 40 

Same amount of risk either way. If clinician knows the reason for 
single self-harm episode, then could be prevented if treated well. 
Depends on seriousness of self-harm. So not answered.42 

42 

No difference-not done 8 

  

  

y = 8E-05x3 - 0.003x2 + 0.0722x + 0.0534
R² = 0.6768
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MG Label:      self harm-most recent self-harm episode 

            MG Code:   sh-most-rec-ep 
 

 
 

Start: (0,1)                         End: (30,0.02)                     Max.: (0,1) 
 

Comment Clinician No. 

 0.2 at 30 scale up to 6 months 10 

Month is long enough for recency 11 

Not sure, not answered 19 

0.7 at 30 34 

would need to know why self harm occured, so would not answer 38 

could not put a time scale on it so not answered 40 

Hard question to answer. Too dependent on other factors. After all, 
change in behaviour could be a seasonal thing. So not answered. 

42 

0.1 at 30 5 

Scale should go to 6 months, 1 at 30 6 

Scale should be a couple of months,0.5 at 6 months 8 

  

 
  

y = 2E-07x3 - 0.0001x2 - 0.0292x + 1
R² = 0.8462
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MG Label:    self harm-planning involved in self-harm episodes   

            MG Code:   sh-planning 
 

 
 

Start: (0,0.19)                         End: (10,0.84)                     Max.: (10,0.84 ) 
 

Comment Clinician No. 

Self harm generally less planned than suicide. Problem with 0 as 
covers all rest of population who will not self harm 

5 

  

 
  

y = 0.0005x3 - 0.0094x2 + 0.108x + 0.1889
R² = 0.3453
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MG Label:      self harm-self-harming to get help with difficulties 

            MG Code:   sh-for-hlp-diff 
 

 
 

Start: (0,0.64)                         End: (10,0.92)                     Max.: ( 10,0.92) 
 

Comment Clinician No. 

How do we know this - not answered 19 

NOT ANSWERED 29 

NOT ANSWERED 32 

Not possible to say what is a cry for help and what isn't - not 
answered 

34 

Any cry for help would be indicator of a fault in the system rather than 
of risk. So not relevant to risk. Not answered. 

42 

problem judging this - not done 5 

  

 

  

y = 0.0003x3 - 0.0044x2 + 0.1055x + 0.0642
R² = 0.7101
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Appendix C 
 
Software 

 
 
 
 
 

 
 

 

 
 

 
 

   

GRiST Elicitation and Assessment Tools 
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In this section, we give and overview of the various 

software components in the GRiST system. 

 

 GRiST decision support system 

 Data visualisation 

 Tuning expertise 

 Reports 
 
 

 
 
 

Figure 1: The conceptual model for the Online GRiST system, including the various 
tools and their interaction. 

 
 
 
 

Elicitation Tools: 

These are the tools that allow experts to tune the system, specify various 

parameters, modify the questions and even restructure the tree, based on the 

application domain.    We have designed these tools as part of this work using 

Macromedia Flash.  They are Web-based and available for clinicians to use.  For more 

information, visit:  www.eGRiST.org  

http://www.egrist.org/
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Figure 2: The Flash MG Elicitation tool, here showing the Membership Grade of one of 
the Self-Harm components being entered. 

 
 
 

  These tools provide an intuitive visual interface for clinicians to use, and the inputs 

are then translated into the tree parameters.   It is a very important part of the project, 

as data gathering is usually one of the challenges in any expert system and the Human 

Computer Interface (HCI) could affect the success of the trials. 
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Figure 3: Another type of MG Graphs supported by the tool, the Scale, where users can 
drag the points around, add or delete new points in order to create the best 

representation of the MG function. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
School of Engineering and Applied Science 

 

 

                                                                                                  
S. E. Hegazy                                                                                              PhD Thesis 

241                                                                   

 
 

Figure 4: The Flash Elicitation tool, here used to elicit Relative Influence (RI) Values 
manually. 
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Data Gathering Tools: 

  These are the tools used by clinicians to actually enter patients, interview 

questions, and maintain the eHealth records.   These are all online and web-based, 

which makes it very accessible.   They also allow users to complete the questionnaires 

in more than one session, which is more natural.   The inputs are saved and processed, 

and initial risks are displayed based on the data entered so far. 

 
 

Figure 5: An example of the online (live) questionnaire or interview. 
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Figure 6: A screen shot from the Java tool, showing the GRiST Tree (left) and the 
questions associated with one of the nodes (Suicide in this case). 
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Reporting Tools: 

 These generate a variety of reports and summaries on a patient, and include risk 

assessments and results. 

 

 
 

Figure 7: A sample Patient report, which shows the various risk ratings in colour codes 
scale (Red means high risk, Green means no risk)..  This report can be generated 

online and saved as Pdf version as well. 
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Appendix D 
 
Code 
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GRiST Functions in MATLAB. 

 

This appendix lists some of the functions we wrote in MATLAB to implement the 

algorithms and methods presented in this work. 

In total 54 functions were coded.   

The main tasks preformed using these function are: 

1. Reading the data from the database. 

2. Preparing and conditioning the data. 

3. Substituting missing values (APIC Algorithm). 

4. Calculating the parameters (iARRIVE Algorithm). 

5. 10-Fold Cross validation on the data set. 

 

Handling missing Data: 

The problem of missing data is inherent in any application that involves 

questionnaires or large amounts of data entered by the users.   A wider problem would 

be the accuracy of the input data and how much noise it contains. In the specific case 

of GRiST [5], with in excess of 200 questions, it is inevitable that some of the data will 

be missing (i.e. not entered/ answered) and this is evident in the data currently being 

collected during clinical use. This causes a difficulty with the model we previously 

developed for learning RI values (ARRIVE [6] and iARRIVE [7]) because the algorithms 

depend on complete data sets.   

   

In the case of GRiST , there are two type of missing values in the data set (see Fig. 

1): 

1. Missing values due to input filtration (in Red). 

2. Missing values due to human error or incomplete assessment (in Blue). 

 

The first type occurs naturally, due to what we call Filter Questions.  In the GRiST 

system [4], the knowledge is represented as a tree, and at some nodes (called Filter 

nodes), a decision is made whether to branch to a sub tree or not.   If the decision was 

not to branch, then all the values in the subtree connected to the no answer will be 

blank.    
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These values have to be treated as zeros and not as missing values.  To overcome 

this problem, we have developed a series of functions to traverse the subtrees of 

nodes that are connected to Filter nodes and zero the values if the Filter node contains 

a „no‟ for example. 

 It is type 2 of missing values that poses the bigger problem.  Since there is no way 

of predicting them from the semantics of the tree directly as in type 1, we need to 

develop a method to be able to substitute these values with viable alternatives, that can 

be justified. 

The work examines the practical considerations we faced when implementing an 

algorithm we developed to handle missing data so that parameter learning can be 

affected and also shows how the method can help with analysing errors in output.  

 

Data Structures and Functions 

 

 In this section we analyse the required functions and data structures to implement 

APIC in MatLab [12] or any other programming language.   We opted for MatLab due to 

the flexibility and the support for matrix operations, which we require intensively in our 

application domain. 

  The pseudo code is listed in Listing 1. 
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Figure 1:  Types of missing inputs. 

 

 

 

Data Structures 

 

Matrices:  M( ), m( ), m’( ), C( ): these contain the input Matrix with all the cases in 

rows, sub-matrix with complete (non-missing) values of the variable in question, sub 

matrix with only missing values of the variable in question, and a sub-matrix with all 

complete rows only, respectively. 

  These are illustrated in Figures 3 to 5 for variable A based on input matrix M() in 

Figure 2. 
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A B C D 

1 2 4 53 

2 3 7 50 

3 6 6 52 

4 7 12 48 

5 11 17 33 

6 13 21 29 

7 12 19 44 

8 13 26 52 

9 20 29 18 

4 9 11 26 

7 14 9 33 

2 5 8 

 8 17 

 

37 

5 13 15 43 

7 12 19 51 

 

6 

 

24 

9 

 

20 44 

6 15 9 

 4 9 8 20 

1 

 

4 48 

 

5 8 41 

4 10 12 49 

 

15 6 

 7 11 26 46 

5 12 

 

29 

 

5 10 30 

6 11 

  9 17 20 39 

1 3 

 

29 

Figure 2: Original inputs with missing data, M(). 
 

A B C D 
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4 9 11 26 
7 14 9 33 
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 4 9 8 20 
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4 48 
4 10 12 49 
7 11 26 46 
5 12 
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6 11 
  9 17 20 39 

1 3 
 

29 
Figure 3: Matrix m(A) 
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The data was extracted from the MySQL [ ] database in a CSV (Comma Separated 

Values) file, which was then read into MatLab, and pre-processed to convert to the 

correct data types. 

We had to used several type conversion functions in MatLab, such as CELLSTR, 

EVAL, to convert between string and numerical or FLOAT data types.  This is due to 

the way the data was stored in the MySQL data base from the interface originally [13]. 

MatLab allows for dynamic matrix resizing, which allows us to slice or shrink the 

matrices as required.  

