
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If you have discovered material in AURA which is unlawful e.g. breaches 
copyright, (either yours or that of a third party) or any other law, including 
but not limited to those relating to patent, trademark, confidentiality, data 
protection, obscenity, defamation, libel, then please read our takedown 
policy at http://www1.aston.ac.uk/research/aura/aura-take-down-policy/  
and contact the service immediately eprints@aston.ac.uk. 

DOCTORAL THESIS

Modulation of neuronal network activity in
the primary motor cortex

Emma Prokic



1 
 

MODULATION OF NEURONAL NETWORK 
ACTIVITY IN THE PRIMARY MOTOR CORTEX 

 
 
 
 
 

Emma Jayne Prokic 
Doctor of Philosophy 

 
 
 
 
 

Aston University 
November 2011 

 
 
 
 

©Emma Jayne Prokic, 2011 
Emma Jayne Prokic asserts her moral right to be identified as the author of this 

thesis 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This copy of the thesis has been supplied on condition that anyone who consults it is 
understood to recognise that its copyright rests with its author and that no quotation 
from the thesis and no information derived from it may be published without proper 

acknowledgement. 
 



2 
 

 
Aston University 

 
MODULATION OF NEURONAL NETWORK ACTIVITY IN THE PRIMARY MOTOR 

CORTEX. 
 

Emma Jayne Prokic 
 

Doctor of Philosophy 
 

2011 
 
In the present study I investigated the mechanisms of modulation of neuronal 
network activity in rat primary motor cortex using pharmacological manipulations 
employing the in vitro brain slice technique. Preparation of the brain slice in sucrose-
based aCSF produced slices with low viability. Introducing the neuroprotectants N-
acetyl-cysteine, taurine and aminoguanidine to the preparatory method saw viability 
of slices increase significantly. Co-application of low dose kainic acid and carbachol 
consistently generated beta oscillatory activity in M1. Analyses indicated that network 
activity in M1 relied on the involvement of GABAA receptors.  
 
Dose-response experiments performed in M1 showed that beta activity can be 
modulated by benzodiazepine site ligands. Low doses of positive allosteric 
modulators consistently desynchronised beta oscillatory activity, a mechanism that 
may be driven by α1-subunit containing GABAA receptors. Higher doses increased 
the power of beta oscillatory activity.  
 
Whole-cell recordings in M1 uncovered three interneuronal subtypes regularly 
encountered in M1; Fast-spiking, regular-spiking non-Pyramidal and low threshold 
spiking. With the paradoxical effects of positive allosteric modulators in mind, 
subsequent voltage-clamp recordings in FS cells revealed a constitutively active tonic 
inhibitory current that could be modulated by zolpidem in two different ways. Low 
dose zolpidem increased the tonic inhibitory current in FS cells, consistent with the 
desynchronisation of network oscillatory activity seen at this concentration. High dose 
zolpidem decreased the inhibitory tonic current seen in FS cells, coinciding with an 
increase in oscillatory power. 
 
These studies indicate a fundamental role for a tonic inhibitory current in the 
modulation of network activity. Furthermore, desynchronisation of beta activity in M1 
decreased as viability of the in vitro brain slice increased, suggesting that the extent 
of desynchronisation is dependent upon the pathophysiological state of the network. 
This indicates that low dose zolpidem could be used as a therapeutic agent 
specifically for the desynchronisation of pathological oscillations in oscillopathies 
such as Parkinson’s disease.  
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The role of neuronal network oscillations in brain function has become a focus of 

attention for neuroscientists worldwide and, more recently, the role of network 

oscillations in pathological states such as Parkinson’s, Alzheimer’s and epilepsy is 

increasingly being recognised. The work presented in this thesis makes use of an in 

vitro model of neuronal network oscillatory activity in primary motor cortex (M1). The 

oscillations described herein depend on gamma (γ)-aminobutyric acid (GABA) 

receptors and inhibitory interneurones in M1, and the focus of the project is the 

actions of benzodiazepine-site ligands on pathological beta-frequency activity related 

to Parkinson’s disease. These key areas and concepts are discussed below.  

