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GLUTAMATERGIC INPUT–OUTPUT PROPERTIES OF THALAMIC
ASTROCYTES

T. M. PIRTTIMAKI1 AND H. R. PARRI*

School of Life and Health Sciences, Aston University, Birmingham, B4

7ET, England

Abstract—Astrocytes in the somatosensory ventrobasal (VB)

thalamus of rats respond to glutamatergic synaptic input with

mGluR-mediated intracellular calcium ([Ca21]i) elevations.

Astrocytes in the VB thalamus also release the gliotransmit-

ter (GT) glutamate in a Ca21-dependent manner. The tripartite

synapse hypothesis posits that astrocytic [Ca21]i elevations

resulting from synaptic input releases gliotransmitters that

then feedback to modify the synapse. Understanding the

dynamics of this process and the conditions under which it

occurs are therefore important steps in elucidating the po-

tential roles and impact of GT release in particular brain

activities. In this study, we investigated the relationship be-

tween VB thalamus afferent synaptic input and astrocytic

glutamate release by recording N-methyl-D-aspartate (NMDA)

receptor-mediated slow inward currents (SICs) elicited in

neighboring neurons. We found that Lemniscal or cortical

afferent stimulation, which can elicit astrocytic [Ca21]i eleva-

tions, do not typically result in the generation of SICs in

thalamocortical (TC) neurons. Rather we find that the spon-

taneous emergence of SICs is largely resistant to acute af-

ferent input. The frequency of SICs, however, is correlated to

long-lasting afferent activity. In contrast to short-term stimu-

lus-evoked GT release effects reported in other brain areas,

astrocytes in the VB thalamus do not express a straightfor-

ward input–output relationship for SIC generation but exhibit

integrative characteristics. © 2012 Published by Elsevier Ltd

on behalf of IBRO.

Key words: astrocytes, glutamate, SIC, gliotransmission, so-

matosensory, tripartite synapse, glia.

Glial cells are now considered as active participants in
nervous system function (Volterra and Meldolesi, 2005),
and the concept of the “tripartite synapse” (Araque et al.,
1999) has been advanced to describe the situation where
synaptically associated astrocytes act as integral modula-

tory elements. Astrocytes respond to released neurotrans-
mitters with intracellular calcium [Ca21]i elevations (Cor-
nell-Bell et al., 1990; Porter and McCarthy, 1996; Araque
et al., 2002; D’Ascenzo et al., 2007). In turn, astrocytic
[Ca21]i elevations can induce the release of gliotransmit-
ters such as glutamate (Pasti et al., 1997; Kang et al.,

1998; Parri et al., 2001; Fellin et al., 2004; Perea and
Araque, 2005a), ATP (Pascual et al., 2005; Serrano et al.,
2006), and D-serine (Henneberger et al., 2010).

In the ventrobasal (VB) thalamus, astrocytes can dis-
play spontaneous calcium oscillations in vitro, which con-
sequently lead to excitatory N-methyl-D-aspartate (NMDA)
receptor-mediated currents in thalamic neurons (Parri et
al., 2001). These slow inward currents (SICs) are seen in
many brain areas and can occur spontaneously or can be
evoked by various methods that induce astrocytic Ca21

increases (Parri et al., 2001; Angulo et al., 2004; Fellin et
al., 2004; Perea and Araque, 2005a; Kozlov et al., 2006;
D’Ascenzo et al., 2007; Navarrete and Araque, 2008;
Shigetomi et al., 2008).

However, despite the known ability of synaptic stimu-
lation to evoke astrocytic [Ca21]i elevations and subse-
quent glutamate release, little is known about the possible
physiological roles of SICs and their potential to interact
with afferent input in the somatosensory system. To un-
derstand these potential roles of astrocytic gliotransmis-
sion (GT) release in thalamic function, it is necessary to
determine its release properties in relation to afferent ac-
tivity. We recently found that spontaneous SIC frequency
was increased following a period of sustained (.30 min)
afferent activity (Pirttimaki et al., 2011). In this study, we
sought to determine the dynamic input–output properties
of VB thalamus astrocytes by stimulating afferent inputs,
which induce mGluR-mediated [Ca21]i elevations (Parri et
al., 2010), and recording astrocytic output in the form of
SICs in thalamocortical (TC) neurons.

We found that SICs emergence was unaffected by
acute synaptic stimulation but was correlated to the dura-
tion of long-term afferent stimulation. VB thalamus astro-
cytes do not therefore release glutamate in a dynamic way
in response to afferent activity but display integrative prop-
erties that induce long-lasting changes to astrocyte-neuron
signaling.