This was extremely important for creating C( ), m( ), m‟( ) from M( ) as in the 

pseudo-code in Listing 1.  

 
  

A B C D 

 
6 

 
24 

 
5 8 41 

 
15 6 

 
 

5 10 30 
 

Figure 4:  Matirx m‟(A) 
 
 

 

A B C D 

9 20 29 18 
4 9 11 26 
7 14 9 33 
2 5 8 

 5 13 15 43 
7 12 19 51 
6 15 9 

 4 9 8 20 
4 10 12 49 
7 11 26 46 
9 17 20 39 

 
Figure 5: Matrix C(B,C) for variable A. 
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Matrix PT (Prediction Table) 

 

This will contain the Prediction functions for each variable.  This can be represented 

as a 3D matrix, with rows represented different variable, and columns representing 

different combinations. 

The number of rows is equal to the number of question nodes (inputs), so is the 

depth (Z-axis).  The number of columns will equal the maximum number of 

combinations.  We can set this to 1000, as not all combinations will be stored, only the 

ones needed for prediction.   A sample table for variable A is shown in Table 3.  This 

contains the Coefficients of the regression processes, i.e. the functions that describe A 

in terms of B, C, and/or D. 

The problem with this approach is that there will be quite a bit of waste in memory, 

due to the difference in the number of combinations from one variable to another. 

A better solution would be a 2-D matrix, with number of columns equal the number 

of leaf nodes and the rows are dynamic.  Each row will represent PF (prediction 

function) coefficients for a certain input (leaf node).   The input leaf node number for the 

PF can be stored in the first cell of a row, e.g. PT(i,0).   

This way, each variable, will have several PF.  So PT(I,0) is not unique and a simple 

search function should be available to search PF for a certain variable in PT.  Note that 

PF for a certain variable will usually be consequent, as PT is populated through the 

Pseudo code above, per variable. 

 A sample table for variable A is shown in Table 1.  We used the CELL structure in 

Matlab to be able to fit various data types in the table. And allow dynamic resizing at 

the same time.  

We also had to used type conversion functions, CELLSTR, EVAL, to convert 

between string and numerical or FLOAT data types.  This is due to the way the data 

was stored in the MySQL data base. 
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Functions 

In practical terms, we will use shortcuts in generating the prediction table, in order to 

avoid exponential explosion of the number of combinations.    

The algorithm will start with the required combinations first.  These are the 

combinations of other variables that are available in a certain case where the variable 

in question is missing. This is done using the function Find_Combinations(m,i), 

Sub_Missing (m, i). 

We call these the Blue Prints.  These Blue Prints are then tested to make sure there 

are enough complete Blue Prints to generate a Prediction Function (PF) for the variable 

in question to add to the Prediction Table(PT).  The function that does that is 

Sub_Complete(m,i) 

If a PF for certain combination could not be obtained, due to not enough complete 

training cases for that combination, the next best possible combination is checked (i.e. , 

with less variables), until a suitable PF is found above the threshold  (R2 Determination 

Coefficient) . 

 
 

PT(I,0) PT(I,1) PT(I,2) PT(I, 3) PT(I,4) PT(I,5) 

 Coeff(A) Coeff(B) Coeff(C) Coeff(D) Const 

A 0 0.419 0.078 0.033 -1.607 

A 0 0.521 0 0.045 -2.043 

A 0 0.346 0.107 0 -0.002 

A 0 0.475 0 0 0.152 

A 0 0 0.285 0 1.135 

A 0 0 0 -0.042 6.964 

 

Table 1: The Prediction Table(PT), for variable A,  PT(A). 
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APIC                   

Input Matrix M(x=1 to k, y=1 to n) 
Start 
For each missing input x(i)                   Thus only dealing with missing variables 
columns 
 Find sub matrix with complete column (i) 
 m(i)= Sub_Complete(i)          Matrix containing only rows of M( ) with I 
present 
 m’(i) = Sub_Missing (i)         Matrix containing only rows of M( ) with I 
missing 
 For each variable combination with missing value (i) in m‟       (i.e. only 
few combinations) 
  Find a complete set with that combination and I in m(i).  
  For t=1 to k-1          (t denotes the combination variables for 
incomplete m’) 

C( )= Sub_Complete(t)          applied to m(i) 
After all iterations, this matrix C( ) will only contain 

complete rows with I and all other variables in this combination.  
C( ) is a sub matrix of  m(i) 

  If Row_Count(C) >= number of variables in combination 
   Find another PF (Prediction Function) and add to PT 
(Prediction Table of i) 
   PF = Regression (C) 
   If R2 (PF) > predefined threshold Then          
{Determination Coefficient} 
     PT(i)+= PF      (Add this function to the table of i) 
    Find missing value of I in m‟(i) using new PF for 
that combination. 
 If Sub_Complete(m‟(i)) <> m‟(i)                    i.e. some combinations were 
not above threshold 
  Iterate on missing I values using best possible PF in PT(i)    

 

Listing 1:  Pseudo-code for APIC 
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MatLab Code: 
 
 
 
 
function [RI_Names, RI]= GRiST(O,MM,xml_file,filter_nodes) 

  
[M,nulls]=decode_Data(MM,filter_nodes,xml_file); 

  
'Input Data Decoded successfully.....' 

  
[m,p,pc,pb]=APIC(M); 

  
'Missing Data replaced successfully.....' 

  
R =RI_BluePrint(xml_file); 

  
'RI Blue Print generated successfully...' 

  
RI=iarrive(m,O,R); 

  
'RI Values successfully calculated...' 

  
RI_Names=RI_Codes(xml_file); 

  
'RI Codes order generated successfully.....' 
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function [o, data_matrix, nulls]= decode_Data(CSV_matrix, xml_file) 

  
%  m is a matrix containing the leaf node data.  First Column contains 
%  asessment date which is required to decode MG for date values. 
% filter_nodes:  is a matrix containing Filter nodes data. 
% xml_file:  is the name of the CAT xml file which includes MG and MG 

value 
% attributes. 
%  This function will do two things:  
%  1. Replace -1 (missing values ) with 0 if their filter node was 0. 
%  2.  Replace leaf nodes with decoded MG values. 

  
% nulls returns the number of missing values in the data set for 

debugging. 

  

  
% to get the Filter nodes from data base in the correct order, use: 
%  getFilterCodes(xml) 

  
% to get Leaf nodes from DB in the correct order, use: 
%  getLeafCodes(xml) 

  

  
% the following two functions parse the input data, as MATLAB didin't 

quite 
% understand the CSV files!! 

  
[o,m,filter_nodes]=readCSV(CSV_matrix); 

  
'CSV matrix read successfully.......' 

  
mg= cell(1,3); 

  
tree=parseXML(xml_file); 
'XML Tree parsed, ok........' 

  

  
mg=getMG(tree,mg); 

  

'MG Lookup table generated......' 

  
fp=[0 0 0]; 

  
fp=getFilterPattern(tree,fp,0); 

  
'Filter Node Patterns constructed successfully....' 

  
% This section Zeros all children of Filter nodes that equal 0. 

  
nulls=0 ; 

  
'Puning subtrees based on Filter node values.. Counter shows case no.' 
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for i=1:size(m,1) 
    i 
    for k=1:size(filter_nodes,2) 
        if strcmp(filter_nodes(i,k),'no')==1 
            for t=2:size(fp,2)    % this should equal size(m,2)+1 
                if fp(k,t)=='1' 
                    m(i,t)='0';   %Filter Matrix starts at 2 (First 

row 0's) 
                end; 
            end; 
        end; 
    end; 
end; 

  
'Filter child nodes successfully pruned......' 

  
% This section decodes all leaf values based on the MG tree. 

  

  
'Decoding Data based on MG functions... Counter shows case number.' 
for i=1:size(m,1); 
    i 
     % assessment_date = m{i,1}; 
    for t=2:size(m,2)    % MG Table starts at 2, first row is 0's. 

        
        if strcmp(m(i,t),'\N')==1  || strcmp(m(i,t),'DK')==1 
            nulls=nulls+1;    % just counting the number of missing 

values. 
            m(i,t)=cellstr('-1'); 
        end;     
        if strcmp(m(i,t),'-1')~=1 

             
            m{i,t}=decode_MG(mg,t,m{i,t},Convert_date(m{i,1}));  % to 

be replaced with assessment date 
        end;     
    end; 
end; 
'All data values decoded successfully using MG table......' 

  
data_matrix=m; 
data_matrix=Convert_Data(m);   % Returns numeric matrix 
o=Convert_Data(o); 
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function [Filter_matrix] = getFilterPattern(tree, Filter_matrix, 

offset) 

  
%  This function creates the patterns of Filter node children (i.e. 

which 
%  children are connected to each filter node. This is used to 

eliminate missing data due to Filter nodes. 

  
padding=0; 

  
filter=0; 
children_count= size(tree.Children, 2); 

  
for yy=1:size(tree.Attributes,2) 
    if strcmp(tree.Attributes(1,yy).Name, 'filter-q')== 1 
        filter=1; 
    end;     
end; 

                 
x= getLeaf(tree,0); 

                 
if filter==1 
      Filter_matrix= add_Filter(padding, x, Filter_matrix, offset); 
end; 

             

  
if children_count>0 
    for y=1:children_count 

         
         if strcmp(tree.Children(1,y).Name, 'node') == 1 

             
            Filter_matrix=getFilterPattern(tree.Children(1,y), 

Filter_matrix, padding+offset); 
            x= getLeaf(tree.Children(1,y),0); 
            padding=padding+ x ; 

                   
        end; 

         
    end; 
end; 
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function [MG] = add_MG(mg, MG_Type, MG_String) 

  
% this function adds a new MG function to the decoding table MG. 
% note : the first row is empty, so indexing starts at 2. 
% this corresponds to input Data matrix, as the first column will 

include 
% the date of the assessment, which need not be decoded. 

