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Abstract6

Recent advances in technology have produced a significant increase in the avail-7

ability of free sensor data over the Internet. With affordable weather monitoring8

stations now available to individual meteorology enthusiasts, a reservoir of real9

time data such as temperature, rainfall and wind speed can now be obtained for10

most of the world. Despite the abundance of available data, the production of us-11

able information about the weather in individual local neighbourhoods requires12

complex processing that poses several challenges.13

This paper discusses a collection of technologies and applications that har-

vest, refine and process this data, culminating in information that has been tai-

lored toward the user. In this instance, this allows a user to make direct queries

about the weather at any location, even when this is not directly instrumented,

using interpolation methods provided by the INTAMAP project. A simplified

example illustrates how the INTAMAP web processing service can be employed

as part of a quality control procedure to estimate the bias and residual variance

of user contributed temperature observations, using a reference standard based

on temperature observations with carefully controlled quality. We also consider

how the uncertainty introduced by the interpolation can be communicated to the

user of the system, using UncertML, a developing standard for uncertainty rep-
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resentation.
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1. Introduction16

The term ‘mashup’ in Web development refers to the combination of different17

services and data into a single integrated tool. This paper discusses a mashup in18

which weather data from hundreds of individual sensors is harvested, refined and19

processed using several interoperable standards, to provide information that has20

been customised to a user’s requirements. To support the practical use of this21

data, streamlined interfaces have been developed that provide access for small22

footprint devices, e.g. mobile phones. The combination of these technologies23

results in a tool capable of navigating seemingly complex data and providing24

answers to highly specific queries such as “What is the temperature in my garden25

right now?” and “Will the roads be icy on my way home?”.26

Section 2 introduces the mashup architecture with an overview of the data27

flow. Section 3 details the harvesting process and the interface to the data. Sec-28

tion 4 notes the importance of uncertainty propagation through the system, and29

describes the methods and standards used to achieve this. Section 5 discusses30

the refining and processing stages that occur as part of the INTAMAP interpola-31

tion service 1. Section 6 describes a technique used to estimate the uncertainty32

of the user-contributed data, using the INTAMAP service, and Section 7 gives33

more detail on client applications that use the framework to gather information34

that has been tailored for them. Finally, we gather conclusions and insights in35

Section 8.36

1http://www.intamap.org
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2. Overview37

The system discussed in this paper provides access to user-contributed weather38

data through open standards. Wrapping Weather Underground data with an in-39

teroperable interface allows more structured access than presently available. The40

system also provides a mechanism for estimating the uncertainty and bias of the41

Weather Underground data; providing users with more detailed information.42

The interfaces used within the system employ the latest technologies from43

the Open Geospatial Consortium (OGC). The OGC is a standards organisation44

that develop and maintain XML standards for geospatial services. Specifically,45

a Sensor Observation Service (SOS) (Na and Priest, 2007) interface provides an46

access layer to the underlying weather data. A SOS interface provides the ba-47

sic create, update, retrieve and delete functionality, commonly associated with48

databases, for sensor-observed data. Data can be filtered spatially, temporally or49

by specific attribute values. The uncertainty estimation process is provided by50

the INTAMAP (INTerpolation and Automated MAPping) project. INTAMAP51

is a Web Processing Service (WPS) (Schut, 2007), providing near real-time in-52

terpolation of sensor data (Williams et al., 2007). The WPS interface is more53

abstracted than the SOS, providing a loose framework within which any arbi-54

trary process may reside. Data communicated between the services and clients55

is encoded using the Observations & Measurements (O&M) (Cox, 2007) stan-56

dard. O&M provides a common encoding for all sensor-observed data. However,57

the properties of an observation within O&M are flexible, allowing the integra-58

tion of other XML specifications. Specifically this system integrates UncertML,59

a language for quantifying uncertainty (Williams et al., 2009). UncertML 2 is60

2http://www.uncertml.org
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a relatively new XML vocabulary and is currently under discussion within the61