EXPERIMENTAL PROCEDURES

Slice preparation

Horizontal slices of VB thalamus were prepared as described
previously (Parri et al., 2001) from 12–23-day-old male Wistar
rats. All procedures were in accordance with UK Home Office
legislation: Animals (Scientific procedures) Act 1986. After re-
moval, the brain was placed in ice cold modified artificial cerebro-
spinal fluid (aCSF) of composition (mM) NaCl 126, NaHCO3 26,
KCl 1, KH2PO4 1.25, MgSO4 5, CaCl2 1, glucose 10, pyruvate 5,
ascorbic acid 0.3, and indomethacin 0.45. Slices were then main-
tained at room temperature (23–25 °C) in this solution for a
recovery period of 1 h before experimental use.
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Solutions

The standard recording aCSF used in this study was (in mM):
NaCl 126, NaHCO3 26, KCl 2.5, KH2PO4 1.25, MgSO4 1, CaCl2 2,
and glucose 10, unless otherwise stated. As we (Parri et al., 2001)
and others have done previously in attempting to enhance
NMDA-R mediated current detection, whole cell voltage clamp
recordings were conducted in 0-Mg21 (at room temperature),
unless otherwise stated. Slices were perfused with the 0-Mg21

solution in the recording chamber. Pharmacological compounds
were included in the aCSF as stated in text. Chemicals were
obtained from Sigma-Aldrich (St. Louis, MO, USA), unless other-
wise stated. Tetrodotoxin (TTX) was obtained from Ascent Scien-
tific (Weston-super-Mare, UK). Fura-2 A.M., Fluo-4 A.M., Alexa-
hydrazide 564, and Pluronic F-127 were obtained from Invitrogen
(Carlsbad, CA, USA).

Electrophysiology

The recording chamber and manipulators were mounted on a
moveable top plate platform (MP MTP-01, Scientifica, UK). Patch
clamp recordings were made using pipettes (2–4 MV) containing
an internal solution of composition (in mM): KMeSO4 120, HEPES
10, EGTA 0.1, Na2ATP 4, GTP 0.5. Currents were recorded using
a Multiclamp 700B amplifier, digitized with a Digidata 1440A, and
acquired and analysed using pCLAMP (Molecular Devices, CA,
USA). Voltage clamp recordings were made at 260 mV, and
recordings in which there was a $20% change in access resis-
tance during the experiment were excluded from analysis. SICs
were analysed using the Event Detection protocols in the Clampfit
routine of pCLAMP. Events were accepted as SICs if their ampli-
tude was .20 pA and their time to peak was .20 ms. Data were
exported to Sigmaplot (Jandel) for further analysis and plotting.

Synaptic stimulation

Synaptic stimulation was achieved with a computer-controlled
constant current isolated stimulator (STG1002, Multichannel Sys-
tems, Germany) and bipolar electrodes, which were placed typi-
cally .200 mm from the recorded neurons. Sensory stimulation
was achieved by placing a bipolar electrode on the medial lem-
niscus (Lem), and corticothalamic (CT) afferents were stimulated
by a bipolar electrode on the internal capsule. Stimulation proto-
cols were written in the STG1002 interface software. “Protocols”
were composed of sequences of “Episodes” of stimulation. After a
5–10 min baseline recording, a stimulation protocol was delivered
to one pathway at a time or to both simultaneously. Stimulus
episodes were separated by approximately 60-s inter-stimulus
intervals. Different stimulus amplitudes ranging from 0.1 mA to 3
mA were tested using trains of 2 ms pulses for 1 s at 50 Hz in
randomized order. Different stimulus durations ranging between 2
ms and 10 s were tested at 50 Hz by changing the number of
pulses within the train (using sub-maximal stimulus amplitude
determined from the evoked EPSC, I75). Different frequencies
were tested by generating trains of pulses at frequencies between
1 Hz and 500 Hz using constant number of stimuli with I75 stimulus
amplitudes. A single “spindle stimulation pattern” (SSP) consisted
of 22 spikes in duration of 728 ms (Rosanova and Ulrich, 2005).
Mean spike rate was 30 Hz, grouped to initial 10 Hz bursts
followed by tail of decreasing tonic frequency. In some experi-
ments the SSP was repeated 30 times every 0.6 Hz to mimic the
grouping of spindles by the slow (0.6–0.8 Hz) oscillation. Sus-
tained stimulation protocol (10–20 stimuli at 50 Hz every 10 s) as
previously described (Pirttimaki et al., 2011) was applied for 30–
120 min.

Fluorescence imaging

After a recovery period of 1 h, slices were loaded with Fluo4 A.M.
(Molecular Probes, Eugene, OR, USA) or Fura-2 A.M. by incubat-

ing for 40–60 min at 30 °C with 10 mM of the indicator dye and
0.01% pluronic acid. Under these conditions, astrocytes are pref-
erentially loaded (Parri et al., 2001). For astrocytic identification,
slices were also loaded with 1 mM Sulforhodamine 101 (SR101),
according to in vitro methods of Kafitz et al. (Kafitz et al., 2008).
Approximately 40 astrocytes (39.762.39, n54 slices) could be
identified in focus in the VB slice, though this is likely a lower
estimate of the number in the visible slice, for example, due to
SR101 loading variation. All imaging experiments were performed
in aCSF containing Mg21 (1 mM) to record astrocytic responses in
physiological conditions. Experiments on imaging with Fura-2
A.M. in Mg21-containing and Mg21-free conditions showed that
astrocytic Ca21 elevation responses for the same cells were
greater in Mg21-free (0.07760.005, 340/380 ratio change) than in
Mg21-containing aCSF (0.0560.004 ratio change, n53 slices, 55
cells, P,0.01). In patch-clamp experiments designed to maximize
SIC detection with Mg21-free aCSF, it would therefore be ex-
pected that an increased astrocyte response would also result in
a greater probability of detecting any afferent–astrocyte–SIC re-
lationship. Combined patch-clamp and imaging experiments
(Fig. 1G) were conducted in Mg21-free aCSF.