  
MG=mg; 

  
current_row= size(MG,1)+1; 

  
MG{current_row,2}= MG_Type; 

  
    curr_col=3; 
    curr_val=''; 
    for i=1:size(MG_String,2) 
        if MG_String(1,i)~='(' && MG_String(1,i)~=' ' && 

MG_String(1,i)~=')' 
            curr_val=strcat(curr_val,MG_String(1,i)); 
        else 
           if MG_String(1,i)==')' || MG_String(1,i)==' '  

              
                    MG{current_row,curr_col}=curr_val; 

                  
             curr_val=''; 
             curr_col= curr_col+1; 
           end;  
        end; 

     
    end; 

     
    % store the number of pairs in MG, in the first column of the 

matrix, 

     
    MG{current_row,1}= (curr_col-4)/2; 
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function [mg_value] = decode_MG(mg_table, row, input, date) 

  
%  This function substitutes a leaf node value with the decoded value 

based 
%  on the MG table (like Fuzzy logic). 

  
row=row+1;  %MG table has an empty row at start, 

  
MG_Type= mg_table{row,2}; 

  
mg_value=0; 

  

     
    total_pairs = mg_table{row,1}; 

     
    if strcmp(mg_table{row,2},'nominal')==1 
        for i=3:2:(2+ total_pairs*2) 
            if strcmp(mg_table{row,i},input)==1 
                mg_value= mg_table{row,i+1}; 
            end; 

             
        end; 
    end; 

     
    if strcmp(mg_table{row,2},'scale')==1 
        for i=3:2:(total_pairs*2) 
            if (eval(mg_table{row,i})<= eval(input)) && 

(eval(mg_table{row,i+2})> eval(input)) 
                mg_value= Curve(eval(input),mg_table{row,i}, 

mg_table{row,i+1}, mg_table{row,i+2}, mg_table{row,i+3}); 

                 
            end; 
        end; 
    end; 

    
   if strcmp(mg_table{row,2},'date-year')==1 
          input=correct_Date(input); 
          input=Calc_years(input, date); 
        for i=3:2:(total_pairs*2) 

            

            if eval(mg_table{row,i})<= input && 

eval(mg_table{row,i+2})> input 

                        
                mg_value= Curve(input,mg_table{row,i}, 

mg_table{row,i+1}, mg_table{row,i+2}, mg_table{row,i+3}); 

                 
            end; 
        end; 
    end; 

     
    if strcmp(mg_table{row,2},'date-week')==1 
        input=correct_Date(input); 
         input=Calc_weeks(input, date); 
        for i=3:2:(total_pairs*2) 
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            if eval(mg_table{row,i})<= input && 

eval(mg_table{row,i+2})> input 

                 

                                 
                mg_value= Curve(input,mg_table{row,i}, 

mg_table{row,i+1}, mg_table{row,i+2}, mg_table{row,i+3}); 

                 
            end; 
        end; 
    end; 

    
     if strcmp(mg_table{row,2},'date-month')==1 
         input=correct_Date(input); 
          input=Calc_months(input, date); 
        for i=3:2:(total_pairs*2) 

             
            if eval(mg_table{row,i})<= input && 

eval(mg_table{row,i+2})> input 

                 

               

                 
                mg_value= Curve(input,mg_table{row,i}, 

mg_table{row,i+1}, mg_table{row,i+2}, mg_table{row,i+3}); 

                 
            end; 
        end; 
    end; 
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function [MM,PT,PTC,PTB] = APIC(M) 

  
% The main APIC algorithm to replace all missing values in M. 
% missing values are represented as -1 in M. 
% all inputs are positive or zero in the GRiST tree otherwise. 
% Inputs mean questionaire answers, and each of them is a Column in M. 

  
MM=M; 

  
PT= zeros(1,3); 
PTC= zeros(1, size(MM,2)); 
PTB= zeros(1, size(MM,2)); 

  
for i=1:size(MM,2) 
    t=missing(MM,i); 
    if t==1            % there are missing values at Column i. 
        m= Sub_complete(MM,i); 
        mn= Sub_missing(MM,i); 
        BPT= Find_Combinations(mn);   % find all required input 

combinations corresponding to missing values of i. 

         
        if sum(m(1,:))>0             % Check is there is a complete 

matrix for that input, i. 
            [PT, PTC, PTB]= Create_PT(m,BPT,i,PT, PTC, PTB); 
        end; 
    end; 
end; 

  
% Check if PT not empty, i.e., predictions were found and there was 
% sufficient data for regression, this is an extreme case. 
% all Prediction functions were found, now replace missing inputs 

using PT, 

  

  
 if sum(PTB(1,:))>0 
    for t=1:size(MM,2) 
        MM= Replace_missing(MM,t,PT,PTC, PTB); 
        if size(Sub_complete(MM,t),1)~= size(MM,1)     % there are 

still missing values in Column t,  
            % go to the second best ,  
            MM=Replace_missing_alternative(MM,t,PT, PTC, PTB); 
        end; 
    end; 

     
end; 
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function [BPT] = Find_Combinations(mn) 

  
% Find all the different Blue Ptint Combinations in an incomplete sub 

matrix mn,  

  
comb_no= 1; 
% eml.varsize(BPT); 

  
BPT= zeros(1, size(mn,2)); 

  

  
for h=1:size(mn,1) 
    BP= Find_BluePrint(mn(h, :)); 
    found=0; 
    if comb_no>1 
        found=Check_BPT(BPT,BP); 
    end; 
    if found==0 
        BPT(comb_no,:)=BP; 
        comb_no= comb_no+1; 
    end; 
end; 

 

 

 

 
function [BP]= Find_BluePrint(current_row) 

  
% This function returns the Blue Print vector (BP) of a row in a 

matrix, i.e. a binary 
% representation of the row, with 1 representing a present value and 0 
% representing a missing value.  This will then be used in comparison 

and 
% finding the required variable combinations for prediction. 

  
BP = current_row; 
for i=1:size(current_row,2) 
    if BP(i)==-1 
        BP(i)=0; 
    else BP(i)=1; 
    end; 
end; 

  

  

  

  

     

  

  

  

 
 function [PT, PTC, PTB]= Create_PT(m,BPT,i,PT, PTC,PTB) 
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% This function adds new Prediction functions of the current i to the 
% existing Prediction Table PT. 
% PTC is the Coefficients table, holding regression results. 
% PTB is the Blue Print Table, holding blue print BP corresponding to 

Coefficients. 
% BPT is the Blue Print Table, holding all Blue Printsfor missing 

values 
% for current i.  These will form the regression equations. 

  
    min_threshold = 0;    % Threshold for quality of fit, set by user, 

R2. 

     
    if sum(PTB(1,:))==0    % if this is the first iteration, adjust 

index to fill first row. 
        PF_Count=0;        % as PT tables are initialized with zeroes. 
    else 
        PF_Count= size(PT,1); 
    end; 

     

          

        for f=1:size(BPT,1) 
            BP=BPT(f,:); 
            C = Complete_BP(m,BP); 
            if size(C,1)> sum(BP) && sum(C(1,:))>0    % check if 

number of rows > number of variables, i.e. regression possible. 
                [a,b,R2]= Calc_Regression(C,i,BP); 
                if abs(R2) >= min_threshold 

                     
                    PF_Count= PF_Count+1; 

                     
                    PT(PF_Count, 1)= i; 
                    PT(PF_Count, 2)= b; 
                    PT(PF_Count, 3)= R2; 

                     
                    PTC(PF_Count,:)=a; 
                    PTB(PF_Count,:)=BP; 
                end; 
            end; 
        end; 
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function [a,b]= Find_PF(i,BP,PT, PTC, PTB) 

  
% Find a Prediction Function PF, for input i, in Prediction Table PT, 

with Blue Print BP 

  
a=zeros(1,size(BP,2)); 
b=0; 

  

  
for j=1:size(PT,1) 
    if PT(j,1)==i   
        if BP==PTB(j,:) 
            a=PTC(j,:); 
            b=PT(j,2); 
        end; 
    end; 
end; 

 

 

 

 
function [found]= Check_BPT(BPT,BP) 

  
% Check if Blue Print BP exists as a row in the Blue Print Table BPT. 

  
found=0; 

  
for k=1:size(BPT,1) 
    if BP == BPT(k, :) 
        found=1; 
    end; 
end; 
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function [M] = Replace_missing(m,i,PT, PTC, PTB) 

  
% replace all missing values in i-th Column (input) 