 

1.1 GABA and its Receptors 

 

1.1.1 GABA 

 

GABA is synthesised in the cytosol by the decarboxylation of glutamate catalysed by 

L-glutamic acid decarboxylase (GAD) and accumulated into synaptic vesicles by an 

inhibitory amino acid/GABA vesicular transporter (VGAT/VIAAT) (McIntire et al., 

1997; Sagne et al., 1997; Chaudhry et al., 1998; Wojcik et al., 2006). There are two 

isoforms of GAD; GAD65 and GAD67, with GAD67 distributed evenly throughout the 

neurone and GAD65 concentrated in the nerve terminals where it synthesises GABA 

for neurotransmission (Martin and Rimvall, 1993). Recent data have demonstrated 

that there is a functional coupling between GAD65 and VGAT (Jin et al., 2003), 

showing that VGAT preferentially transports newly synthesised GABA generated 

predominantly by GAD65 (Jin et al., 2003). This preference is abolished in GAD65 -/ - 

mice (Wu et al., 2007). The vesicular concentration of GABA is thought to be in the 

range of several hundred millimolar (Axmacher et al., 2004).  The fusion of a single 

vesicle to the presynaptic neurone terminal releases thousands of GABA molecules 

into the synaptic cleft, generating a GABA concentration that peaks in the millimolar 

range (Mody et al., 1994; Mozrzymas et al., 2003; Mozrzymas, 2004). 

 

First conclusively identified in brain tissue in 1950 by two independent research 

groups (Roberts, 1950; Awapara, 1950), GABA was reported to be almost 

exclusively found in the CNS and not in peripheral tissue. However, it took a decade 
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of debate and further experimentation until GABA was accepted as a 

neurotransmitter. GABA was shown to have an inhibitory function on electrical 

activity in the brain (Florey et al., 1953; Hayashi and Nagai, 1956; Hayashi and 

Suhara, 1956; Bazemore, 1957), while Del Castillo et al., (1963, 1964), working with 

the nematode Ascaris, demonstrated that application of GABA (10 μM) abolished 

spontaneous action potentials in muscles. This inhibition was shown to be caused by 

a hyperpolarisation of the muscle from a resting potential of -30 mV to a lower value 

of -45 mV, and was mediated by increased chloride ion (Cl-) conductance (see 

Bowery and Smart, 2006 for review). In the 1970s and 1980s, experiments were 

conducted to define the nature of the receptor through which GABA acts, culminating 

in elucidation of the structure of the ionotropic GABA receptor (Olsen & Tobin, 1990).  

 

1.1.2 GABA Receptors 

 

Two distinct classes of GABA receptors were later identified: the GABAA receptor 

(GABAAR), a ligand-gated Cl- channel; and the GABAB receptor (GABABR), a seven-

transmembrane segment G protein-coupled receptor (Hill & Bowery, 1981; Bowery et 

al., 1983). Both types of receptor are present in postsynaptic membranes and also in 

presynaptic terminals (Axmacher and Draguhn, 2004), where they contribute to 

regulation of glutamate and GABA release. Hence, whilst ionotropic GABAARs 

mediate fast, phasic synaptic inhibition and tonic extrasynaptic inhibition, GABABRs 

are GPCRs that mediate the slow synaptic actions of GABA.  Activation of GABAA 

and GABABRs can be distinguished pharmacologically by addition of certain ligands. 

GABAARs are activated by the agonist muscimol and blocked selectively by 

picrotoxin and bicuculline. GABABRs are selectively activated by baclofen and 

selectively blocked by 2-OH-saclofen (see Terunuma et al., 2010 for review). This 

selective activation of either GABAA or GABABRs provides many different functions, 

from feedback and feedforward inhibition, through to synchronising large networks of 

principal cells (Pyramidal cells) (see Farrant and Nusser, 2005, for review). 
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1.1.2.1  Postsynaptic GABA Receptors 

 
GABA is the major inhibitory neurotransmitter in the mammalian central nervous 

system and its principal action, which is mediated by ionotropic GABAARs, is to 

increase membrane permeability to Cl- and HCO3
- ions. In the majority of mature 

neurones, this causes a net inward flow of anions and a hyperpolarising postsynaptic 

response - the inhibitory postsynaptic potential (IPSP). This event occurs when 

postsynaptic GABAARs (from 10 to >100), clustered opposite the release site, are 

activated following exposure to a brief, high concentration of GABA released from 

presynaptic vesicles. GABA increases the permeability of membranes to specific ions 

in such a way as to cause the membranes to resist depolarisation. An increase in 

permeability to Cl- ions measured as an increase in membrane conductance, 

hyperpolarises the membrane and decreases the excitability of the cell (Farrant and 

Nusser, 2005). 