The imaged field size was 444 mm3341 mm. The recording
chamber and manipulators were mounted on a motorized move-
able bridge (Luigs and Neumann, Germany). Fluorescent dyes
were excited using an Optoscan monochromator system (Cairn,
UK), fitted to a Nikon FN1 upright microscope. Images were
acquired for a duration of 0.05–0.1 s every 1–5 s using an
Orca-ER CCD camera (Hamamatsu). The short stimulation pro-
tocol consisted of trains of 2 ms pulses for 1–2 s at 50 Hz delivered
to Lem or CT. Responses were recorded for at least 1 min post
stimulation. Acquisition was controlled by Simple PCI software
(Hamamatsu).

Statistics

All quantitative data in the text and figures are presented as
mean6SEM. Significance was calculated using unpaired or
paired Student’s t-test as appropriate. Linear correlations (r2) were
tested using Pearson Rank correlation. Statistical significance in
the figures is indicated as: * P,0.05, ** P,0.01, or *** P,0.005.

RESULTS

VB thalamus astrocytes and neurons respond to

synaptic stimulation

Patch clamp recordings from VB thalamus TC neurons
revealed spontaneous SICs at low frequencies (;0.001
Hz), which have been previously shown to be [Ca21]i
dependent and TTX-insensitive (Fig. 1A) (Parri et al.,
2001; Pirttimaki et al., 2011). The presence of D-AP5 (50
mM) abolished SICs (Ctrl: 16 SICs; D-AP5: 0 SICs; n56
neurons; paired Student’s t-test P50.003) (Fig. 1B).

Stimulations of Lemniscal and CT inputs at 50 Hz of
1–2 s duration elicited Ca21 elevations which could be
detected at the astrocyte soma (Fig. 1C, D). On average
24.562.87 astrocytes responded to Lemniscal afferent
stimulation (n54 slices) and 24.2564.65 (n58) to CT stim-
ulation within the imaged area of 444 mm3341 mm (Fig.
1E). The relative intensity change of the Ca21 fluores-
cence was not different between Lemniscal and CT stim-
ulation (Lem 12.0460.97DF%; CT 10.760.4DF%; n599,
194 responses, respectively; Student’s t-test P50.14) nor
between 1-s and 2-s long stimulation (1 s 11.5360.58DF%;
2 s 10.860.6DF%; n5149, 144, respectively; P50.4; Fig.
1F), indicating that a maximal cellular [Ca21]i elevation was

Please cite this article in press as: Pirttimaki TM, Parri HR, Glutamatergic input–output properties of thalamic astrocytes, Neurosci-
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already induced by the shorter stimulation. Co-loading of
SR101 confirmed the astrocytic identity of the responsive
cells (Fig. 1C).

Paired recordings from neighboring astrocytes and
neurons showed that Lemniscal afferent activation elicited
astrocytic [Ca21]i elevations and neuronal EPSCs (n55)
(Fig. 1G), indicating that astrocytes and neurons in the
same area respond to similar afferent inputs.

SIC frequency is not increased by acute afferent

stimulation

Studies in different brain areas have shown that astrocytic
Ca21 responses to afferent stimulation are dependent on