  
M=m; 

  
a=zeros(1,size(m,2)); 
b=0; 

  

  
for t=1:size(m,1) 
    if m(t,i)==-1 
        BP=Find_BluePrint(m(t,:)); 
        [a,b]= Find_PF(i,BP,PT,PTC,PTB); 
        if sum(a)~=0 
            M(t,i)= (a* m(t, :)') + b ; 
        end; 
    end; 
end; 

 

 

 

 

 
function [M] = Replace_missing_alternative(m,i,PT, PTC, PTB) 

  
% replace all missing values in i-th Column (input) 

  
M=m; 

  
a=zeros(1,size(m,2)); 
b=0; 
for t=1:size(m,1) 
    if m(t,i)==-1 
        BP=Find_BluePrint(m(t,:)); 
        [a,b]= Find_Alternative_PF(i,BP,PT, PTC,PTB,m); 
        if sum(a)>0 
            p=m(t,:)' ; 
            g= (a*p) + b ; 
            M(t,i)=g; 
        end; 
    end; 
end; 

  
% Check if all missing values were replaced, if not delete rows with 
% missing values from the matrix. 

  
for t=1:size(M,2) 
    M= Sub_complete(M,t); 
end;     

  
function [mm]= Sub_complete(m,i) 
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% This function returns a sub matrix mm, of m, where all values at the 

i th 
% Column are missing. 

  
mm=zeros(1,size(m,2)); 

  
Row_count = 1; 
for k=1:size(m,1) 
    if m(k,i)~= -1 
        mm(Row_count, :)= m(k, :); 
        Row_count= Row_count + 1; 
    end; 
end; 

 

 

 

 
function [mm]= Sub_missing(m,i) 

  
% This function returns a sub matrix mm, of m, where all values at the 

i th 
% Column are missing. 

  
mm=zeros(1,size(m,2)); 

  
Row_count = 1; 
for k=1:size(m,1) 
    if m(k,i)== -1 
        mm(Row_count, :)= m(k, :); 
        Row_count= Row_count + 1; 
    end; 
end; 

  
  

 

function [C]= Complete_BP(m, BP) 

  
% returns a matrix C , with complete columns corresponding to 1's in 

BP. 
% This will be used for Regression. 
 C=m; 

  
 for q=1:size(BP,2) 
    if BP(q)==1 
        C=Sub_complete(C,q); 
    end; 
end; 
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function [MG] = getMG(tree, MG_matrix) 

  

  
% #This function creates the MG lookup tables, by reading all the MG 

values 
% at Leaf nodes. 

  
total_leafs = getLeaf(tree,0); 

  
padding=0; 
MG_Type=''; 
MG_String=''; 

  
MG=MG_matrix; 

  
children_count= size(tree.Children, 2); 

  
if children_count>0 
    for y=1:children_count 
        if strcmp(tree.Children(1,y).Name, 'node') == 1 
             MG=getMG(tree.Children(1,y), MG); 
        end; 
    end; 
else 
    % No children, this is a leaf node, get the MG attributes and add 

to MG 
    % look up table. 

     
    %MG= add_MG(padding, x, total_leafs, MG); 
    for t=1:size(tree.Attributes,2) 
        if strcmp(tree.Attributes(1,t).Name,'values')==1 
            MG_Type=tree.Attributes(1,t).Value; 
        end; 
        if strcmp(tree.Attributes(1,t).Name,'value-mg')==1 
            MG_String=tree.Attributes(1,t).Value; 
        end;  
     end;    

     
    MG=add_MG(MG,MG_Type,MG_String); 
end; 
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function [R] = RI_BluePrint(ss) 

  
% This function returns the required tree description for the GRiST 
% function.  It representes the relation ship between RIs and the leaf 

nodes connected to them in a binary 
% format. 

  

  
Tree=parseXML(ss); 

  
RI= zeros(1,getLeaf(Tree,0)); 

  
R=getRI(Tree,RI,0); 

 

 

 

 

 
function [RI] = getRI(tree, RI_matrix, offset) 

  
total_leafs = getLeaf(tree,0); 

  
padding=0; 
RI=RI_matrix; 

  
children_count= size(tree.Children, 2); 

  
for y=1:children_count 
    if strcmp(tree.Children(1,y).Name, 'node') == 1 

         
        x= getLeaf(tree.Children(1,y),0); 
        RI= add_RI(padding, x, total_leafs, RI, offset); 

          
         RI=getRI(tree.Children(1,y), RI, padding); 
         padding=padding+ x ; 

          
    end; 
end; 
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function [RI]= iarrive(M,O,R) 

  
% function to calculate RI values using the inputs matrix M and 

outputs or 
% risk decisions O 
% R matrix contains the tree structure represented in binary, for each 
% child subtree, all leaf nodes are listed, followed by the subtree of 

that 
% child's node. 
% It is binary, i.e. 0 means not connected, 1 connected, and the R 

array is 
% 2D. 

  

  

  
A= inv(M' *M)* M' * O; 

  
for i=1:2:size(R,1)-1 
    denom=0; 
    nom=0; 
    for k=1:size(R,2) 
        if R(i,k)== 1 
            nom=nom +A(k); 
        end; 
        if R(i+1,k) == 1 
            denom=denom +A(k); 
        end; 
    end; 

     
    RI((i+1)/2)= nom/ denom; 

   
end; 
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function [RI] = getRI_Codes(tree, RI_matrix) 

  
% Generate a list of RI codes to be used for printing the results 

(i.e. RI 
% values). 

  
RI=RI_matrix; 

  

  
children_count= size(tree.Children, 2); 

  
for y=1:children_count 
    if strcmp(tree.Children(1,y).Name, 'node') == 1 

         
        for k=1:size(tree.Children(1,y).Attributes,2) 
            if strcmp(tree.Children(1,y).Attributes(1,k).Name, 

'code')== 1 
                string = tree.Children(1,y).Attributes(1,k).Value; 
                RI= add_RI_Code(string, RI); 

                 

                 
            end; 
        end; 

         

          
         RI=getRI_Codes(tree.Children(1,y), RI); 

                   
    end; 
end; 
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function [O,E]= GRiSTCross(data,text, xml_file) 

  

  

  
[O,MM]=decode_Data(data, text, xml_file); 

  
'This function performs 10-fold cross validation on the GRiST data.' 

  

  

  
 E=O; 

  
R =RI_BluePrint(xml_file); 

  
for i=1:70:700 
    test= MM([i:i+70],:); 
    train= cat(1, MM([1:i],:), MM([i+70:700],:)); 
    Ot= cat(1, O([1:i],:), O([i+70:700],:)); 

     

    [RI, error,A]=iarrive(train,Ot,R); 

     
    K= test*A; 

     
    E([i:i+70],:)= K; 

     

     
    i 
end; 
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The Suicide Tree Description in XML 
 

 

- <node label="suicide" code="suic" values="scale" value-mg="((0 0)(10 1))"> 

- <node label="suicide specific questions" code="sui-specific"> 

- <node label="past and current suicide attempts" code="suic-past-att" layer="0" 

filter-q="" ERROR="This node is persistent; however the following ancestor 

nodes are not: sui-specific"> 

- <node label="occurrence of suicide attempts" code="suic-occur"> 

  <node label="most recent suicide attempt" code="suic-most-rec" values="date-

week" value-mg="((0 1)(26 0))" ERROR="This node is persistent; however 
the following ancestor nodes are not: sui-specific" />  

- <node label="pattern of suicide attempts" code="suic-patt-att" values="scale" 

value-mg="((0 0)(10 1))" filter-q=""> 

  <node label="first time suicide attempt occurred" code="suic-first-occ" 

values="date-year" value-mg="((0 1)(10 0))" ERROR="This node is 

persistent; however the following ancestor nodes are not: suic-patt-att" />  
  <node label="how many suicide attempts" code="suic-how-many" 

values="integer" value-mg="((0 0)(2 1)(8 0.2))" />  

  <node label="suicide attempts escalating in frequency" code="suic-escalate" 

values="nominal" value-mg="((DECREASING 0)(SAME 0.5)(INCREASING 

1))" />  
  </node> 

  </node> 

- <node label="preparation and seriousness of suicide attempts" code="suic-

prep-serious-at" values="scale" value-mg="((0 0)(10 1))"> 
  <node label="How much planning was generally involved in the suicide 

attempts" code="suic-planning" values="scale" value-mg="((0 0)(10 1))" 

ERROR="This node is persistent; however the following ancestor nodes are 
not: sui-specific" />  

  <node label="suicide note written for one or more previous attempts" 

code="suic-note-prev" values="nominal" value-mg="((YES 1)(NO 0))" 

ERROR="This node is persistent; however the following ancestor nodes are 
not: sui-specific" />  

- <node label="seriousness of suicide methods" code="suic-ser-method"> 

  <node label="chance of discovery after suicide attempts" code="suic-

discovery" values="scale" value-mg="((0 0)(10 1))" ERROR="This node is 
persistent; however the following ancestor nodes are not: sui-specific" />  

  <node label="potential lethality of suicide method" code="suic-lethality" 

values="scale" value-mg="((0 0)(10 1))" ERROR="This node is persistent; 
however the following ancestor nodes are not: sui-specific" />  

