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Abstract

Background: The perception of global form requires integration of local visual cues across space and is the foundation for
object recognition. Here we used magnetoencephalography (MEG) to study the location and time course of neuronal
activity associated with the perception of global structure from local image features. To minimize neuronal activity to low-
level stimulus properties, such as luminance and contrast, the local image features were held constant during all phases of
the MEG recording. This allowed us to assess the relative importance of striate (V1) versus extrastriate cortex in global form
perception.

Methodology/Principal Findings: Stimuli were horizontal, rotational and radial Glass patterns. Glass patterns without
coherent structure were viewed during the baseline period to ensure neuronal responses reflected perception of structure
and not changes in local image features. The spatial distribution of task-related changes in source power was mapped using
Synthetic Aperture Magnetometry (SAM), and the time course of activity within areas of maximal power change was
determined by calculating time-frequency plots using a Hilbert transform. For six out of eight observers, passive viewing of
global structure was associated with a reduction in 10–20 Hz cortical oscillatory power within extrastriate occipital cortex.
The location of greatest power change was the same for each pattern type, being close to or within visual area V3a. No
peaks of activity were observed in area V1. Time-frequency analyses indicated that neural activity was least for horizontal
patterns.

Conclusions: We conclude: (i) visual area V3a is involved in the analysis of global form; (ii) the neural signature for
perception of structure, as assessed using MEG, is a reduction in 10–20 Hz oscillatory power; (iii) different neural processes
may underlie the perception of horizontal as opposed to radial or rotational structure; and (iv) area V1 is not strongly
activated by global form in Glass patterns.
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Introduction

To perceive the world around us, our visual system must

construct global form from the many local visual cues present

across space. Perception of global form from simple features, such

as edges and lines, is then the foundation for object recognition.

While the first psychophysical and computational models of

visual integration date back to the pioneering work of Gestalt

psychologists, it is only recently – with the advance of

neuroimaging tools – that the neural signature associated with

global form perception has been investigated in humans.

Neuroimaging studies have indicated a number of discrete brain

regions where global form processing may occur. Using fMRI,

activation within ventral (putative area V4) and dorsal (putative

area V3) cortical areas has been reported in response to global

structure within Glass patterns [1], concentrically oriented lines

[2], and concentrically oriented Gabor arrays [3]. The involve-

ment of area V4 in intermediate form processing is also supported

by compromised pattern discrimination in a patient with a brain

lesion in this area [4]. Another candidate area for global form

processing is V3a, so named not because of its similarity to area

V3 but because it lies between the previously identified areas V3

and V4 [5,6]. Neurons in V3a have significantly larger receptive

fields compared with neurons in earlier visual areas [7], making

them ideally suited to integrate signal over space. Recent fMRI

studies support the involvement of V3a in form processing, with

evidence that it is differentially activated by concentric versus

parallel line patterns [8] and by spiral Glass patterns [9].

Activation of an area slightly inferior to V3a has also been

reported in an fMRI experiment using static Glass pattern stimuli

[1]. Unlike its macaque counterpart, human V3a is also known to

be relatively motion-selective [7], and both V3a and V4 are

sensitive to motion edges [10].

There is evidence that the neural processes underlying global

form perception may be pattern specific. For example, using

fMRI, Wilkinson et al. [11] reported that human V4 shows a
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larger metabolic (BOLD) response to rotational and radial gratings

than to linear gratings. This is supported by electroencephalo-

graphic studies showing larger neural responses to rotational and

radial patterns than to translational (linear) patterns [12,13]. These

results are in general agreement with psychophysical reports of

higher detection thresholds for translational structure than radial

or rotational structure [14–19]. To account for such findings, it

has been postulated that translational patterns may be processed

locally while more complex patterns are processed globally [18, 20

but see also 21].

To investigate the neural response to global structure from local

image features, and address whether this response varies between

pattern types, we used the neuroimaging technique of MEG in

combination with radial, rotational and horizontal Glass pattern

stimuli [22]. MEG provides a direct measure of neural function in

that the recorded signals reflect electrical activity of cortical

pyramidal cells [see 23]. As with electrical measures of brain

function (electroencephalography, EEG), magnetic measures can

be recorded on a time scale that is compatible with brain

physiology (i.e. milliseconds). This is a significant advantage over

slower metabolic measures of brain function (e.g. PET, fMRI).