parameters such as stimulation intensity, frequency, or du-

ration (Porter and McCarthy, 1996; Pasti et al., 1997; Perea

and Araque, 2005b; Beierlein and Regehr, 2006; Parri et al.,

2010). The response of astrocytes may not necessarily be

linear, indeed, in the somatosensory system, whisker stimu-

lation at 5 Hz was shown to be the most effective at evoking

Ca21 responses in the barrel cortex in vivo, with 1 Hz and 10

Hz being least effective (Wang et al., 2006). Although many

studies have demonstrated the Ca21 dependence of GT

release (Araque et al., 2000; Bezzi et al., 2004; Liu et al.,

2011), there is continuing debate on the precise Ca21 signal

necessary for such release (Fiacco et al., 2007; Shigetomi et

al., 2008; Hamilton and Attwell, 2010), which may be compli-

Fig. 1. Thalamic afferent stimulation activates astrocytes and neurons. (A) Recording from a TC neuron in presence of TTX (1 mM) showing two
spontaneous slow inward currents (SICs). SIC 2 is shown expanded. (B) Representative trace showing spontaneous SIC (black, top) sensitivity to D-AP5 (50
mM) (grey, below). (C) First three panels to the left show a slice area loaded with SR101 (magenta images on the left) and Fluo-4 A.M. Circled SR101-positive
astrocytes exhibit Ca21 elevations to CT input (pseudocolor images to the right). Next three panels to the right display a similar experiment to Lemniscal
afferent stimulation. (Scale bars: 10 mm). (D) Traces showing averages of 16 CT- and 33 Lemniscal-evoked [Ca21]i responses to the afferent stimulations.
(E) Bar graph showing the mean number of responsive astrocytes within the image field of 444 mm3341 mm (Lem, n54 slices; CT, n58). (F) Box plot
showing the scatter of relative intensity changes for Lemniscal (n599 [Ca21]i responses) and CT (n5194) stimulation, and for 1 (n5149) and 2 s (n5144)
train durations. (G) Panel on the left shows confocal image of Alexa 564-filled TC neuron (blue) and astrocyte (green). To the right: recording from the filled
cells in showing that 5-s synaptic stimulation of Lemniscal pathway (top bar) elicits [Ca21]i elevations (middle) in astrocytic processes simultaneously to
neuronal EPSC (bottom). For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.

Please cite this article in press as: Pirttimaki TM, Parri HR, Glutamatergic input–output properties of thalamic astrocytes, Neurosci-
ence (2012), doi: 10.1016/j.neuroscience.2011.12.049

T. M. Pirttimaki and H. R. Parri / Neuroscience xx (2012) xxx 3

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

tapraid3/zpn-nsc/zpn-nsc/zpn99907/zpn6158d07z kumarsnl S51 1/6/12 11:22 Art: 13507



cated by the difficulty in identifying the relevant astrocytic

compartment in which a particular Ca21 elevation is neces-

sary for GT release. At present, therefore, predicting GT

release by monitoring astrocytic Ca21 activity does not seem

a reliable method. To understand the contribution of astro-

cytic GT release to brain function, however, we must under-

stand the conditions under which astrocytes release GTs,

and for a sensory system: in response to which particular

activity.

Therefore, to directly measure the relevant physiolog-

ical output of the astrocytic GT to neuron signaling, we

recorded SICs from TC neurons and tested a variety of

afferent activity patterns of different frequencies and dura-

tion to Lemniscal and corticothalamic afferents. Spontane-

ous SICs were observed in 40 of 76 (52.6%) recordings

with a mean frequency of 0.1660.03 SICs/min over a 5–10

min control period. The frequency of SICs (expressed as

SICs/min) after each stimulus episode was calculated and

compared with this pooled spontaneous frequency.

To determine the afferent frequency dependence of

SIC frequency, a protocol consisting of trains of 50 stimuli

(range 1–500 Hz) was applied to Lemniscal and CT affer-

ents. The order of the frequency trains were changed

between experiments (Fig. 2A). For Lemniscal input 61%

of TC neurons expressed SICs during the frequency stim-

ulation protocol (n521 neurons), whereas 53% of neurons

(n530) expressed SICs with CT input. SIC frequency was

not significantly increased by varying the frequency for

either Lemniscal (Student’s t-test for each stimuli P.0.1)

or CT input (P.0.6) (Fig. 2A).

To determine the afferent stimulus duration depen-

dence of SIC frequency, a protocol consisting of trains of 2

ms stimuli at 50 Hz (range 2 ms–10 s) was applied (Fig.

2B). Of 23 neurons, 39% expressed SICs during Lemnis-

Fig. 2. Synaptic stimulation does not evoke SICs. (A) Line diagram (top) illustrates the protocol of the pattern of episodes of 50 stimuli delivered at different
frequencies (1–500 Hz) to CT input. The responses of the TC neuron are shown in the trace below, with SICs indicated by asterisks (Scale bar: 50 s, 50
pA). Expanded example SICs are shown beneath. (Right) Bar graphs show the relationship of mean frequency of SICs (SICs/min) to different stimulus
frequencies for the Lemniscal (n521 neurons) and CT (n530) inputs. (B) Line diagram (top) illustrates the protocol of the pattern of stimulation delivered at
different duration (2 ms–6 s) to CT input. The responses of the TC neuron are shown in the example trace below (Scale bar: 60 s, 50 pA), with SICs indicated
by asterisks and examples are expanded beneath. (Right) Bar graphs summarizing the mean frequencies (Lem, n523; CT, n540). (C) Line diagram (top)
illustrates the protocol of the pattern of stimulation delivered at different intensities (0.5–3 mA) to CT input. The responses of the TC neuron are shown in
the example trace below, with SICs indicated by asterisks (Scale bar: 25 s, 50 pA). Expanded example SICs are shown beneath. (Right) Bar graphs show
the relationship of mean frequency of SICs to different stimulus intensities (Lem, n525; CT, n528). Dashed line in bar graphs indicates mean spontaneous
SIC frequency. The neuronal post synaptic currents and stimulation artefacts (vertical lines) are truncated for clarity in (A–C).

Please cite this article in press as: Pirttimaki TM, Parri HR, Glutamatergic input–output properties of thalamic astrocytes, Neurosci-
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cal stimulation, whereas 27% SICs occurred during CT
stimulation (n540). The frequency of apparent evoked
SICs for any particular stimulus was not increased com-
pared with spontaneous, while frequency following some
trains was significantly lower (Lem: 2 ms, 0.1 s, 3 s, 5 s,
Student’s t-test P,0.05; CT: 2 ms, 1–6 s, P,0.05).