OGC. Embracing the open standards laid out by the OGC results in a collection62

of loosely-coupled, autonomous, services. These design criteria underpin the63

philosophy behind Service Oriented Architectures (SOAs) (Erl, 2004, 2005).64

Each of the components depicted in Figure 1 provides specific functionality65

that combines to produce a usable system. This section gives a brief overview of66

the main components, while Sections 3 – 7 investigate the finer details.67

The system components can be logically divided into three groups: data ac-68

quisition, processing services and client applications. The data is acquired from69

the Weather Underground Web site and stored in a database (Step 1). Access to70

the data is provided by a SOS, (discussed in Section 3.2.2), which is essentially71

a Web Service providing simple insertion and retrieval methods for observation72

data. The observations returned by the SOS are encoded in the O&M schema, as73

discussed in Section 3.2.1.74

Steps 2-5 cover the processing and correction of the data. Processing of75

the data is handled by a WPS, a standardised interface for publishing geospatial76

processes. The WPS used here was developed by the INTAMAP project. It77

provides bleeding-edge interpolation methods through a WPS access layer, and78

is discussed in greater detail in Section 5. Section 6 outlines a Matlab application79

that utilises INTAMAP and the SOS interface to estimate uncertainties on the80

user-contributed data collected from Weather Underground.81

Step 6 is the stage at which data is actually consumed or updated by client82

applications using the processing and access components, and these applications83

are discussed in Section 7. The whole system demonstrates the benefits of IN-84

TAMAP and of the interoperable infrastructure to which INTAMAP lends itself.85
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Figure 1: An overview of the system architecture shows the flow of data from the Weather Un-
derground Web site to the end-user client application. A SOS provides an interoperable interface
to the data. Uncertainty of the user-contributed data is estimated using the INTAMAP service,
and used to update observations. The uncertainty (in this case, the prediction variance) of the
final interpolated map is also conveyed to the client.
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3. Data acquisition, storage and access86

The system outlined in the previous section revolves around user-contributed87

data. All data used within this system is weather data, specifically temperature88

values in degrees Celsius. However, the software and statistical methods dis-89

cussed have general applicability and might be used with a variety of datasets,90

including other weather variables such as pressure, soil contamination measure-91

ments, bird sightings (transformed into density maps) or disease reports from92

monitoring networks.93

3.1. Weather Underground94

Weather Underground3 is an online community of weather enthusiasts pro-95

viding up-to-the-minute information about current weather conditions around96

the globe. Under its surface lies a vast repository of freely available weather data97

recorded by thousands of individual weather stations. This data is proprietary98

to Weather Underground Inc. and may be used for non-commercial purposes99

provided that the source is clearly acknowledged. Commercial use, however, is100

not permitted without advance written consent 4. For this experiment we used a101

subset of data gathered from the Weather Underground repositories.102

Each of the contributing stations on Weather Underground has a ‘current103

conditions’ XML file which is updated each time the station sends a new set of104

observations. However, this XML file does not conform to any recognised XML105

Schema standard, severely hindering third party consumption. Supplementing106

the ‘current conditions’ file is a ‘historic observations’ file containing all previ-107

ous data; however, this is formatted in Comma Separated Values format, which108

3http://www.wunderground.com
4http://www.wunderground.com/members/tos.asp
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obstructs interoperability. Furthermore, access to the data is hidden behind a109

series of Web pages that offer no interoperable API, and limited querying func-110

tionality. Section 3.2 discusses how we solved these problems by providing an111

interoperable infrastructure to the Weather Underground data.112

While user-contributed data is vast in quantity, it may vary drastically in qual-113

ity. Issues such as quality of sensing equipment and location of sensor will affect114

the accuracy and precision of any observed values. Quantifying these uncer-115

tainties probabilistically allows more informed and sophisticated processing, for116

example through a Bayesian framework (Gelman et al., 2003). Weather Under-117

ground currently does not provide any uncertainty information with the observa-118

tion data, and so Section 6 outlines a technique for estimating these uncertainties119

using interpolation. The reference level for this technique is based on temper-120

ature measurements from the UK’s Met Office5, which have well-characterised121

uncertainty.122

3.2. Interoperable Weather Underground infrastructure123

This section discusses solutions to several important issues with Weather Un-124

derground data, namely:125

• no recognised interoperable standard for describing observation data,126

• no interoperable interface to query and access the data, and127

• no quantified uncertainty information.128

These are issues which are likely to arise with many user-contributed data129

networks, so these solutions could be adapted to many other contexts.130

5http://www.metoffice.gov.uk
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3.2.1. Observations & Measurements131