 

The action of the GABAAR is dependent on the intracellular Cl- concentration. As 

mentioned above, at low intracellular Cl- concentrations, the equilibrium potential for 

Cl- is negative to the resting membrane potential, and activation of the channel leads 

to Cl- influx and, thus, hyperpolarisation. At high intracellular Cl- concentrations, the 

equilibrium potential is positive with respect to the resting membrane potential. In this 

case, an activation of the Cl- permeable channel will lead to an efflux of Cl- ions and 

the membrane becomes depolarised (Rivera et al., 1999). In this latter instance, as 

the Cl- equilibrium is more positive than the threshold for action potential triggering, 

activation of a Cl- conductance will lead to the generation of action potentials (Staley, 

1992; Owens et al., 1996). 

 

GABA can also depress membrane excitability by increasing K+ conductance by its 

action on GABABRs that are not co-localised with GABAARs. In general, GABA 

accelerates the rate of return of depolarised membrane segments to the resting 

potential and also stabilises membrane compartments by decreasing their sensitivity 

to stimulation (Roberts, 1950). Postsynaptically, GABABRs activate inwardly 

rectifying K+ channels (GIRKs), leading to hyperpolarisation of the postsynaptic 

membrane, whilst pre-synaptically they suppress voltage-gated N and P/Q type Ca2+ 

channels (that provide Ca2+ influx for release of vesicles (Dunlap, 1998), leading to 

reduced neurotransmitter release (Couve et al., 2004; Bettler et al., 2004, 2006).  
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1.1.2.2 Presynaptic GABA Receptors 

 

GABAARs can also be expressed presynaptically, where they act to control vesicle 

release into the synapse. Presynaptic inhibition was first suggested by Frank & 

Fuortes (1957), who studied the inhibition of the extensor spinal reflex on stimulation 

of antagonistic afferent inputs (from the flexor). This action has been shown to be 

either faciltatory or suppressive (Axmacher and Draguhn, 2004), dependent upon 

intracellular Cl- concentration and thus the membrane Cl- gradient and also the 

activation of voltage-dependent ion channels at the presynaptic terminals (see 

Schicker et al., 2008 for review).  Dudel & Kuffler (1961) proposed that the activation 

of GABAARs on the presynaptic terminals were likely to hyperpolarise the presynaptic 

terminal through an increase in the resting Cl- conductance.  Activation of GABAARs 

drives the membrane potential towards the Cl– reversal potential, which is set close 

to the resting membrane potential in adult neurones. This reversal potential is 

dependent on the concentrations of Cl- in the extracellular space and in the 

cytoplasm. The extracellular concentration of Cl– remains the same throughout 

development, whereas cytoplasmic Cl– levels often decrease, especially during brain 

maturation (Staley et al., 1992). As a result, GABAARs often elicit depolarisation early 

in development (Staley et al., 1992; Cherubini et al., 1991). During postnatal 

development, various growth factors lead to the expression of the Cl-/K+ co-

transporter (KCC2). This leads to a switch of GABAA responses from depolarising to 

hyperpolarising within two weeks of postnatal development (Rivera et al., 1999, 

2005). There are also examples of depolarising responses to GABA at presynaptic 

sites in the adult (Bracci et al., 2001) CNS.  However, this appears to be due to the 

HCO3
– ion and not Cl- (Rivera et al., 2005).  

 

GABABRs can also cause an increase in opening of voltage-gated K+ channels 

(Gage, 1992), which may contribute to presynaptic inhibition by hyperpolarising the 

membrane and/or shunting the presynaptic action potential.  