Unlike electrical currents, magnetic fields are little distorted by

brain tissue or bone and thus MEG can be used to determine sites

of neural activity with greater resolution than EEG. However,

MEG does not produce an anatomical image of the brain and so

for source localization an anatomical MR scan for each individual

is required for co-registration with the MEG data. A consideration

with the beamformer analysis technique we use here (see below) is

that it produces an inhomogeneous spatial resolution across the

brain, with resolution being directly related to the amplitude of the

activity [24]. Consequently, group analysis, in which individuals’

data are spatially normalized in an attempt to overlay brain

regions, may fail to detect large peaks of activity which have high

spatial resolution and do not overlap simply due to normal levels of

individual anatomical variability. Alternatively, group analysis

may reveal regions of relatively low activity which overlap due to

their low spatial resolution. Differences in results between

individual and group level analysis have been reported [25], but

fortunately for MEG studies the high signal-to-noise ratios often

achieved allow meaningful analysis at the individual level.

This experiment was designed to find the neural response to

global form, and to minimise as much as possible any other factors

that might produce a response. To achieve this, observers viewed

dynamic Glass patterns during both the active and passive phases

of the experiment. Such stimuli, in which patterns are replotted

periodically, allow structure type and coherence to be changed

between frames without affecting local cues such as dot density or

mean luminance. In our experiments, the Glass patterns were

replotted every 10 ms to keep flicker constant throughout the

trials. In addition, the onset and offset of coherent form was

ramped to eliminate abrupt visual changes between structure and

no-structure.

The various neural models of global form perception all posit

the need for multiple stages of processing across different regions

of the brain. The process by which disparate neural areas interact

is not known, though it has been postulated that functional

integration within and between areas could be accomplished via

changes (either increase or decrease) in synchronous cortical

activity [for reviews see 26–28]. To further assess the functional

role of synchronous activity in global form perception, we

analyzed the MEG data using the beamforming technique of

Synthetic Aperture Magnetometry (SAM), which is ideally

suited for the analysis of event-related changes in cortical rhythms

[29–38].

Methods

Ethics Statement
This study adhered to the tenets of the Declaration of Helsinki

and was approved by the Ethical Committee of Aston University.

All observers gave written informed consent.

Participants
A total of eight observers (four male and four female, aged 25–

48 years) consented to participate in the study. All observers had

normal or corrected-to-normal vision and no history of neurolog-

ical dysfunction or injury. All observers had previously acquired

anatomical MR scans.

Stimuli
Glass patterns with radial, rotational or horizontal structure

were created by randomly placing 150 white dots (70.2 cd.m22,

0.0460.04 deg) on a black background (5.061023 cd.m22) within

a square window (8.2568.25 deg), and then providing each dot

with a partner whose relative position was determined by a

common rule (Figure 1). The proportion of dot pairs oriented to

the common rule defined the coherence level. Remaining dot pairs

were plotted at randomly selected orientations. To create radial

patterns, the partner dot was positioned on the radial (i.e. aligned

with the original dot and the centre of the field) and further from

the centre than the original dot. Rotational patterns were created

by placing the partner dot orthogonal to the radial and clockwise

from the original dot. Horizontal patterns were created by placing

the partner dot to the right of the original dot. The centre-to-

centre spacing within each dot pair was 0.18 deg. Dot density

remained constant across the stimulus. All dot arrays were re-

plotted every 10 ms, giving each pattern a dynamic appearance.

Each trial was between 3.5 and 3.7 s and had an initial period of

Glass pattern with radial, rotational or horizontal structure,

followed by an inter-stimulus interval (ISI) of Glass pattern without

structure. The next trial followed immediately such that the screen

was never blank, with the last 1 s of the ISI forming the baseline

for the next coherent phase. Figure 2 shows schematically the

experiment design: on each trial, the coherence of the Glass

pattern increased linearly from zero to 100% over 100 ms,

remained at 100% coherence for 300 ms, then decreased linearly

to zero over 100 ms. The ISI varied between 3000 and 3200 ms,

during which time the Glass pattern had zero coherence. Dot

density and mean luminance remained constant throughout the

entire display period. During recording, a red, central fixation

target was continuously visible in the centre of the screen.