Weather Underground data does not conform to a recognised XML standard,132

and is therefore cumbersome and difficult to integrate into existing standards-133

compliant software. For the purpose of the system outlined in Section 2, the134

Observations & Measurements (O&M) standard was adopted. O&M was devel-135

oped and agreed by the OGC, and is a conceptual model and encoding for de-136

scribing observations (Cox, 2007). The conceptual model outlined in the O&M137

specification is perfectly suited to describing data recorded at weather stations,138

and consequently is ideal for encoding data from the Weather Underground. The139

base of the model can be broken down into a feature of interest, i.e. the obser-140

vation target (which usually includes a geospatial component), and an observed141

result. Further information is captured within other properties, some of which142

are detailed below:143

observedProperty the phenomenon for which the result describes an estimate.144

procedure a description of the process used to generate the result, typically145

described using the Sensor Model Language (Botts and Robin, 2007).146

resultQuality quality information about the observed value. This is pertinent to147

the third issue outlined in Section 3.2.148

Utilising the O&M language as a transportation device lays the foundations149

of an interoperable weather data exchange platform. To build on these founda-150

tions we employ another OGC standard, the Sensor Observation Service.151

3.2.2. Sensor Observation Service152

With the standard closed interface, access to and subsequent processing of153

the Weather Underground data is difficult. Providing an open, XML-based, API154
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opens up this wealth of information for consumption by standards-compliant155

software. The Sensor Observation Service (SOS) standard (Na and Priest, 2007)156

complements O&M by providing a series of methods for accessing observation157

data. The SOS is a Web Service which outputs requested observations in the158

form of an O&M instance document. By utilising the OGC Filter encoding spec-159

ification (Vretanos, 2005), complex queries can be performed, filtering by time,160

space, sensor or phenomenon.161

The SOS employed in this system was built around the 52 North SOS imple-162

mentation6. Currently, no existing SOS implementation provides the function-163

ality to serve observations with attached uncertainties. For the purposes of this164

system, therefore, we developed an extension of the 52 North SOS that allows165

uncertainty to be included in the SOS output through the use of UncertML. This166

extension provides the functionality to describe observation errors by a variety167

of means; as statistics (variance, standard deviation etc), as a set of quantiles, or168

as probability distributions. The generated UncertML is inserted into the O&M169

resultQuality property. UncertML is discussed in detail in the following section.170

4. Propagating uncertainty through a series of interoperable services171

Uncertainty exists within all data measured by sensors, and the magnitude172

of this uncertainty increases greatly in the case of user-contributed data. Issues173

such as poor quality measuring equipment, ill-positioned sensors and observa-174

tion operator errors all contribute to unreliable measurements. Processing this175

data through models, such as interpolation, propagates these uncertainties, and176

this is a particularly important consideration in the case of spatially-referenced177

6http://52north.org/
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data, where recorded sensor location may also be unreliable Heuvelink (1998).178

In order to optimally utilise any data (for example, within a decision making sup-179

port tool) users require as complete a numerical description of its uncertainties180

as possible.181

Traditionally, environmental models and decision support tools have been182

implemented as tightly-coupled, legacy software systems (Rizzoli and Young,183

1997). When migrating to a loosely-coupled, interoperable framework, as dis-184

cussed here, a language for describing and exchanging uncertainty is essential.185

UncertML, a language capable of describing and exchanging probabilistic rep-186

resentations of uncertainty, was used throughout this system.187

4.1. UncertML overview188

UncertML is an XML language capable of quantifying uncertainty in the189

form of various statistics, probability distributions or series of realisations. This190

section provides a brief overview of UncertML; for a complete guide we refer191

the user to Williams et al. (2009).192

All uncertainty types discussed here (e.g., the Statistic, the Distribution193

and the Realisations) inherit from the AbstractUncertaintyType element194

(Figure 2). This allows all types to be interchanged freely, giving an abstract195

notion of ‘uncertainty’, whether it be described by summary statistics, density196

functions or through a series of simulations. It should be noted that the scope of197

UncertML does not extend to issues covered by other XML schemata including198

units of measure and the nature of the measured phenomena. This separation of199

concerns is deliberate, and allows UncertML to describe uncertainty in a broad200

range of contexts.201
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Figure 2: An overview of the UncertML package dependencies.

<un:Statistic definition="http://dictionary.uncertml.org/
statistics/mode">
<un:value>34.67</un:value>

</un:Statistic>

Listing 1: A Statistic describing the mode value of a random variable.

4.1.1. Statistics202

Most statistics are described using the Statistic type in UncertML. As with203

all types in UncertML, the Statistic references a dictionary via the definition204

attribute. It is this semantic link, combined with a value property, that enables205

a single XML element to describe a host of different statistics. Listing 1 shows206

an UncertML fragment describing the statistic ‘mode’.207

UncertML also provides two aggregate statistic types. The StatisticsRecord208

is used to group numerous different statistics and the StatisticsArray is a con-209

cise method for encoding values of the same statistic type. Aggregates may be210

used within one another, i.e. a StatisticsArray of StatisticsRecords and211
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<un:Distribution definition="http://dictionary.uncertml.
org/distributions/gaussian">
<un:parameters>