Experiments in Fig. 2A, B were conducted using a
submaximal (75%) stimulus intensity. This was determined
using a protocol consisting of 50 stimuli at 50 Hz (1 s) at
constant current intensities of 0.1–3 mA. Analyzing the
data for SIC frequency (Fig. 2C) showed that SICs fol-
lowed Lemniscal and CT stimulation in 28% and 44% of
the cells tested (n525, 28, respectively), but frequency
was not increased compared with spontaneous (Lem:
1–1.5 mA and 2.5 mA less than control, P,0.03, rest
P.0.2; CT: 0.1 mA and 3 mA less than control, P50.02;
rest P.0.2). In addition, there was no correlation between
increasing stimulus frequency, stimulus train duration, nor
stimulus magnitude and SIC frequency (Pearson’s corre-
lation, r2,0.2, P.0.06 for all groups).

SIC timing is independent of synaptic stimulation

It has been proposed that astrocytes function as coincidence
detectors in the hippocampus, since Ca21 responses were
modulated during simultaneous Schaffer collateral and al-
veus stimulation, particularly at theta frequencies (Perea and
Araque, 2005a). We tested the hypothesis that such thalamic
coincidence detection would lead to increased SICs by simul-
taneously stimulating Lemniscal and CT inputs. Stimulus pa-
rameters that weremost often followed by SICs in Fig. 2 were
selected (Lem: 10 s stimuli at 20 Hz, CT: 0.2 s at 50 Hz).
Each combination was repeated four times, first separately
and then simultaneously (Fig. 3A). Although 85% of the TC
neurons (n527) expressed SICs during the stimulation pro-
tocols, mean SIC frequency was not significantly increased
either with single pathway stimulation or simultaneous stim-
ulation (Spont. 0.14260.026 SICs/min; Lem 0.13660.041
SICs/min, Student’s t-testP50.9; CT 0.20460.049 SICs/min,
P50.2; and simultaneous Lem/CT 0.11660.027 SICs/min,
P50.6; Fig. 3B). The data support the finding that SIC fre-
quency is not increased by acute synaptic stimulation (Fig. 2)
and also indicates that VB thalamus astrocytes do not func-
tion as coincidence detectors for the release of glutamate.

If SICs are elicited by synaptically induced astrocytic
[Ca21]i elevations in a deterministic manner, then the pre-
diction is that repeated stimulation will result in repeated
SICs, and that there will be a consistent delay between
stimulus and SIC emergence in the same tripartite syn-
apse. This was found in hippocampus, where following
repeated application of a stimulus there was a linear cor-
relation between the delays of the first and second ob-
served SIC (Fellin et al., 2004). We tested this hypothesis
in the VB thalamus, and measured the latencies from
recorded SICs to the preceding stimulus (Fig. 3C), and in
calcium-imaging experiments from the stimulus to peak
[Ca21]i elevation. No correlation was detected between the
latencies of first and second SICs to repeated stimulus
(r250.008, Pearson’s correlation P50.8; Fig. 3D). Also,
while histograms of the latencies of astrocytic [Ca21]i ele-

vations displayed characteristic peaks at around 7 s (Fig.
3E) (Lem 7.8660.3 s; CT 6.3960.18 s; n512 slices, 99,
194 astrocytes, respectively; Student’s t-test P50.00004),
this was not the case for SICs, with latencies of SICs
following Lemniscal stimulation ranging from 0.37 to 173.3
s, those following CT stimulation from 0.85 and 100.7 s
(Fig. 3E). Plotted latency histograms do not indicate a
discernable peak for either afferent input. These results
support a situation where synaptic stimulation induces as-
trocytic [Ca21]i elevations but not SICs.

SIC frequency is not affected by afferent

neurotransmitter release

A dependence of SIC emergence on afferent synaptic
input is reliant on the action of the released neurotransmit-

Fig. 3. SIC timing is independent of synaptic stimulation. (A) Line
diagram (top) with vertical bars representing simultaneous Lemniscal
and CT stimulus episodes. Below is an example trace showing corre-
sponding synaptic responses (vertical lines represent stimulus arte-
facts and inward currents, the neuronal post synaptic current is trun-
cated for clarity) and SICs (marked with asterisks). (B) Bar graph
summarizing the SIC frequency during different stimulus protocols
(n527 neurons). (C) Example of a 0.2-s-long stimulus at 50 Hz deliv-
ered to the CT afferent with a SIC following within a few seconds,
illustrating the measurement of SIC latency. (D) Scatter plot showing
the latency of SICs following a stimulus against the latency of a second
SIC to a subsequent stimulus (r250.008). (E) Frequency histograms
showing the distribution of SIC latencies (grey bars) and Ca21 delays
(black bars) (n512 slices) following Lemniscal (left) (n596 neurons)
and CT stimulation (right) (n5125 neurons).