Recording procedure
Central viewing. MEG data were recorded in a dimly-lit

magnetically shielded room using a 151-channel whole-head CTF

Figure 1. Schematic illustration of Glass patterns.
doi:10.1371/journal.pone.0013865.g001
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imaging system (VSM MedTech Ltd., Coquitlam, Canada) in a

single non-averaged run at a sampling rate of 625 Hz, during

which 50 trials of each pattern type were presented in pseudo-

random order. Collection of each dataset took approximately nine

minutes. The display monitor was outside the shielded room and

viewed through a hole in the room’s wall via a front-surfaced

mirror within the room. The linearised Sony GDM F520 monitor

was controlled using a VSG2/5 graphics card from Cambridge

Research Systems (Rochester, UK). The screen size was 1024 by

768 pixels and the frame rate was 100 Hz. The screen was viewed

monocularly and the non-viewing eye was occluded with a dark

patch. The optical viewing distance was 2 m. Observers were

fitted with three electromagnetic head coils, which were localised

relative to the MEG system before and after each recording

session. Following recording, a three dimensional digitiser

(Polhemus Isotrak) was used to determine the position of these

coils relative to the surface of each observer’s head, and this head

surface was matched to their own MRI-defined head shape using

the software Align (www.ece.drexel.edu/ICVC/Align/align11.

html).

Offline, each data set was band-pass-filtered using a fourth-

order bi-directional IIR Butterworth filter into 10 Hz width

frequency bands between zero and 100 Hz. Evenly spaced

frequency bands were used so that the accuracy of covariance

matrix estimation would be equal for each frequency band [30].

The SAM (synthetic aperture magnetometry) beamformer algo-

rithm was used to create differential images of source power

(pseudo-T statistics) for 1 s of baseline (21 to 0 s) compared with

1 s of visual stimulation (0 to 1 s). Time windows for baseline

estimation were of equal duration to the time window of interest to

achieve balanced covariance estimation. Pilot analyses using

different time windows showed 1 s to be optimal for maximising

power responses. Details of the calculation of SAM pseudo-T

source image statistics are described in detail in a number of

sources [31–35]. For source localization, a multiple, local-spheres-

forward model was derived by fitting spheres to the brain surface

extracted by BET [39]. Estimates of the three-dimensional

distribution of source power were derived for each observer’s

whole head at 3 mm isotropic voxel resolution. SAM images

were visualized using mri3dX (https://cubric.psych.cf.ac.uk/

Documentation/mri3dX/).

For spatial locations of interest, activation time courses were

calculated as if a sensor or an electrode were at that position, i.e. a

virtual electrode. Time courses were constructed using SAM

beamformer coefficients obtained using the individual condition

covariance matrices band-pass filtered between zero and 100 Hz

[34]. For each of these virtual-electrode time courses, time-

frequency spectrograms were generated by determination of the

time-varying amplitudes at each sample frequency. These

envelopes were formed from the amplitude of the analytic signal

derived using the Hilbert Transform. The resulting spectrograms

were calculated separately for each trial and then averaged in

order to reveal both induced and evoked responses. Here, we

present spectrograms as a percentage change from the mean

baseline power at each frequency.

Eccentric viewing. For two observers (male, aged 47–48

years), the first experiment was repeated using eccentric viewing.

This controlled for the possibility that the detectability of neural

activity in early visual areas to centrally-viewed stimuli was

compromised by self-cancelling magnetic fields (generated by

neurons on geometrically opposing banks of the calcarine and

inter-hemispheric midline). In this experiment, the Glass patterns

were confined to the lower, left quadrant of the visual field, and

comprised 38 dot pairs covering an area of 4.12 deg2. The edges of

the pattern were 0.5 deg from the horizontal and vertical

meridians. Other details were as reported above.

Results

Central viewing of Glass patterns
SAM analyses were conducted in 10 Hz bins from zero to

100 Hz. Figure 3 shows how the magnitude of the largest power

changes in occipital cortex varies with frequency. For each

observer (n = 8) the largest change (increase or decrease) in source

power (pseudo-T statistic) within the occipital cortex was found for

each frequency band and for each eye viewing. Each point is the

mean (n = 8) of these maximal values: positive and negative

pseudo-T values represent increases and decreases in energy,

respectively. Figure 3 shows there was no difference between the

largest changes in source power for left- versus right-eye viewing,

and that the predominant change in response to the perception of

Glass patterns was event-related power decreases within the 10–

20 Hz range. The spatial location and time-course of cortical

activity within this frequency band are explored further below.