<un:Parameter definition="http://dictionary.uncertml
.org/distributions/gaussian/mean">
<un:value>34.564</un:value>

</un:Parameter>
<un:Parameter definition="http://dictionary.uncertml

.org/distributions/gaussian/variance">
<un:value>67.45</un:value>

</un:Parameter>
</un:parameters>

</un:Distribution>

Listing 2: A Gaussian Distribution with mean and variance parameters.

vice versa.212

4.1.2. Distributions213

Within UncertML, parametric distributions are syntactically similar to statis-214

tics. However, semantically, distributions provide a complete description of a215

random variable and are therefore an integral component. The Distribution216

type in UncertML is used to describe any parametric distribution; the addition of217

‘parameters’ instead of a single value differentiates the Distribution from the218

Statistic (Listing 2).219

A DistributionArray allows multiple distributions to be encoded con-220

cisely. Types for describing mixture models and multivariate distributions also221

exist.222

4.1.3. Realisations223

In some situations, a user may not be able to simply represent the uncertain-224

ties of the data with which they are working. In such a situation, a sample from225
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the random quantity might be provided, allowing uncertainty to be described226

implicitly. Within UncertML this is achieved using the Realisations type.227

4.2. Propagating UncertML through interoperable services228

UncertML was integrated into several key areas throughout the system out-229

lined in Section 2. Firstly, the access and storage of the user-contributed data230

is handled by an extended (i.e., ‘uncertainty-enabled’) implementation of the 52231

North Sensor Observation Service (Section 3). Secondly, the INTAMAP Web232

Processing Service, which provides advanced interpolation methods in an auto-233

matic context, can utilise UncertML-encoded information. The only mandatory234

input to INTAMAP is a collection of observations encoded in the Observations &235

Measurements schema. Where observation errors are known, they are encoded236

as UncertML and included in the O&M instance. In this system the observations237

came directly from the UncertML-enabled SOS. Thirdly, the output of the IN-238

TAMAP service is an UncertML document including any propagated uncertain-239

ties. Client applications are then able to produce visualisations of the predictions240

and accompanying uncertainty.241

5. INTAMAP242

Providing weather information that has been tailored toward the user relies243

on either knowing the weather at the user’s location, or, more frequently, predict-244

ing the weather at the user’s location using observed data at known locations.245

This process of prediction is typically called interpolation. The INTAMAP (IN-246

Teroperability and Automated MAPping) project provides an open interface to247

complex geostatistical algorithms (Williams et al., 2007). Combining an inter-248

operable interface and automated interpolation methods allows INTAMAP to be249

13



accessed by inexperienced geostatistical users.250

INTAMAP uses, as an interface, the interoperable framework provided by251

the OGC’s Web Processing Service (WPS) specification. This framework sup-252

plies a formal structure that enables the description of any geostatistical process253

through its inputs and outputs. INTAMAP has a single mandatory input - a series254

of observations encoded in the Observations & Measurements standard. How-255

ever, several other optional inputs exist to allow the user to customise the work256

flow. Using these options, a user can, for example, specify the prediction lo-257

cations using Geography Markup Language (GML) (Portele, 2007), or request258

exceedance probabilities using UncertML. Ultimately, however, the capacity of259

INTAMAP to automate many choices is what makes the service accessible. For260

example, if users supply the bare minimum inputs, without specifying an algo-261

rithm or supplying a GML-encoded spatial domain for their results, the service262

will select the most appropriate interpolation algorithm based on the statistical263

characteristics of the input observations, and will automatically calculate the ex-264

tent and resolution of the output maps, based on their spatial arrangement. This265

allows users to easily test and explore INTAMAP’s capabilities, and refine their266

requirements as they learn more about the options offered. A typical output of267

INTAMAP is the mean (predicted value) and prediction variance (a measure of268

uncertainty), encoded in UncertML, at a single location, at several locations or269

over a regular grid. Complementing the Web Processing Service is an Appli-270

cation Programming Interface (API) written in Java. This API handles XML271

writing and parsing, allowing INTAMAP to be integrated into existing Java ap-272

plications with very few lines of code. Tools within the API also allow the cre-273

ation, where applicable, of GeoTiff files to visualise the results.274

Behind the WPS interface lies an interpolation engine written in the statistical275
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language ‘R’7. Several differing interpolation methods are available, catering for276

a range of scenarios. Automap (Hiemstra et al., 2008) provides an automatic im-277

plementation of Ordinary Kriging. For contexts where the data contains extreme278

values, or “hot spots”, a Copula Kriging method (Kazianka and Pilz, 2009) is279

provided. A third method, Projected Spatial Gaussian Process (PSGP) (Ingram280

et al., 2008) addresses two issues:281

• the cubic growth in computational complexity for likelihood based infer-282

ence in Gaussian process models (model-based geostatistics) which limits283

their application to smallish data sets of less than 2000 observations;284

• the inability of most geostatistical methods to deal with non-Gaussian er-285

rors on observations, or non-linear sensor models.286

The first point makes PSGPs particularly useful when tackling large datasets287

(more than 2000 observations). However, it is the second point that enables the288