Please cite this article in press as: Pirttimaki TM, Parri HR, Glutamatergic input–output properties of thalamic astrocytes, Neurosci-
ence (2012), doi: 10.1016/j.neuroscience.2011.12.049

T. M. Pirttimaki and H. R. Parri / Neuroscience xx (2012) xxx 5

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291

F3

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291

tapraid3/zpn-nsc/zpn-nsc/zpn99907/zpn6158d07z kumarsnl S51 1/6/12 11:22 Art: 13507



ter on the astrocytes. Previous reports have indicated that
SIC generation is dependent on synaptic activity by the
sensitivity of SIC emergence to TTX and Cd21, which
inhibit neurotransmitter release from synaptic terminals
(Perea and Araque, 2005a; D’Ascenzo et al., 2007). Fol-
lowing a control stimulation protocol, we bath applied TTX
(1 mM), and the protocol was repeated (Fig. 4A). Synaptic
inward currents were completely blocked by TTX (Ctrl
570.5649.3 pA; TTX 0 pA; paired Student’s t-test,
P50.00008; n510; Fig. 4A). However, SIC frequency was
unaffected (Ctrl 0.06760.03 SICs/min; TTX 0.0560.02 SICs/
min; paired Student’s t-test, P50.5; n510; Fig. 4A, B).

It is possible that GT release and SIC generation is
dependent on the amount of glutamate released by VB
thalamus afferent inputs that activates astrocytic recep-
tors. Synaptic input to a VB thalamus slice activates neigh-
boring neurons and astrocytes (Fig. 1), we therefore used
the neuronal postsynaptic current (PSC) amplitude as a
measure of neurotransmitter glutamate released upon syn-
aptic activation and compared this with SIC frequency in
the same neuron. There was no correlation between PSC
amplitude and SIC frequency for any of the previously
described (Fig. 2) protocols (Fig. 4C).

Physiological state-dependent stimulation does not

increase SIC frequency

The thalamus exhibits different activity depending on
conscious state, which can be modulated by brainstem
afferents, for example, sleep is characterized by hy-
perpolarized TC neurons exhibiting delta oscillation,
whereas in awake state, cholinergic and noradrenergic
afferents from the brain stem depolarize TC neurons into
relay or “tonic” mode (McCormick, 1992; Castro-Ala-
mancos, 2002). Therefore, there was the possibility that

these afferents were also “gating” astrocytic responsiveness

in the same way that they gate TC neuron responsiveness.

To determine this, we recorded astrocytic [Ca21]i elevations

and neuronal SICs following afferent activation in the pres-

ence of cholinergic, adrenergic, or both agonists.

Stimulation protocols were applied in control aCSF and

then following the bath application of the muscarinic ago-

nist carbachol (50 mM) and the b adrenergic agonist iso-

proterenol (50 mM).

Because of the similar physiological effects and close

agreement of carbachol and isoproterenol, data from ag-

onist application experiments (carbachol, isoproterenol,

carbachol1isoproterenol) is illustrated pooled as “agonist.”

Application of agonists did not increase spontaneous SIC

frequency, nor increase SICs frequency following afferent

stimulation (Ctrl spont. 0.06660.037 SICs/min vs. sponta-

neous with agonist wash-on 0.07760.03 SICs/min, Stu-

dent’s t-test P50.8, n512, 16, respectively; Ctrl spont. vs.

agonists with stimulation 0.09960.046, P50.6, n512, 16,

respectively; Fig. 5A, B).

An action of the agonists on VB thalamus astrocytes

was verified by conducting [Ca21]i-imaging experiments

using the ratiometric indicator Fura-2. Carbachol and iso-

proterenol co-application elicited an increase in astrocytic

[Ca21]i (Fig. 5C) (Peak increase 0.05960.003, n5119 as-

trocytes, 4 slices). Analysis of [Ca21]i responses to synap-

tic stimulation revealed that the number of responding

astrocytes was not affected (Control: 29.5611.01, agonist:

32.25611.4, n54 slices) but that [Ca21]i elevations to affer-

ent input were slightly reduced in the presence of agonist

(Control ratio change 0.06360.003, agonist ratio change

0.04660.002, n5119 astrocytes, 4 slices, P,0.001). VB

thalamus astrocytes, therefore, respond to the applied ago-

Fig. 4. SIC frequency is not correlated to post-synaptic glutamate effect. (A) Trace of a recording following the addition of TTX which blocks elicited
PSC to afferent stimulation (lightning bolt) and only results in a stimulus artefact (expanded below). A spontaneous SIC (grey asterisk) occurs during
the recording (expanded below). (B) Mean SIC frequency during control stimulation and following the addition of TTX (n510 neurons). (C) Mean SIC
frequency plotted against the mean PSC amplitude for the different stimulus protocols (CT analysis: n5125 neurons, Lem: n596 neurons).
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nists, but this does not increase the likelihood of SIC gener-
ation to afferent stimulation.