  </node> 

  </node> 

- <node label="person's current perspective on suicide attempts" code="suic-

person-per" values="scale" value-mg="((0 0)(10 1))"> 

- <node label="thoughts/feelings related to previous suicide attempts" 

code="suic-thght-prev"> 

  <node label="How much did the person want to succeed with the suicide 

attempts" code="suic-ser-succd" values="scale" value-mg="((0 0)(10 1))" 

ERROR="This node is persistent; however the following ancestor nodes are 

not: sui-specific" />  
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  <node label="regret about trying to commit suicide" code="suic-regret" 

values="scale" value-mg="((0 0)(10 1))" />  
  </node> 

  <node label="insight into lethality of previous suicide attempts" code="suic-

leth-insght" values="scale" value-mg="((0 0)(10 1))" />  

  </node> 

  </node> 

- <node label="current suicidal situation and behaviour" code="suic-curr-sit-

behav"> 

- <node label="current intention to commit suicide" code="suic-curr-int" 

layer="0"> 
- <node label="plans and methods for committing suicide" code="suic-plans" 

values="scale" value-mg="((0 0)(10 1))" filter-q=""> 
  <node label="realism of suicide plan" code="suic-plan-real" values="scale" 

value-mg="((0 0)(10 1))" />  
  <node label="level of detail and clarity of suicide plan" code="suic-plan-dtail" 

values="scale" value-mg="((0 0)(10 1))" />  
  <node label="physical steps taken to implement suicide plan" code="suic-

steps-takn" values="scale" value-mg="((0 0)(10 1))" />  
  <node label="potential lethality of prospective suicide method" code="suic-

prosp-leth" values="scale" value-mg="((0 0)(10 1))" />  

  </node> 

  <node label="informed someone about intention to commit suicide" 

code="suic-int-inform" values="nominal" value-mg="((YES 1)(NO 0))" />  
  <node label="end-of-life preparations for intended suicide act" code="suic-eol-

prep" values="scale" value-mg="((0 0)(10 1))" />  
  </node> 

- <node label="potential triggers for prospective suicide" code="suic-int-p-trig" 

values="scale" value-mg="((0 0)(10 1))" layer="0"> 

  <node label="potential triggers of suicide" code="suic-pot-trig" values="scale" 

value-mg="((0 0)(10 1))" />  
  <node label="potential triggers match those that previously caused suicide 

attempts" code="suic-p-trig-mtch" values="scale" value-mg="((0 0)(10 1))" 
/>  

  </node> 

- <node label="suicidal ideation" code="suic-ideation" values="scale" value-

mg="((0 0)(10 1))" layer="0" filter-q=""> 
  <node label="ability to control suicidal ideation" code="suic-id-control" 

values="scale" value-mg="((0 0)(10 1))" />  
  <node label="content of suicidal ideation indicates high risk" code="suic-id-hi-

risk" values="scale" value-mg="((0 0)(10 1))" />  

  <node label="frequency of suicidal ideation" code="suic-id-freq" 

values="nominal" value-mg="((DAILY 1)(WEEKLY 0.5)(MONTHLY 0.2)(LESS-

THAN-MONTHLY 0))" />  
  <node label="strength, intensity, intrusiveness, and persistence of suicidal 

ideation" code="suic-id-strngth" values="scale" value-mg="((0 0)(10 1))" />  
  </node> 

  </node> 

- <node label="constraints on suicidal behaviour" code="suic-bhvr-const" 

values="scale" value-mg="((0 0)(10 1))"> 
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  <node label="insight and responsibility" code="insight-resp" generic="generic 

issues >> direct risk children >> insight and responsibility" ERROR="PATH 
INVALID: generic issues >> direct risk children >> insight and 

responsibility" />  
  <node label="religious values/beliefs affecting suicide risk" code="suic-rel-

belief" values="nominal" value-mg="((STRONGLY-PROTECT 0)(PROTECT 
0)(NO-EFFECT 0)(INCREASE 0.5)(STRONGLY-INCREASE 1))" 

header="General suicide questions" ERROR="This node is persistent; 
however the following ancestor nodes are not: sui-specific" />  

  </node> 

- <node label="person's appearance and behaviour at assessment indicating 

suicide" code="suic-app-behvr" values="scale" value-mg="((0 0)(10 1))"> 
- <node label="physical indicators of suicide" code="suic-phys-indic"> 

- <node label="appearance indicators of self neglect" code="sn-appearnce" 

layer="0" generic="g"> 
  <node label="hair and clothing indicative of self neglect" code="sn-hair-

clothes" values="scale" value-mg="((0 0)(10 1))" />  
  <node label="personal hygiene" code="sn-hygiene" values="scale" value-

mg="((0 0)(10 1))" generic-type="g" />  
  <node label="recent change in appearance of self neglect" code="sn-recnt-app-

chnge" values="scale" value-mg="((0 0)(10 1))" />  
  <node label="skin" code="sn-skin" values="scale" value-mg="((0 0)(10 1))" />  

  </node> 

  <node label="self-harming cuts" code="gen-sh-cuts" generic-datum="self-harm 

>> person's appearance and behaviour during assessment indicating self-

harm >> self-harming cuts" ERROR="PATH INVALID: self-harm >> 
person's appearance and behaviour during assessment indicating self-

harm >> self-harming cuts" />  
  </node> 

- <node label="person's behavioural presentation during assessment" 

code="gen-presentation" layer="0" values="scale" value-mg="((0 0)(10 1))" 

generic="gd"> 
- <node label="person's engagement with assessor" code="gen-engagement" 

filter-q="" generic-type="gd"> 

  <node label="rapport/empathy" code="gen-rapport" values="scale" value-

mg="((0 0)(10 1))" />  

  <node label="person's responsiveness" code="gen-responsve" values="scale" 

value-mg="((0 0)(10 1))" />  

  <node label="assessor's uneasiness about the person" code="gen-gut-assmnt" 

values="scale" value-mg="((0 0)(10 1))" />  

  </node> 

- <node label="verbal indicators of risk" code="gen-risk-verbal" filter-q="" 

generic-type="gd"> 

- <node label="tone" code="gen-risk-tone"> 

  <node label="degree of aggression/hostility" code="gen-risk-aggrsv" 

values="scale" value-mg="((0 0)(10 1))" />  
  <node label="how upbeat or downbeat/depressed" code="gen-risk-upbeat" 

values="scale" value-mg="((0 0)(10 1))" />  
  </node> 

  <node label="degree to which the person is making sense" code="gen-

coherence" values="scale" value-mg="((0 0)(10 1))" />  
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  </node> 

- <node label="body language and expression" code="gen-body-face" filter-q="" 

generic-type="gd"> 

  <node label="body language indicating distress" code="gen-distrss-b-lang" 

values="scale" value-mg="((0 0)(10 1))" />  

  <node label="movements, posture, facial expression indicating low mood" 

code="gen-low-mood" values="scale" value-mg="((0 0)(10 1))" />  

  <node label="aggressive/threatening movements, posture, or expression" 

code="gen-threat-move" values="scale" value-mg="((0 0)(10 1))" />  

  <node label="preoccupied/detached demeanour" code="gen-detached" 

values="scale" value-mg="((0 0)(10 1))" />  

- <node label="eyes" code="gen-eyes" generic-type="gd"> 

  <node label="avoid eye contact" code="gen-avoid-eye-contact" values="scale" 

value-mg="((0 0)(10 1))" />  

  <node label="eye movement" code="gen-eye-movement" values="nominal" 

value-mg="((UNRESPONSIVE-GLAZED 1)(APPROPRIATE 0)(FIXED-STARING 

1)(DARTING 1))" />  
  </node> 

  </node> 

  <node label="congruence of physical, verbal, and emotional presentation" 

code="gen-congruence" values="scale" value-mg="((0 0)(10 1))" />  

  </node> 

  </node> 

  <node label="self-harm behaviour indicative of suicide" code="suic-s-h-behv" 

values="scale" value-mg="((0 0)(10 1))" ERROR="This node is persistent; 

however the following ancestor nodes are not: sui-specific" />  
  <node label="family history of suicide" code="suic-fam-hist" values="nominal" 

value-mg="((YES 1)(NO 0))" ERROR="This node is persistent; however the 
following ancestor nodes are not: sui-specific" />  

  </node> 

- <node label="feelings/emotions" code="gen-feel-emot" layer="0" generic-

type="gd"> 

  <node label="mood swings/lability" code="gen-mood-swings" values="scale" 

value-mg="((0 0)(10 1))" />  

  <node label="negative feelings about the self" code="gen-negative-self" 

values="scale" value-mg="((0 0)(10 1))" />  

  <node label="angry emotions" code="gen-angry-emotns" values="scale" value-

mg="((0 0)(10 1))" />  

  <node label="anxiety-based emotions" code="gen-anx-emotns" values="scale" 

value-mg="((0 0)(10 1))" />  

  <node label="helplessness" code="gen-helpless" values="scale" value-mg="((0 

0)(10 1))" />  
  <node label="sad/downbeat" code="gen-sad" values="scale" value-mg="((0 