PSGP method to propagate the observation errors within the user-contributed289

data. INTAMAP is able to select an appropriate interpolation method for a spe-290

cific dataset using several criteria; data characteristics (e.g., the presence of ex-291

treme values); time constraints; and the presence or absence of quantified uncer-292

tainties on the observations.293

6. Using INTAMAP to estimate observation error on user-contributed data294

The data obtained from Weather Underground is submitted by a range of295

users, who will apply differing levels of quality control to their data, and site296

their sensors in a wide variety of locations and exposures. In contrast, weather297

7http://www.r-project.org
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data collected by professional meteorological services undergoes rigorous qual-298

ity control, and is collected under standardised conditions, including specifica-299

tion of the instrument housing and height, the surrounding enclosure and the300

exposure of the site (Oke, 1982). When instruments (and in particular the ther-301

mometers which we consider here) are sited in urban areas, their readings are302

likely to be strongly affected by the micro-climates that exist around build-303

ings. These micro-climates, which can particularly affect readings from easily-304

accessible monitoring locations such as domestic homes and gardens, are largely305

related to changes in thermal storage and associated radiative balance (World Me-306

teorological Organization, 1983). It is also quite possible that some instruments307

might not be correctly screened from direct radiation, or are attached to walls308

that are themselves exposed. In the following section we explore how statistical309

methods, based on using the INTAMAP web service, can be used in a simplis-310

tic manner to estimate the observation bias and residual observation variance in311

these user-contributed data. We note that the methods applied here are intended312

to be illustrative. Therefore they often employ rather simplistic assumptions,313

which will be discussed later.314

In order to address the issue of bias in the Weather Underground data, we315

need to determine a reference level or standard. In this work we use temper-316

ature observations from the Met Office synoptic observing network, (denoted317

TMO), which were obtained from the British Atmospheric Data Centre. Hourly318

temperature data were obtained at 203 synoptic stations covering the UK for the319

27th of May 2009. This day was chosen because it was relatively challenging to320

the simplifying assumptions made in the analysis. A warm front was crossing321

the UK from the west, with clearer conditions over northern Scotland, thus the322

weather situation was complex, with cloudy skies over most of the UK, a situa-323

16



tion that might be expected to minimise any biases due to micro-climatic effects,324

but clearer skies over the north and east of Britain which could show significant325

biases. The Weather Underground temperature data (denoted TWU ) was also ob-326

tained for the same period, and the observations closest in time to the hourly327

synoptic data were selected for each site, so long as they were within 15 minutes328

of the synoptic observation time.329

A gross outlier removal method excluded all observations outside the range330

−25oC to +30oC which is climatologically reasonable. The aim of the outlier331

removal is to remove outliers in the Weather Underground data that are the re-332

sult of instrument failure, transmission errors and other processes which produce333

very implausible observations. Visualising the resulting data reveals no further334

clearly defined outliers. After this selection around 500 Weather Underground335

stations were available for each hour.336

A more sophisticated treatment of outliers is possible, and ultimately desir-337

able, for automated preprocessing and quality control of user-contributed data.338

Several detailed reviews on the topic offer and evaluate techniques which will339

be of value for further development of such systems. These include algorithm340

comparison and benchmarking exercises for interpolating noisy data, such as the341

Spatial Interpolation Comparison (EUR, 2003, 2005), and more detailed consid-342

erations of spatial outliers (points whose values are particularly unusual in the343

context of their local spatial neighbourhoods) (Shekhar et al., 2003; Chawla and344

Sun, 2006). Spatial outliers are especially important in the context of automated345

decision support because of the capacity of ’false positive’ values to trigger alerts346

and the opposing need to capture genuine extreme events (Sharma et al., 1999;347

Pilz and Spock, 2008). A number of studies have considered how existing statis-348

tical methods to detect clusters and spatial outliers might be extended for auto-349

17



Algorithm 1 Outline of the simple bias estimation algorithm applied to the
Weather Underground data.