Within the 10–20 Hz band, SAM analyses revealed regions of

activity with pseudo-T values greater than two within extrastriate

cortex in six (out of eight) participants. Four observers showed

activations when viewing with each eye, and one observer only

with right-eye viewing and one only with the left-eye viewing. All

remaining analyses are based on these six participants. Figure 4

shows, for one such participant, SAM images of 10–20 Hz power

changes for the passive perception of radial, rotational and

horizontal Glass patterns. For each pattern type, results are shown

on axial and coronal MRI slices for both right- and left-eye

viewing: the white-purple colours indicate a relative decrease in

oscillatory power. The regions of power change are similar for

each eye. For each stimulus type, the voxel of maximal power

change (the peak voxel), demarcated by cross-hairs in each panel,

corresponds most closely to area V3a [40]. Similarly, Figure 5

shows, for left-eye viewing only, SAM images of 10–20 Hz power

changes for two further participants. Again, the peak voxel was

near area V3a for each observer. Table 1 shows the location of

principal activity for the six participants who showed activations.

The time and frequency components of cortical activity

associated with the perception of Glass patterns were calculated

for each participant. Figure 6 shows the mean (n = 5) time–

frequency plots for both left- and right-eye viewing of each

stimulus type, as determined using virtual electrodes at the location

of maximal power change (from Figures 4–5, Table 1). For each

plot the Glass pattern increased in coherence from time zero and

returned to random coherence at 500 ms. Purple-white colours

represent decreases in energy compared with the mean baseline

power at each frequency. These plots illustrate a decrease in 10–

Figure 2. Schematic illustration of coherence changes within
the Glass pattern during a trial.
doi:10.1371/journal.pone.0013865.g002

Global Form Perception

PLoS ONE | www.plosone.org 3 November 2010 | Volume 5 | Issue 11 | e13865



20 Hz energy that is maintained for most of the first second

following coherence onset, i.e. the time-frequency plots do not

show a response that varies greatly (in the time or frequency

domain) from the SAM analyses (10–20 Hz band and 1 s time

windows) used to select the voxels of interest. The plots do not

reveal any other time-frequency component of interest. A decrease

in 10–20 Hz energy was observed for all pattern types but the

magnitude of the reduction to horizontal patterns appeared less

marked than for either radial or rotational patterns. This is also

shown in Figure 7, where the temporal evolution of 10–20 Hz

activity at the peak locations is shown for each pattern type. For

both right- and left-eye viewing, there is a trend for the energy

change to be less for horizontal patterns than for either radial or

rotational patterns.

Eccentric viewing of Glass patterns
Glass patterns were viewed eccentrically in an attempt to

confine any V1 activity to one quadrant of retinotopic cortex,

thereby minimizing the occurrence of self-cancelling magnetic

fields that may arise because of the cruciform architecture of

primary visual areas. Figure 8 shows, for Observer A, SAM images

of power decreases (purple-white colours) within the 10–20 Hz

band for the passive perception of Glass patterns. The summed

responses to radial, rotational and horizontal pattern types are

shown because the neural responses to each pattern type were

located in the same region. The top panels show the neural

response to Glass patterns viewed centrally whereas the bottom

panels show comparable peaks when patterns were viewed in the

lower-left visual field. Note that both viewing conditions yielded

loci of power decreases within the same visual area, close to V3a,

and no significant activity was evident within area V1.

Discussion

We used MEG to determine the neural signature associated

with the perception of global structure from local image features.

Our results provide evidence to suggest that the perception of

global structure involves regions within or close to extrastriate

visual area V3a (Figures 4–5, Table 1). This is based on data

showing a reduction in low-frequency (10–20 Hz) oscillatory

activity within that area, a neuroimaging attribute believed to

indicate regions of heightened neural activity [e.g. 36, 41–44]. For

example, using both language fluency and visual biological motion

tasks, Singh et al. [36] showed that cortical areas with increased

BOLD signal, as measured using fMRI, also had reduced beta

power, as measured with MEG. More recently, Winterer et al.