0)(10 1))" />  
  <node label="distress" code="gen-distress" values="scale" value-mg="((0 0)(10 

1))" />  
  <node label="jealousy" code="gen-jealous" values="scale" value-mg="((0 0)(10 

1))" />  
- <node label="hopelessness" code="gen-hopeless" values="scale" value-mg="((0 

0)(10 1))" header="Questions on hopelessness" generic-type="g"> 
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  <node label="plans for the future" code="gen-plans-future" values="scale" 

value-mg="((0 0)(10 1))" />  
  <node label="life not worth living" code="gen-life-not-livng" values="scale" 

value-mg="((0 0)(10 1))" />  
  </node> 

  </node> 

- <node label="person's perspective of self worth" code="gen-self-worth-p" 

layer="0" generic-type="gd"> 
  <node label="grandiosity" code="grandiosity" values="scale" value-mg="((0 

0)(10 1))" />  
  <node label="worthlessness" code="worthlessness" values="scale" value-

mg="((0 0)(10 1))" />  

  </node> 

- <node label="mental health problems" code="mental-health" layer="0" filter-

q=""> 
- <node label="depression" code="gen-depression" filter-q="" generic-type="g"> 

- <node label="Seriousness of current depression" code="serious-depression" 

values="nominal" value-mg="((none 0)(mild 0.3)(moderate 0.65)(severe 

10))"> 
- <node label="feelings/emotions" code="gen-feel-emot" layer="0" generic="gd"> 

  <node label="mood swings/lability" code="gen-mood-swings" values="scale" 

value-mg="((0 0)(10 1))" />  
  <node label="negative feelings about the self" code="gen-negative-self" 

values="scale" value-mg="((0 0)(10 1))" />  
  <node label="angry emotions" code="gen-angry-emotns" values="scale" value-

mg="((0 0)(10 1))" />  
  <node label="anxiety-based emotions" code="gen-anx-emotns" values="scale" 

value-mg="((0 0)(10 1))" />  
  <node label="helplessness" code="gen-helpless" values="scale" value-mg="((0 

0)(10 1))" />  

  <node label="sad/downbeat" code="gen-sad" values="scale" value-mg="((0 

0)(10 1))" />  

  <node label="distress" code="gen-distress" values="scale" value-mg="((0 0)(10 

1))" />  

  <node label="jealousy" code="gen-jealous" values="scale" value-mg="((0 0)(10 

1))" />  

- <node label="hopelessness" code="gen-hopeless" values="scale" value-mg="((0 

0)(10 1))" header="Questions on hopelessness" generic-type="g"> 

  <node label="plans for the future" code="gen-plans-future" values="scale" 

value-mg="((0 0)(10 1))" />  

  <node label="life not worth living" code="gen-life-not-livng" values="scale" 

value-mg="((0 0)(10 1))" />  
  </node> 

  </node> 

- <node label="person's perspective of self worth" code="gen-self-worth-p" 

layer="0" generic="gd"> 
  <node label="grandiosity" code="grandiosity" values="scale" value-mg="((0 

0)(10 1))" />  
  <node label="worthlessness" code="worthlessness" values="scale" value-

mg="((0 0)(10 1))" />  

  </node> 
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  <node label="general motivation in life" code="gen-motivation" generic-

datum="g" values="scale" value-mg="((0 0)(10 1))" />  
  <node label="voice hallucinations" code="gen-voice-hal" generic="generic 

issues >> direct risk children >> mental health problems >> serious 
mental illness >> current symptoms of severe mental illness >> voice 

hallucinations" ERROR="PATH INVALID: generic issues >> direct risk 
children >> mental health problems >> serious mental illness >> current 

symptoms of severe mental illness >> voice hallucinations" />  
  <node label="paranoid delusions" code="gen-paranoid-del" generic="generic 

issues >> direct risk children >> mental health problems >> serious 
mental illness >> current symptoms of severe mental illness >> paranoid 

delusions" ERROR="PATH INVALID: generic issues >> direct risk children 
>> mental health problems >> serious mental illness >> current 

symptoms of severe mental illness >> paranoid delusions" />  

  <node label="impaired cognitive function" code="gen-impaird-cog" 

generic="generic issues >> direct risk children >> mental 

faculties/cognitive capacity >> impaired cognitive function" ERROR="PATH 
INVALID: generic issues >> direct risk children >> mental 

faculties/cognitive capacity >> impaired cognitive function" />  
- <node label="general current behaviour" code="gen-currnt-bhvr" layer="0" 

generic="gd"> 
  <node label="reckless risk taking" code="gen-rsk-behavr" values="scale" value-

mg="((0 0)(10 1))" />  
  <node label="unintentional risk making" code="gen-unint-risk-behavr" 

values="scale" value-mg="((0 0)(10 1))" />  

  <node label="sleep disturbance" code="gen-sleep-dist" values="scale" value-

mg="((0 0)(10 1))" />  

- <node label="appropriateness of diet" code="gen-app-diet" values="scale" 

value-mg="((0 0)(10 1))" layer="0" generic="g"> 

  <node label="eating" code="gen-diet-eating" values="scale" value-mg="((0 

0)(10 1))" />  

- <node label="weight" code="gen-diet-weight"> 

  <node label="person's weight" code="gen-diet-weigt-ext" values="nominal" 

value-mg="((EXTREME-UNDERWEIGHT 1)(UNDERWEIGHT 0.5)(WEIGHT-OK 
0)(OVERWEIGHT 0.5)(EXTREME-OVERWEIGHT 1))" />  

  <node label="extreme weight change" code="gen-diet-weigt-chg" 

values="scale" value-mg="((0 0)(10 1))" />  
  </node> 

  <node label="drinking" code="gen-diet-drink" values="scale" value-mg="((0 

0)(10 1))" />  

  </node> 

  <node label="uncharacteristic recent change in behaviour" code="gen-unusl-

rec-bhvr" values="scale" value-mg="((0 0)(10 1))" />  
  <node label="challenging behaviour" code="gen-chall-bhvr" values="scale" 

value-mg="((0 0)(10 1))" />  

- <node label="daily activity" code="gen-day-actvty" values="scale" value-

mg="((0 0)(10 1))"> 

  <node label="structure of day" code="gen-day-struct" values="scale" value-

mg="((0 0)(10 1))" />  

  <node label="general level of activity during the day" code="gen-day-actvty-

lev" values="nominal" value-mg="((PASSIVE-INERT 0)(UNDERACTIVE 

0)(NORMAL 0)(OVERACTIVE 0.5)(HYPERACTIVE 1))" />  
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  </node> 

  </node> 

- <node label="person's behavioural presentation during assessment" 

code="gen-presentation" layer="0" generic="gd"> 
- <node label="person's engagement with assessor" code="gen-engagement" 

filter-q="" generic-type="gd"> 
  <node label="rapport/empathy" code="gen-rapport" values="scale" value-

mg="((0 0)(10 1))" />  
  <node label="person's responsiveness" code="gen-responsve" values="scale" 

value-mg="((0 0)(10 1))" />  
  <node label="assessor's uneasiness about the person" code="gen-gut-assmnt" 

values="scale" value-mg="((0 0)(10 1))" />  

  </node> 

- <node label="verbal indicators of risk" code="gen-risk-verbal" filter-q="" 

generic-type="gd"> 
- <node label="tone" code="gen-risk-tone"> 

  <node label="degree of aggression/hostility" code="gen-risk-aggrsv" 

values="scale" value-mg="((0 0)(10 1))" />  

  <node label="how upbeat or downbeat/depressed" code="gen-risk-upbeat" 

values="scale" value-mg="((0 0)(10 1))" />  

  </node> 

  <node label="degree to which the person is making sense" code="gen-

coherence" values="scale" value-mg="((0 0)(10 1))" />  

  </node> 

- <node label="body language and expression" code="gen-body-face" filter-q="" 

generic-type="gd"> 
  <node label="body language indicating distress" code="gen-distrss-b-lang" 

values="scale" value-mg="((0 0)(10 1))" />  
  <node label="movements, posture, facial expression indicating low mood" 

code="gen-low-mood" values="scale" value-mg="((0 0)(10 1))" />  

  <node label="aggressive/threatening movements, posture, or expression" 

code="gen-threat-move" values="scale" value-mg="((0 0)(10 1))" />  

  <node label="preoccupied/detached demeanour" code="gen-detached" 

values="scale" value-mg="((0 0)(10 1))" />  

- <node label="eyes" code="gen-eyes" generic-type="gd"> 

  <node label="avoid eye contact" code="gen-avoid-eye-contact" values="scale" 

value-mg="((0 0)(10 1))" />  
  <node label="eye movement" code="gen-eye-movement" values="nominal" 

value-mg="((UNRESPONSIVE-GLAZED 1)(APPROPRIATE 0)(FIXED-STARING 

1)(DARTING 1))" />  
  </node> 

  </node> 

  <node label="congruence of physical, verbal, and emotional presentation" 

code="gen-congruence" values="scale" value-mg="((0 0)(10 1))" />  
  </node> 

- <node label="engagement with world" code="gen-eng-world" values="scale" 

value-mg="((0 0)(10 1))" generic="gd"> 

  <node label="physical withdrawal from world" code="gen-phys-withd" 

values="scale" value-mg="((0 0)(10 1))" />  
  <node label="mental withdrawal" code="gen-mental-withd" values="scale" 

value-mg="((0 0)(10 1))" />  
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  </node> 