1: Remove gross outliers from the Weather Underground data
2: Randomly split the Met Office data into training and validation sets
3: for hour = 1 to 24 do
4: Use the psgp method on the INTAMAP system to predict T̂WU using TMO

with a variance estimated to be 0.36oC2

5: Compute δTWU = TWU − T̂WU
6: end for
7: Compute T bias

WU = E[δTWU ]
8: Compute T var

WU = var[δTWU ]

mated systems (Patil and Taillie, 2003; Brenning and Dubois, 2008) while recog-350

nising the influence of heterogeneous covariates (Goovaerts and Jacquez, 2004).351

This body of work offers some robust solutions for future quality control Web352

Services; however, for this simple exploratory example, such treatment was not353

deemed necessary.354

The basic idea of this analysis is that we employ the INTAMAP interpolation355

system to predict the temperature at the Weather Underground locations, based356

on the Met Office synoptic station observations, which we assume are unbiased.357

In order to withhold a set of observations for validation of our approach the358

synoptic station data is split into two halves using random sampling. One half359

is used for prediction at the Weather Underground locations and the other half360

retained for validation. Since random sampling is used for the locations of the361

training and validation sets, it is possible that the results could be sensitive to362

this partition; however, a sensitivity analysis reveals that the results shown in the363

paper are stable with respect to this partition, presumably because 100 stations is364

a sufficiently large number to attain reasonable coverage of Britain. A summary365

of the overall approach is shown in Algorithm 1. The approach is very simplistic,366

18



Figure 3: Predicted versus observed temperatures for Weather Underground (blue crosses) and
Met Office (red circles) stations at 09:00 on the 27th May 2009.

but illustrates well the dangers of using uncorrected user-contributed data.367

Figure 3 shows a plot of predicted versus observed temperatures. It is well368

known that temperatures are extremely sensitive to elevation, particularly in lo-369

cations such as Britain (Cornford and Thornes, 1996). Therefore, prior to all in-370

terpolation a linear trend in both x,y and elevation is removed. The trend model371

is estimated using least squares methods, which is strictly not appropriate here372

due to the correlated residuals, but does allow the INTAMAP service to be used373

without modification. A more refined version could employ universal kriging374

or regression kriging (Hengl et al., 2007), however for this illustration the dif-375

ferences are likely to be small. The typical lapse rates estimated for the period376

examined range from 3.5 to 5.1oC/km, and the inclusion of the lapse rates im-377

proves the estimation of the variograms in the interpolation process as might be378

expected. The residual process is spatially correlated and a variogram is fitted in379
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Figure 4: Histograms of the estimated bias (left) and residual variance (right) for Weather Un-
derground temperatures for 27th May 2009.

the INTAMAP system with range parameters typically between 100 and 200 km,380

sill variances typically 2oC2 and nuggets typically 0.5oC2, this varying with time381

of day. The average minimum distance between Met Office stations in the train-382

ing data is ∼ 40 km making spatial prediction of the regression residuals using383

kriging appropriate. The predictions are based on the training set of Met Office384

stations, and are made at both Weather Underground and Met Office validation385

set locations. It is immediately clear that the Weather Underground stations are386

significantly biased, being typically some 2oC warmer than might be expected387

(the mean bias is 2.34oC and the standard deviation is 1.09oC). The validation388

set of Met Office stations remains essentially unbiased. The scatter is reduced389

for the Met Office stations compared to earlier work which ignored the effect of390

elevation. The scatter for the Weather Underground stations is larger, and is not391

significantly changed by the addition of elevation as a predictor, suggesting that392

there might be other factors affecting these which are not connected to elevation.393

Looking at the statistics of the bias and residual variance based on these394

predictions, on average the Weather Underground stations are significantly posi-395

tively biased (although not all are), and many have rather large residual variances396

(Figure 4). The positive bias might be expected – Weather Underground stations397
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Figure 5: Mapping the estimated bias (colour) and residual variance (symbol size) for Weather
Underground temperatures for 27th May 2009.

are often sited in urban areas, since they are often in the owners’ gardens, which398

tend to be more sheltered and closer to large buildings than the standard Met Of-399

fice enclosures. Figure 4 shows that while many Weather Underground stations400

are significantly biased, some are not biased at all with respect to the synoptic401

station measurements. This emphasises the degree of variability in the estimated402

biases – a single bias estimate for the whole Weather Underground station net-403

work would not be sufficient. The same pattern can be seen in the variance.404

Figure 5 shows the spatial distribution of both the estimated bias (colour)405

and variance (size) at the Weather Underground sites where data was available406

for the full 24-hour study period. There are interesting patterns in this plot, but407

it is rather difficult to ascribe these to specific causes – they might be related to408

meteorological conditions, social differences in the locations of instruments and409
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Figure 6: Testing the bias correction, using corrected and raw Weather Underground data to
predict at the withheld Met Office stations. Prediction bias (left) and root mean square error
(right) for 27th May 2009.