During sleep, the cortex and thalamus are engaged in
low-frequency oscillations (Castro-Alamancos, 2004; Ste-
riade, 2006). In particular, sleep spindles, an intermittent
frequency pattern which have been shown to induce syn-
aptic plasticity in the thalamocortical network (Rosanova
and Ulrich, 2005), increase in frequency. We therefore
stimulated CT afferents with protocols mimicking sleep
spindles and slow oscillations as described by Rosanova
and Ulrich (Rosanova and Ulrich, 2005). Sleep spindle pat-
tern (SSP) stimulation was delivered via CT afferents either
as a single SSP stimulation (Fig. 5D, E), or a train of 30 SSPs
repeated four times (SSP33034; Fig. 5D, E). SSP stimula-
tion did not increase SIC frequency significantly (Ctrl

0.2160.098 SICs/min; SSP 0.3960.14 SICs/min; paired Stu-

dent’s t-test P50.4; n56 neurons). Nor did trains of SSP;

47% of neurons showed SICs during the SSP33034 proto-

col with an average SIC frequency of 0.07660.024 SICs/min

compared with spontaneous 0.10960.039 SICs/min (Paired

Student’s t-test P50.53; n517).

Interventions to investigate possible neuromodulator or

synaptic input state dependent effects, therefore, had no

effect on SIC frequency.

Prolonged afferent stimulation is required to

increase SIC frequency

We recently found that following prolonged synaptic stim-

ulation (50 Hz bursts every 10 s for 60 min) there was a

Fig. 5. Physiological modulators or state-dependent stimulation do not increase SIC frequency. (A) Line diagram (top) illustrating the pattern and timing of
episodes of 50 stimuli delivered to CT and Lem afferents in the presence of the exogenous agonists carbachol (50 mM) and isoproterenol (50 mM). The
responses of the TC neuron are shown in the example trace below, with SICs indicated by asterisks. Expanded example SICs are shown beneath. (B) Bar
graph summarizing the SIC frequency for different conditions (Spont, n512; Agonist, n516 recordings). (C) Ratio traces from four example astrocytes in an
imaged slice showing responses to a 2 s 50 Hz combined afferent input in control conditions (S1) and following exposure to isoproterenol/carbachol (S2)
(n5119 astrocytes, 4 slices). Bar graphs to the right illustrate the number of responding astrocytes and magnitude of ratio change to the stimuli in the two
conditions. (D) Leftmost: line diagram (top) illustrating the SSP stimulation pattern. Trace below shows the post synaptic current in response to SSP
stimulation (left) followed with a delayed SIC (right). To the right: line diagram (top) illustrating the 4 repeated blocks of 30 SSP patterns with recorded current
trace below. SICs are asterisked and expanded beneath. (E) Bar graph showing the mean SIC frequency before and during the SSP protocols (n523
recordings). The neuronal post synaptic current and stimulation artefacts (vertical lines) are truncated for clarity in (C) and (E) (right).
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sustained increase in the frequency of spontaneous SICs
that lasted for up to an hour without further synaptic input,
which we termed long-term enhancement of SICs (Pirtti-
maki et al., 2011). Having found in this study that short
stimulus patterns (Figs. 2–5) do not increase SIC fre-
quency, we investigated the relationship between sus-
tained afferent activity duration and SIC frequency by vary-
ing stimulus durations and then recording SIC frequency
after ceasing stimulation (Fig. 6A, B). Spontaneous SIC
frequency showed a significant correlation with stimulation
time (r250.15, P50.005; Fig. 6C). Mean SIC frequency
after 60 min and 120 min stimulation were significantly
higher compared with un-stimulated coonditions (0 min
0.11660.02, n526; 60 min 0.3260.09, n519; t-test
P50.016; 120 min 0.42760.2, n54; P50.0015 compared
with 0 min; Fig. 6D).

DISCUSSION

The main finding of this study is that astrocytes in the VB
thalamus do not readily generate SICs by release of

glutamate in response to short periods of synaptic stim-

uli, though such stimuli have been shown to cause as-

trocytic [Ca21]i elevations. A simple tripartite synaptic

signaling model whereby afferent input induce eleva-

tions, which then release glutamate in a deterministic

manner, does not therefore hold true for the VB thala-

mus. Over long periods, however, astrocytes integrate

afferent activity, and the rate of spontaneous glutamate

release is increased.

Despite increasing realization of non-housekeeping

roles for astrocytes in brain function (Volterra and

Meldolesi, 2005; Perea et al., 2009), there is continuing

debate concerning the release of GTs, their mechanism of

release, [Ca21]i dependence, and physiological impact (Fi-

acco et al., 2007; Petravicz et al., 2008; Agulhon et al.,

2010; Hamilton and Attwell, 2010). A range of GTs is

known to be released by astrocytes, for example, ATP,

D-serine, GABA, and glutamate, and there is pharmaco-

logical, imaging, and selective SNARE-protein mouse

knockout evidence for the vesicular release of ATP and

Fig. 6. Integration of afferent input increases spontaneous SIC frequency. (A) Trace of a recording from an un-stimulated control slice (SICs indicated
with asterisks). (B) Trace of a recording from a TC neuron in a slice following a 120 min of prolonged intermittent stimulation. (C) Scatter plot showing
a positive correlation of SIC frequency with intermittent stimulus duration. (D) Mean SIC frequency following different intermittent stimulus durations
(0 min, n526; 60 min, n519; 120 min, n54 neurons). Statistical significance is presented as * P,0.05, ** P,0.01, or *** P,0.005.
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glutamate (Bezzi et al., 2004; Perea and Araque, 2007),
but the relationship between stimuli such as synaptic acti-
vation, resultant [Ca21]i elevations and release is proving
more difficult to understand.