  </node> 

  <node label="stage of depression" code="gen-dep-stage" values="nominal" 

value-mg="((FIRST-DIAGNOSIS 1)(RECOVERY-SINGLE-EPISODE 
0)(RECOVERY-REPEAT-EPISODES 0.4)(RELAPSE 1))" />  

  </node> 

- <node label="serious mental illness" code="gen-ser-mentl-ill" filter-q="" generic-

type="gd"> 
  <node label="insight into mental-health problems" code="gen-mentl-insght" 

values="scale" value-mg="((0 0)(10 1))" />  
- <node label="current symptoms of severe mental illness" code="gen-mntl-cur-

sympt" filter-q=""> 

  <node label="mania/hypomania" code="gen-mania" values="scale" value-

mg="((0 0)(10 1))" />  

- <node label="voice hallucinations" code="gen-voice-hal" filter-q="" 

header="Questions on voice hallucinations" generic-type="g"> 

- <node label="type of voices" code="gen-voices-type"> 

  <node label="danger of voices to self" code="gen-voice-dang-s" values="scale" 

value-mg="((0 0)(10 1))" />  
  <node label="danger of voices to others" code="gen-voice-dang-o" 

values="scale" value-mg="((0 0)(10 1))" />  

  </node> 

  <node label="likelihood of acting on the voices" code="gen-prob-act-voice" 

values="scale" value-mg="((0 0)(10 1))" />  
  </node> 

- <node label="paranoid delusions" code="gen-paranoid-del" filter-q="" 

header="Questions on paranoid delusions" generic-type="g"> 

- <node label="type of paranoid delusions" code="gen-type-paranoid-del"> 

  <node label="about specific individuals" code="gen-paran-del-spec" 

values="scale" value-mg="((0 0)(10 1))" />  

  <node label="being harmed, killed, or persecuted" code="gen-paran-del-pers" 

values="scale" value-mg="((0 0)(10 1))" />  

  </node> 

  <node label="likelihood of acting on delusions" code="gen-prob-act-par-del" 

values="scale" value-mg="((0 0)(10 1))" />  
  </node> 

  </node> 

  </node> 

  </node> 

- <node label="mental faculties/cognitive capacity" code="ment-fac" layer="0"> 

- <node label="impaired cognitive function" code="gen-impaird-cog" filter-q="" 

generic-type="g"> 
  <node label="thinking processes and memory" code="gen-cog-think-mem" 

values="scale" value-mg="((0 0)(10 1))" />  
  <node label="concentration" code="gen-concentr" values="scale" value-mg="((0 

0)(10 1))" />  
  </node> 

  <node label="learning disabilities" code="gen-learn-disab" values="scale" value-

mg="((0 0)(10 1))" />  
  </node> 

- <node label="personality" code="gen-personality" layer="0" generic-type="gd"> 
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  <node label="assertiveness" code="gen-assertive" values="nominal" value-

mg="((NOT-ASSERTIVE 1)(SOMEWHAT-ASSERTIVE 0.3)(NORMALLY-
ASSERTIVE 0)(VERY-ASSERTIVE 0)(EXCESSIVELY-ASSERTIVE 0))" />  

  <node label="ability to empathise" code="gen-empathy-abil" values="scale" 

value-mg="((0 0)(10 1))" />  

  <node label="dependence" code="gen-dependence" values="scale" value-

mg="((0 0)(10 1))" />  

  <node label="controlling/organisational approach" code="gen-controlling" 

values="nominal" value-mg="((chaotic 0.5)(disorganised 0.2)(normal 

0)(very-organised 0.5)(obsessional-perfectionist 1))" />  
  <node label="capacity to cope with major life stresses" code="gen-coping-abil" 

values="scale" value-mg="((0 0)(10 1))" />  

  <node label="hostility" code="gen-hostile" values="scale" value-mg="((0 0)(10 

1))" />  

  <node label="impulsiveness" code="gen-impulse" values="scale" value-mg="((0 

0)(10 1))" />  

  <node label="reliability" code="gen-reliable" values="scale" value-mg="((0 

0)(10 1))" />  

  </node> 

- <node label="motivation and engagement with world" code="motive-eng" 

layer="0"> 
- <node label="engagement with world" code="gen-eng-world" values="scale" 

value-mg="((0 0)(10 1))" generic-type="gd"> 

  <node label="physical withdrawal from world" code="gen-phys-withd" 

values="scale" value-mg="((0 0)(10 1))" />  

  <node label="mental withdrawal" code="gen-mental-withd" values="scale" 

value-mg="((0 0)(10 1))" />  

  </node> 

  <node label="general motivation in life" code="gen-motivation" values="scale" 

value-mg="((0 0)(10 1))" />  
  <node label="listless, no energy, slowed down, loss of drives" code="gen-

listless" values="scale" value-mg="((0 0)(10 1))" />  

  </node> 

- <node label="social context" code="gen-soc-contxt" layer="0" generic-

type="gd"> 
- <node label="relationships" code="gen-relatnshps" header="Questions on 

current relationships" generic-type="gd"> 
  <node label="external network of relationships" code="gen-net-relat" 

values="scale" value-mg="((0 0)(10 1))" />  
- <node label="nature of relationships" code="gen-relat-nature"> 

  <node label="supportive relationships" code="gen-relat-supp" values="scale" 

value-mg="((0 0)(10 1))" />  
  <node label="detrimental relationships" code="gen-relat-detr" values="scale" 

value-mg="((0 0)(10 1))" />  
  </node> 

  <node label="detrimental changes to relationships" code="gen-relat-detr-chg" 

values="scale" value-mg="((0 0)(10 1))" />  

  </node> 

- <node label="living arrangements" code="gen-living-arr" header="Questions on 

living arrangements" generic-type="gd"> 
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  <node label="frequency of moving accommodation" code="gen-move-freq" 

values="nominal" value-mg="((LESS-THAN-EVERY-YEAR 0)(ONCE-EVERY-
YEAR 0.5)(SEVERAL-TIMES-YEAR 0.8)(ONCE-A-MONTH-OR-MORE 1))" />  

  <node label="type of home" code="gen-home-type" values="nominal" value-

mg="((HOMELESS 1)(HOSTEL 0.8)(institution-fully-supervised 0)(daily-

support 0.1)(limited-support 0.2)(no-support 0.5))" />  
- <node label="neighbourhood" code="gen-neighbrhd"> 

  <node label="isolated accommodation" code="gen-isol-accom" values="scale" 

value-mg="((0 0)(10 1))" />  

  <node label="risky neighbourhood" code="gen-neigbrhd-rsky" values="scale" 

value-mg="((0 0)(10 1))" />  

  </node> 

- <node label="state of accommodation" code="gen-accom-state"> 

  <node label="care of home" code="gen-accom-hm-care" values="scale" value-

mg="((0 0)(10 1))" />  
  <node label="habitable accommodation" code="gen-accom-habitbl" 

values="scale" value-mg="((0 0)(10 1))" />  
  </node> 

  </node> 

- <node label="financial problems" code="gen-finance-prob" filter-q="" 

header="Questions on financial problems"> 

  <node label="anxiety about perceived level of debts" code="gen-perc-debt-

anx" values="scale" value-mg="((0 0)(10 1))" />  

  <node label="chronic poverty" code="gen-poverty" values="scale" value-

mg="((0 0)(10 1))" />  

  </node> 

- <node label="employment" code="gen-employment" filter-q="" 

header="Questions on employment"> 
  <node label="frequency of changing jobs" code="gen-job-chg-frq" 

values="scale" value-mg="((0 0)(10 1))" />  

  <node label="recent or potential detrimental change to employment" 

code="gen-rec-bad-job-ch" values="scale" value-mg="((0 0)(10 1))" />  

  </node> 

  </node> 

- <node label="general current behaviour" code="gen-currnt-bhvr" layer="0" 

generic-type="gd"> 

  <node label="reckless risk taking" code="gen-rsk-behavr" values="scale" value-

mg="((0 0)(10 1))" />  

  <node label="unintentional risk making" code="gen-unint-risk-behavr" 

values="scale" value-mg="((0 0)(10 1))" />  
  <node label="sleep disturbance" code="gen-sleep-dist" values="scale" value-

mg="((0 0)(10 1))" />  
- <node label="appropriateness of diet" code="gen-app-diet" values="scale" 

value-mg="((0 0)(10 1))" layer="0" generic="g"> 
  <node label="eating" code="gen-diet-eating" values="scale" value-mg="((0 