[43] confirmed that decreases in beta band power occurred at the

same location as increases in BOLD signal, although they also

Figure 3. Largest energy changes in each 10 Hz frequency bin of SAM analysis. For each of the SAM analyses, performed in 10 Hz
frequency bins for 1 s pre- vs. 1 s post-onset of coherent structure in the Glass pattern, the mean (n = 8) of the largest negative and positive pseudo-T
value observed in occipital cortex is plotted. Negative and positive pseudo-T values represent decreases and increases respectively in energy
compared with baseline (viewing Glass pattern with random structure). Error bars represent one standard error of the mean.
doi:10.1371/journal.pone.0013865.g003
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report a complex set of increases and decreases in oscillatory

power within different frequency bands. Similarly, Kinsey et al.

[44] reported decreases in beta band power as the predominant

MEG response to illusory visual contours. Such decreases in beta

band activity, together with increases in power at higher

frequencies, are predicted to occur within active neural areas,

based on modeling the effects of factors such as changes in

cell membrane properties and the coupling of neuronal

assemblies [41].

Area V3a is intermediate between primary visual areas and

higher-order visual areas within the inferotemporal cortex [7]. For

several years area V3a has been considered a coherent motion

processing area [2,7,10,45,46]. Dynamic Glass patterns contain no

true coherent motion, and the flickering of the stimuli was

unchanged during the active and baseline phases of the

experiment (see Methods). However, it is possible that the

sensitivity of this area to perception of motion underlies the

activation we observed here as similar dynamic Glass patterns

are known to induce a compelling illusion of motion [47,48].

Indeed, whilst the concentric patterns appeared to swirl, and the

radial to expand or contract, the horizontal patterns produced a

weaker illusion of sideways motion (personal observations), and

this may explain the trend for lesser cortical activity in response to

horizontal patterns (discussed below). Alternatively, more recent

neuroimaging studies have shown the involvement of V3a in form

processing without motion [8,9] and so the activations we

observed may indeed reflect global form perception. It should

also be noted that individual variations in the locations of visual

areas make it difficult to distinguish spatially between them [40].

Due to this we must also remain open to the possibility that the

active region was a neighbouring visual area such as V3.

Consistent with this, an fMRI experiment using static Glass

pattern stimuli reported activation of an area slightly inferior to

V3a [1].

While the location of cortical activity was the same for radial,

rotational and horizontal Glass patterns, we suggest the extent of

activity was not. Our MEG data provides evidence that the

perception of horizontal structure elicits less neural activity than

the perception of either radial or rotational structure, at least with

regard to oscillatory activity within the 10–20 Hz band (Figures 5

and 6). The differences in neural activation reported here are

consistent with various reports of reduced perceptual sensitivity to

horizontal patterns compared with rotational or radial patterns

[15–19]. The reason for such differences has been debated for

some time [e.g. 18, 21]. Dakin and Bex [21] attributed the

observed differences to stimulus artifacts such as the shape of the

stimulus aperture, noting that commonly used circular windows

will bias detection for radial and rotational patterns. However,

Figure 4. SAM images (n = 1) showing similar regions of activity irrespective of viewing eye or pattern type. SAM images for Observer A
showing statistical estimates of power changes within the 10–20 Hz frequency band with 1 s time windows. The colour indicates the amplitude of
the pseudo-T statistic (2,T,6) with blue/purple colours representing power decreases. SAM images are overlaid on the individual’s structural MR,
with axial and coronal slices through the voxel with the largest power change.
doi:10.1371/journal.pone.0013865.g004

Global Form Perception

PLoS ONE | www.plosone.org 5 November 2010 | Volume 5 | Issue 11 | e13865



Figure 5. SAM images for two observers showing similar regions of activity irrespective of pattern type. SAM images for Observers B
(left column) and C (right column), left eye viewing, showing statistical estimates of power changes within the 10–20 Hz frequency band with 1 s
time windows. The colour indicates the amplitude of the pseudo-T statistic (2,T,6) with blue/purple colours representing power decreases. SAM
images are overlaid on each individual’s structural MR, with axial and coronal slices through the voxel with the largest power change.
doi:10.1371/journal.pone.0013865.g005

Table 1. Locations of principal peaks in activity.

