Numerical and experimental investigations for insulation particle transport phenomena in water flow

Abstract

The investigation of insulation debris generation, transport and sedimentation becomes more important with regard to reactor safety research for pressurized and boiling water reactors, when considering the long-term behaviour of emergency core coolant systems during all types of loss of coolant accidents (LOCA). The insulation debris released near the break during a LOCA incident consists of a mixture of a disparate particle population that varies with size, shape, consistency and other properties. Some fractions of the released insulation debris can be transported into the reactor sump, where it may perturb or impinge on the emergency core cooling systems. Open questions of generic interest are for example the particle load on strainers and corresponding pressure-drop, the sedimentation of the insulation debris in a water pool, its possible re-suspension and transport in the sump water flow. A joint research project on such questions is being performed in cooperation with the University of Applied Science Zittau/Görlitz and the Forschungszentrum Dresden-Rossendorf. The project deals with the experimental investigation and the development of computational fluid dynamic (CFD) models for the description of particle transport phenomena in coolant flow. While the experiments are performed at the University Zittau/Görlitz, the theoretical work is concentrated at Forschungszentrum Dresden-Rossendorf. In the present paper, the basic concepts for computational fluid dynamic (CFD) modelling are described and experimental results are presented. Further experiments are designed and feasibility studies were performed.

Publication DOI: https://doi.org/10.1016/j.anucene.2008.01.001
Additional Information: NOTICE: this is the author’s version of a work that was accepted for publication in Annals of nuclear energy. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Krepper, E, Cartland Glover, GM, Grahn, A, Alt, S, Kästner, W, Kratzsch, A & Seeliger, A, 'Numerical and experimental investigations for insulation particle transport phenomena in water flow', Annals of nuclear energy, vol 35, no. 8 (2008) DOI http://dx.doi.org/10.1016/j.anucene.2008.01.001
Uncontrolled Keywords: Nuclear Energy and Engineering,Waste Management and Disposal
Publication ISSN: 0306-4549
Last Modified: 03 Jan 2024 18:36
Date Deposited: 07 Aug 2012 10:57
Full Text Link:
Related URLs: http://www.scop ... tnerID=8YFLogxK (Scopus URL)
PURE Output Type: Article
Published Date: 2008-08
Published Online Date: 2008-03-04
Authors: Krepper, E.
Cartland Glover, G. M. (ORCID Profile 0000-0002-2647-2757)
Grahn, A.
Alt, S.
Kästner, W.
Kratzsch, A.
Seeliger, A.

Download

[img]

Version: Accepted Version

License: Creative Commons Attribution


Export / Share Citation


Statistics

Additional statistics for this record