0)(10 1))" />  
- <node label="weight" code="gen-diet-weight"> 

  <node label="person's weight" code="gen-diet-weigt-ext" values="nominal" 

value-mg="((EXTREME-UNDERWEIGHT 1)(UNDERWEIGHT 0.5)(WEIGHT-OK 

0)(OVERWEIGHT 0.5)(EXTREME-OVERWEIGHT 1))" />  
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  <node label="extreme weight change" code="gen-diet-weigt-chg" 

values="scale" value-mg="((0 0)(10 1))" />  
  </node> 

  <node label="drinking" code="gen-diet-drink" values="scale" value-mg="((0 

0)(10 1))" />  

  </node> 

  <node label="uncharacteristic recent change in behaviour" code="gen-unusl-

rec-bhvr" values="scale" value-mg="((0 0)(10 1))" />  
  <node label="challenging behaviour" code="gen-chall-bhvr" values="scale" 

value-mg="((0 0)(10 1))" />  
- <node label="daily activity" code="gen-day-actvty" values="scale" value-

mg="((0 0)(10 1))"> 

  <node label="structure of day" code="gen-day-struct" values="scale" value-

mg="((0 0)(10 1))" />  

  <node label="general level of activity during the day" code="gen-day-actvty-

lev" values="nominal" value-mg="((PASSIVE-INERT 0)(UNDERACTIVE 

0)(NORMAL 0)(OVERACTIVE 0.5)(HYPERACTIVE 1))" />  
  </node> 

  </node> 

- <node label="substance misuse" code="gen-subs-misuse" layer="0" filter-q="" 

generic-type="gd"> 

  <node label="detrimental effects of alcohol misuse" code="gen-alc-misuse" 

values="scale" value-mg="((0 0)(10 1))" />  

  <node label="detrimental effects of drugs misuse" code="gen-drug-misuse" 

values="scale" value-mg="((0 0)(10 1))" />  

  </node> 

- <node label="insight and responsibility" code="insight-resp" values="scale" 

value-mg="((0 0)(10 1))" layer="0" generic-type="g"> 
  <node label="insight into behaviour and consequences" code="gen-insght-

behvr" values="scale" value-mg="((0 0)(10 1))" />  

  <node label="responsibility for impact of behaviour on others" code="gen-

resp-impct-oth" values="scale" value-mg="((0 0)(10 1))" />  

  <node label="need for help with difficulties" code="gen-nd-hlp-diff" 

values="scale" value-mg="((0 0)(10 1))" />  

  </node> 

- <node label="physical health problems" code="gen-phys-hlth-prb" 

values="scale" layer="0" generic-type="gd"> 
  <node label="when life-threatening or degenerative illness first diagnosed" 

code="gen-phys-hlth-deg-diag" values="date-month" value-mg="((3 1)(36 
0))" />  

  <node label="pain" code="gen-phys-hlth-pain" values="scale" value-mg="((0 

0)(10 1))" />  
  <node label="disability" code="gen-phys-hlth-disa" values="scale" value-

mg="((0 0)(10 1))" />  
  <node label="communication impairment" code="gen-com-imp" values="scale" 

value-mg="((0 0)(10 1))" />  
  <node label="deterioration in physical health" code="gen-phys-hlth-det" 

values="scale" value-mg="((0 0)(10 1))" />  
  </node> 

- <node label="concordance with health services/medication/therapies" 

code="gen-meds-therpy" layer="0" generic-type="g"> 
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  <node label="concordance" code="gen-meds-concord" values="scale" value-

mg="((0 0)(10 1))" />  
  <node label="person's perception of the supportiveness of service received" 

code="gen-serv-perc-supp" values="scale" value-mg="((0 0)(10 1))" />  
  <node label="time since person accessed services" code="gen-serv-last-acc" 

values="scale" value-mg="((0 0)(10 1))" />  
  <node label="perceived benefit of medication/therapies" code="gen-med-perc-

benft" values="scale" value-mg="((0 0)(10 1))" />  
  </node> 

- <node label="adverse life events" code="adv-life-event" layer="0" filter-q="" 

generic-type="gd"> 

- <node label="traumatic experiences" code="gen-life-trauma" generic-

type="gd"> 
- <node label="recent traumatic life changes" code="gen-recent-life-trauma" 

generic-type="g"> 
  <node label="detrimental changes to relationships" code="gen-relat-detr-chg" 

generic-datum="g" values="scale" value-mg="((0 0)(10 1))" />  
  <node label="recent or potential detrimental change to employment" 

code="gen-rec-bad-job-ch" generic-datum="g" values="scale" value-mg="((0 
0)(10 1))" />  

  <node label="when life-threatening or degenerative illness first diagnosed" 

code="gen-phys-hlth-deg-diag" generic-datum="g" values="date-month" 
value-mg="((3 1)(36 0))" />  

  </node> 

- <node label="abuse to person" code="gen-life-abuse" filter-q="" generic-

type="g"> 
- <node label="sexual abuse" code="gen-life-sex-abuse" values="scale" value-

mg="((0 0)(10 1))" filter-q=""> 
  <node label="most recent episode of sexual abuse" code="gen-sex-abse-last" 

values="date-year" value-mg="((0 1)(5 0.3))" ERROR="This node is 
persistent; however the following ancestor nodes are not: gen-life-sex-

abuse" />  

  <node label="sexual abuse during childhood (0 to 16)" code="gen-sex-abse-

as-ch" values="nominal" value-mg="((YES 1)(NO 0))" ERROR="This node is 

persistent; however the following ancestor nodes are not: gen-life-sex-
abuse" />  

  </node> 

- <node label="physical abuse" code="gen-phys-abse" values="scale" value-

mg="((0 0)(10 1))" filter-q=""> 
  <node label="most recent episode of physical abuse" code="gen-phys-abse-

last" values="date-month" value-mg="((0 1)(24 0.2))" ERROR="This node is 
persistent; however the following ancestor nodes are not: gen-phys-abse" 

/>  

  <node label="physical abuse during childhood (0 to 16)" code="gen-phy-abse-

as-ch" values="nominal" value-mg="((YES 1)(NO 0))" ERROR="This node is 

persistent; however the following ancestor nodes are not: gen-phys-abse" 
/>  

  </node> 

- <node label="emotional abuse" code="gen-emot-abse" values="scale" value-

mg="((0 0)(10 1))" filter-q=""> 
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  <node label="most recent episode of emotional abuse" code="gen-emot-abse-

last" values="date-month" value-mg="((0 1)(24 0.2))" ERROR="This node is 
persistent; however the following ancestor nodes are not: gen-emot-abse" 

/>  
  <node label="emotional abuse during childhood (0 to 16)" code="gen-emo-

abse-as-ch" values="nominal" value-mg="((YES 1)(NO 0))" ERROR="This 
node is persistent; however the following ancestor nodes are not: gen-

emot-abse" />  
  </node> 

  <node label="financial abuse" code="gen-financial-abuse" values="nominal" 

value-mg="((YES 1)(NO 0))" />  

  </node> 

  <node label="forensic/criminal proceedings" code="gen-forensic-proc" 

values="nominal" value-mg="((YES 1)(NO 0))" />  

  </node> 

  <node label="environment person grew up in" code="gen-env-grew-up" 

values="scale" value-mg="((0 0)(10 1))" />  
  <node label="eating disorders" code="gen-eating-dis" values="scale" value-

mg="((0 0)(10 1))" />  
  <node label="educational experience" code="gen-educ-expr" values="scale" 

value-mg="((0 0)(10 1))" />  
  </node> 

- <node label="demographics" code="gen-demog" generic-type="gd"> 

  <node label="age" code="gen-age" values="date-year" value-mg="((14 0)(20 

1)(30 0.5)(50 0)(60 0.3)(80 1))" />  

  <node label="gender" code="gen-gender" values="nominal" value-mg="((MALE 

1)(FEMALE 0))" />  

  <node label="relationship status" code="gen-marital-status" values="nominal" 

value-mg="((SINGLE 0.8)(WITH-PARTNER 0)(SEPARATED-FROM-PARTNER 

1)(PARTNER-DIED 1))" />  
- <node label="occupants sharing accommodation" code="gen-accom-share" 

filter-q=""> 

- <node label="Dependents" code="gen-accom-depndnts" filter-q=""> 

  <node label="number of dependents" code="gen-accom-num-dep" 

values="integer" value-mg="((0 0)(8 1))" />  
  <node label="age of youngest dependent" code="gen-dep-ygnst-age" 

values="integer" value-mg="((0 1)(10 0.8)(18 0))" />  
  </node> 

  <node label="partner sharing" code="partner-share-acc" values="nominal" 

value-mg="((no 1)(yes 0))" />  

  <node label="number of non-dependents sharing accommodation" code="gen-

accm-share-nd" values="integer" value-mg="((0 0)(5 1))" />  
  </node> 

  <node label="ethnicity" code="gen-ethnicity" values="nominal" value-

mg="((WHITE-BRITISH 0)(WHITE-IRISH 0)(OTHER-WHITE 0)(WHITE-

BLACK-CARIBBEAN 0)(WHITE-BLACK-AFRICAN 0) (WHITE-ASIAN 
0)(OTHER-MIXED 0)(INDIAN 0)(PAKISTANI 0)(BANGLADESHI 0)(OTHER-

ASIAN 0)(BLACK-CARIBBEAN 0) (BLACK-AFRICAN 0)(OTHER-BLACK 
0)(CHINESE 0)(OTHER-ETHNIC 0))" />  

  </node> 

  </node> 
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