Observer Eye Pseudo T x Y z

A Left *27.4 212.9 288.2 15.3

26.3 25.7 280.1 17.5

Right *24.9 212.9 288.2 15.3

B Left *24.1 23.3 285.3 18.1

Right 23.5 25.0 277.9 20.5

*23.3 219.6 282.2 13.3

C Left *23.7 213.8 282.2 22.2

22.2 24.8 287.0 4.1

Right *23.1 218.0 282.5 22.5

D Left *22.2 218.4 286.7 4.1

Right *22.0 218.5 287.6 20.7

E Left *22.3 215.8 283.2 9.0

F Right *24.5 22.6 284.5 29.3

Pseudo-T values and co-ordinates for peaks of activity in response to viewing coherent form in Glass patterns. Each observer’s individual MRI was scaled to MNI space
using mri3dX (https://cubric.psych.cf.ac.uk/Documentation/mri3dX/).
*Locations used in time-frequency analysis (Figs 5 and 6).
doi:10.1371/journal.pone.0013865.t001
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Figure 6. Mean (n = 5) time-frequency plots. Mean (n = 5) time-frequency plots are shown for virtual electrodes placed at the location of
maximal power change as determined using SAM (10–20 Hz, 1 s time windows). All virtual electrodes were in visual cortex.
doi:10.1371/journal.pone.0013865.g006

Figure 7. Temporal evolution of the 10–20 Hz group average (n = 5) response. Group average (n = 5) responses showing the temporal
evolution of the 10–20 Hz cortical response in visual cortex to viewing coherent structure. The shaded regions indicate the standard error of the
mean across participants.
doi:10.1371/journal.pone.0013865.g007
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using the same experimental set-up as that employed here, where

all stimuli were spatially confined using a square window,

Anderson and Swettenham [14] demonstrated that the percentage

of signal dot pairs required for the threshold detection of global

structure is less for rotational and radial patterns than for

horizontal patterns [xsee Figure 8 in [14]]. Together, these results

indicate that different neural processes may underlie the

perception of horizontal as opposed to radial or rotational

structure. One possibility, proposed by Wilson and Wilkinson

[18], is that we may be better at detecting radial and rotational

structure because global summating mechanisms exist for their

detection, whereas the detection of horizontal structure relies on

local summating mechanisms. Another possibility is that only

radial and rotational Glass patterns confer a well-defined centre

and an impression of depth, visual attributes which may result in

greater neural activity.

In our study, we did not observe any peaks of activity within

primary visual cortex (V1) to the perception of global form in

Glass patterns. To some extent, this was to be expected because

area V1 is known to be sensitive to low-level image features, such

as luminance and contrast, which we kept constant throughout the

recordings (see Methods). Another possible reason for the lack of

V1 activity relates to its anatomical structure, and the nature of

magnetic fields. Despite inter-observer variability in cortical

anatomy [49], V1 can generally be modeled as a cruciform

structure because the calcarine and inter-hemispheric midline tend

to form a cross at the occipital pole, with each quadrant of V1

responsive to a single quadrant of the visual field. In consequence,

centrally-viewed stimuli may yield self-cancelling magnetic fields.

To control for this possibility, we repeated the experiments using

stimuli confined to a single quadrant of the field. Under such

conditions, however, we still failed to identify V1 as an area of

peak activity (Figure 8). Moreover, an absence of V1 activity to

global form in Glass patterns was also noted using fMRI, where

such anatomical considerations are not pertinent (unpublished

observations).

Previous experimental evidence on the extent of V1 activity to

global form perception is contradictory. An absence of V1 activity

to global form was noted by both Braddick et al. [2] and Wilkinson

et al. [11]. Other studies reported an increase in V1 activity to

global form [50–52], while others still reported a decrease in

activity [53,54]. To some extent the conflicting findings on the

involvement of V1 may be a reflection of the various tasks

employed. For example, experiments requiring observers to attend

to local features were associated with enhanced activity in V1

[50,51], whereas passive viewing paradigms (such as that used

here) were associated with either a decrease [53,54] or unaltered

activity [2,11] within V1. Given our own results, we concur with

Braddick et al. [2] that the perception of global structure from

local features occurs beyond V1, and the evidence presented in

this paper leads us to conclude that a candidate area for this

process is V3a. This is consistent with recent evidence that the

extraction of local orientation cues must precede the perception of

global structure [55].
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