local environment, or, most likely, a combination of the above. It should also be410

noted that the bias correction will be most reliable when the Met Office stations411

are close to the Weather Underground stations, due to the use of a random field412

model. If this method for bias estimation were to be used in a more serious appli-413

cation, further developments of the model would be required and more extensive414

model validation would be necessary to ensure the robustness of the results.415

Such a bias-corrected set of observations from Weather Underground could416

have two important advantages, as follows.417
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Firstly, it would allow Weather Underground data to be used as standardised418

data inputs in a wide variety of application domains - for example;419

• monitoring climate change;420

• numerical weather model data assimilation streams421

• mapping surface air temperature to explore vegetation growth in the UK.422

- with the caveats that to make full use of the data a more complete characterisa-423

tion of the micro-meteorological environment of the stations would be required.424

There might be some concern that such processed data would not be suitable for425

monitoring climate change, because the bias correction is based on the reference426

stations (the Met Office network). However this network is carefully quality427

controlled and represents the best estimate we have of surface climate change.428

An interesting point for future analysis would be to monitor how the bias and429

variance changes with changing climate – do the micro-climatic effects change430

as climate changes? If these data were to be used in a climate change setting it431

is important that a more rigorous error analysis and propagation should be per-432

formed. In the data assimilation context the corrected measurements would have433

realistic error variances, which would down-weight the impact of less represen-434

tative observation locations, but still allow the observations to be used. If further435

predictors were available, the variance in the observations might be explained as436

a bias dependent on, for example, local site characteristics. This would allow a437

further bias correction in each observation and increase the information content438

(in a variance / entropy reduction sense) making the observation more useful for439

data assimilation.440

Secondly, it would allow Weather Underground users to establish the bias441

and uncertainties in their observations, which could help identify siting prob-442
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lems and lead to improved instrument location practice amongst amateur weather443

recorders. Figure 6 shows the effect of the bias correction. Here the INTAMAP444

interpolation service is employed twice for each hour of Weather Underground445

observations - once correcting for bias and using the estimated variance (from446

the procedure described above), once using the raw data. As expected, the pre-447

dictions at the Met Office test locations (i.e., the validation data locations which448

were not used in the bias estimation at all) are almost totally unbiased if the449

Weather Underground data is bias corrected, and the root mean square prediction450

error is greatly improved using the bias correction and variance estimates. Note451

that there remains a time-varying signal in the bias correction which indicates452

that, unsurprisingly, the time-stationary bias model is probably too simplistic.453

We note that the approach described herein is an initial attempt to address454

the uncertainty in user-contributed data, and has several potentially significant455

limitations:456

• we do not account for external variables and their influence on surface air457

temperature, other than elevation;458

• we treat the bias and variance as being constant in time;459

• we do not fully utilise the uncertainty in the predictions from the IN-460

TAMAP system in computing the bias and variance;461

• spatial outliers are not explicitly identified or removed in this instance;462

• we do not iterate the algorithm to further improve the performance.463

In further work it would be possible to develop a more complete Bayesian frame-464

work for estimating the uncertainties on this user-contributed data (particularly465
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Figure 7: Using the INTAMAP system to interpolate temperature data from Weather Under-
ground for 15:00, 27th May 2009. Note that the PSGP method was used to account for the
estimated bias and variance in the observations.

where a reference data set is available), based on a spatio-temporal modelling466

approach, much like Kalman filtering (Kalman and Bucy, 1961). This ought467

to include as additional external inputs as many factors as possible that would468

help in explaining the variation in surface air temperatures, including elevation,469

distance to coast, urbanisation and a range of other micro-meterological factors.470

Having estimated the bias and residual variance of the Weather Underground471

stations, we have exploited the ability of the PSGP method on the INTAMAP472

interpolation Web service to produce an interpolation for the whole of the UK.473