Astrocytic input–output properties in the

somatosensory system

Synaptic afferent activity via Lemniscal or corticothalamic
inputs induces mGluR-dependent [Ca21]i elevations in VB
thalamus astrocytes (Parri et al., 2010), and VB thalamus
astrocytes also release glutamate in a [Ca21]i-dependent
manner (Pirttimaki et al., 2011). Results from somatosen-
sory cortex in vivo show that astrocytic [Ca21]i elevations
caused by whisking display preferred whisking frequency
(Wang et al., 2006) and in visual cortex in vivo astrocytes
also display orientation selectivity (Schummers et al.,
2008). Such activity in response to synaptic input, if
translated into GT output, could have profound effects
and roles in sensory processing. We investigated this in
the VB thalamus by recording SICs in TC neurons as a
direct measure of astrocytic glutamate release and its
potential physiological impact. However, we did not find
that patterns consisting of different frequencies or train
duration up to 10 s resulted in more SICs than seen
spontaneously. Adding neuromodulators that affect TC
neuron relay (McCormick et al., 1993) or stimulating with
sleep spindle patterns did not induce SICs either. Our
results, however, show that in response to sustained
periods of afferent activity, astrocytes increase their rate
of spontaneous SICs, and this is correlated to the dura-
tion of activity.

Studies in vivo in the rat VB thalamus have shown that
whisker stimulation releases the GT homocysteic acid
(HCA) (Do et al., 2004) via glutamate receptor activation
(Benz et al., 2004). HCA is an agonist at NMDA receptors;
it might therefore be possible that the GT mediating SICs
could be HCA. However, HCA levels increased within a
few minutes of whisker stimulation and were also elevated
by isoproterenol, in contrast to the pattern seen for SICs. It
therefore seems that a complex situation exists in the VB
thalamus whereby afferent input results in different GTs
acting on NMDA receptors with different kinetics and on
different temporal scales.

Our findings in this study extend our recent work
showing that following sustained activity, SIC frequency
is increased by an mGluR-dependent mechanism. Thus,
our results may indicate a dual role for astrocytic mGluR
activation, so that short immediate activation elevates
astrocytic [Ca21]i (Parri et al., 2010), but does not reli-
ably induce glutamate release; however, repetitive af-
ferent activity, perhaps by recruiting other cellular path-
ways, integrates the repetitive mGluR activation and
up-regulates spontaneous glutamate release.

Comparison to other brain areas

Our results are in contrast to some reports from the hip-
pocampus (Fellin et al., 2004) and nucleus accumbens
(D’Ascenzo et al., 2007), where afferent stimulation has
been shown to reproducibly induce SICs. This may indi-

cate that there are regional differences in the brain in the
interaction between neurons and glia and the physiological
roles of astrocytes. It may therefore be significant that
much evidence about the roles of astrocytes in synaptic
modulation and plasticity is based on studies in the hip-
pocampus, a part of the brain involved in learning and
memory and a model system for investigating synaptic
learning, whereas in the VB thalamus, a sensory relay
nucleus, synapses transmitting sensory information do not
undergo such radical short- and long-term potentiation as
the hippocampus.

Functional implications

Although the functional roles of GT release in the hip-
pocampus in modulating synaptic transmission and plas-
ticity are immediately apparent, the roles of glutamate
release in the VB thalamus are less clear. Rather than
being directed at the synapse, VB thalamus astrocytic
glutamate release seems targeted extrasynaptically, and
resultant SICs can cause neuronal firing (Pirttimaki et al.,
2011). It may therefore be that astrocytic glutamate pro-
vides a thalamic excitatory drive for the generation of
specific TC neuron firing patterns. Our experiments spe-
cifically recorded glutamate events; however, it is pos-
sible that following acute afferent activity other GTs are
released such as arginine (Do et al., 1994), GABA
(Jimenez-Gonzalez et al., 2011), prostaglandins, or
ATP, and that these exhibit different input–output rela-
tionships. Indeed, it has already been shown that astro-
cytic ATP release generates thalamic k-complexes
which occur during sleep (Lorincz et al., 2009). A key
feature of VB thalamus astrocytic glutamate release that
leads to SICs is that the signaling is not immediately
evoked by afferent input but that the amount afferent
activity over long periods affects the spontaneous emer-
gence of astrocyte-neuron glutamate signaling. The in-
tegrated generation of SIC excitatory drive following
sustained sensory input suggests a mechanism that
would become more influential following a period of
awake behaving sensory input. However, the increase in
SIC activity can also be produced by corticothalamic
input, which is the predominant afferent input during
sleep states. Further studies are therefore necessary to
determine the precise role of astrocytic glutamate re-
lease and SICs in different thalamocortical oscillatory
activities associated with specific conscious dependent
states.
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