This interpolation used the Weather Underground data and accounted for the spa-474
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tially varying bias and variance in the observations. The resulting interpolation,475

displayed on Google Earth, is shown in Figure 7. To our knowledge this is the476

first bias-corrected map of temperatures to be produced from user-contributed477

data at this level of detail.478

7. Clients for using and contributing data479

The framework developed here provided a basis for several interesting client480

applications to be developed. This section discusses two of these applications,481

demonstrating their operation.482

7.1. Contributing data with a mobile device483

The mobile client 8 was developed using Java Mobile Edition and can run484

on any device which supports this platform. Interpolation requests and map im-485

ages are sent and received via the Internet using any available data connection486

supported by the device (e.g. WiFi, 3G). The client contains several features487

that have been simplified to allow operation on low-powered mobile devices, in488

addition to keeping the transferred data packets to a minimum.489

The internal GPS receiver of a supported device is used to retrieve the lon-490

gitude and latitude of the user. The client then downloads map images from491

OpenStreetMap on which the current location of the user is clearly pinpointed492

with a red marker.493

The client can retrieve the latest temperature readings from the SOS using494

a simplified Web interface. This interface relies on HTTP GET requests rather495

than XML and returns comma separated values (x,y,z). Sacrificing some of the496

functionality provided by an XML interface allows a typical SOS response to be497

8http://www.intamap.org/tryMobileClient.php
26



reduced in size from 2.1 Megabytes to 13 Kilobytes (a factor of 165). Only the498

observations that are within the boundaries of the current view are retrieved.499

With a strong emphasis on user-contributed data, it is of course important500

to allow clients to upload information as well as access it. Therefore, users can501

also create and plot their own observations in addition to those retrieved from the502

SOS. A location can be chosen by either selecting a point on the map, using the503

current GPS coordinates of the device, or by entering the coordinates manually.504

Once the coordinates have been entered a temperature value is specified and the505

data is stored.506

The user can submit interpolation requests to INTAMAP using the current507

data plotted on the screen. The client formats the data into an XML document508

which is then sent to a lightweight INTAMAP proxy. The response contains509

URLs to images representing the mean and variance of the interpolated data.510

These images can then be transparently placed over the existing map images.511

The user can also inspect any given point on the interpolated map. A loca-512

tion is chosen using the cursor, and the client submits an interpolation request.513

The mean and variance values for that particular location are calculated by the514

server and returned to the client. Information regarding the chosen point is then515

displayed in a pop-up box.516

7.2. Demonstrating INTAMAP using Google Earth517

The INTAMAP project provides powerful interpolation methods through a518

simple XML interface. However, the overheads of the WPS interface mean it519

is not trivial to quickly realise the functionality of INTAMAP. For this reason a520

Web-based client application built around the Google Earth browser plugin was521

developed. The client, available at http://www.intamap.org, uses an HTML522
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form to submit data to INTAMAP. Data should be formatted as comma separated523

x,y,z values. If the uncertainty of your data has been quantified as a standard524

deviation (perhaps using the technique outlined in Section 6) then this can be525

included as a fourth column. Google Earth works using latitude and longitude526

values, so if your data is projected into some coordinate system you must spec-527

ify the EPSG code of that system. Clicking the ‘interpolate’ button sends the528

data to INTAMAP, resulting in two image overlays: the predicted values and the529

variance. The images seen in Figure 7 were generated using this Google Earth530

client.531

8. Discussion and conclusions532

This paper has demonstrated how integrating various technologies into a533

‘mashup’ application provides a complex system, usable by the general pub-534

lic. Implementing a SOS interface provides a gateway into the system that can535

satisfy a variety of client applications. Due to the verbosity of XML payloads,536

simple service interfaces have been developed in parallel to enhance performance537

on small footprint devices. The individual components are chained, creating a538

collection of autonomous services which are loosely coupled to form a SOA.539

UncertML provides quantification of uncertainties that arise as a result of540

the interpolation process. Utilising this information allows client applications541

to present realistic estimates which include uncertainty to answer the high-level542

questions posed in Section 1.543

Many of the issues raised by the temperature information in this example are544

generic and will apply to all forms of user-contributed data: biases which can be545

partially explained by external variables and which differentially affect observa-546

tions across time and space, a wide but heterogeneous network of sensors which547
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sample at varying frequency, and a limited, but useful auxiliary set of reliable548

data which can be used to reference the uncertainty estimation. The interop-549

erability challenges shown and solved here are also widespread; for example,550

the need to open up relatively impenetrable interfaces via standards-compliant551

mechanisms such as Sensor Observation Services, the wealth of data which can552

thus be exposed, and the huge value which can be added to it by relatively simple553

operations such as bias estimation.554

As sensors become cheaper and people are increasingly connected to the Web555

it seems likely that user-contributed data will proliferate, and that the collection556

and use of this data could become a significant part of our environmental mon-557

itoring networks. Quality control and uncertainty assessment will therefore be558

crucial to the effective use of user-contributed data.559
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