 

This selective activation of either GABAA or GABABRs provides many different 

functions; Feedback inhibition, whereby increased Pyramidal cell firing increases 

interneurone discharge frequency and may thus decrease the Pyramidal cell output; 

Feed-forward inhibition, where the increased discharge of the interneurone results in 
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the decreased activity of the Pyramidal cell and helping to increase the temporal 

precision of firing (Buzsáki, 1984); Synchronisation of large networks of Pyramidal 

cells (see Farrant and Nusser, 2005, for review). 

1.1.3 GABAARs - structure and diversity 

 
GABAARs are structurally comprised of 5 protein subunits arranged around a pore; 

an ion channel that is porous to chloride (Cl-) and bicarbonate (HCO3
-) under 

physiological conditions.  Each subunit consists of several domains.  A larger 

extracellular N-terminus provides the binding sites for the receptors agonists and 

antagonists.  Three membrane spanning domains encompass an intracellular loop, 

followed by another membrane spanning domain.  The C–terminus is also 

extracellular (Graham et al, 1996; Rudolph and Mohler, 2006; Mohler, 2006; Olsen 

and Sieghart, 2009).  The second membrane spanning domain of each subunit 

creates the wall of the pore (Fig. 1.1). 

 

 

 

 
 

 

 
Figure 1-1 Structure and subunit composition of GABAARs. The composition of the GABAAR; 
composed of 5 subunits, situated within the cell membrane.  GABA binds at the interface of the α and 
β subunits. BZDs bind at the interface of the α and γ subunits. 
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Sixteen different subunits have been elucidated to date; α1-6, β1-3, γ1-3, δ, ε, π and 

θ.  There are also a number of ρ subunits that make up a homomeric receptor and 

show distinct agonist and antagonist profiles. This ligand-gated ion channel is 

classified as the GABAC receptor. GABAc receptors can be found in the spinal cord, 

cerebellum and in the retina. However, in other CNS regions, the  subunits can be 

expressed and incorporated into heteropentameric GABA receptors (Milligan et al., 

2004). 

 

 The diversity of the subunits and the number of receptors that can be formed (at 

least 11 are known to be found in vivo), creates a number of binding sites for different 

ligands including barbiturates, benzodiazepines (BZDs) and steroids, as well as the 

agonist site specific for GABA (Graham et al., 1996; Mohler, 1992).  Combinations of 

α and β subunits are sufficient to form functional GABAARs. However, the vast 

majority of native receptors contain a third subunit type, with data from various 

different techniques all indicating (Tretter et al., 1997; Baumann et al., 2002; Boileau 

et al., 2005; Baur et al., 2006) a stoichiometry of two α, two β and one of either γ, δ, 

ε, π or θ. The major receptor subtypes found naturally are α1β2/3γ2, α2β3γ2 and 

α3β3γ2 (McKernan and Whiting, 1996; Whiting, 2003; Benke et al., 2004).  α1β2γ2 is 

the most abundant receptor subtype and is widely distributed throughout the CNS 

(Olsen and Sieghart, 2009; Davies et al., 2000; Barnard et al., 1998).  Where α1β2γ2 

is absent, the α2 and α3 subunits are found, although at much lower levels of 

expression (Wisden et al., 1992; Fritschy and Mohler, 1995; Pirker et al., 2000).  With 

so much diversity, many physiological differences are seen between the subtypes.  

Differences in physiology include channel kinetics, affinity for GABA, rate of 

desensitisation and ability of the receptor to undergo chemical modification such as 

phosphorylation (Mohler, 2006).  Diversity of subunit composition also creates cell 

type specific expression and domain specific location (Nusser et al., 1995; Fritschy 

and Mohler, 1995; Mohler, 2006).  For example, δ subunits, usually expressed with 

α4 or α6, are not found synaptically (Nusser et al., 1998; Poltl et al, 2003) but are 

abundant at extrasynaptic dendritic and somatic membranes (Olsen and Sieghart, 

2009).  γ2 subunits are found synaptically and extrasynaptically (Semyanov et al., 

2003).  Synaptic and extrasynaptic subtypes also differ in their kinetic properties, 

which is particularly evident within the cortex.  δ subunits show slow desensitisation 

properties extrasynaptically, whereas α2 subunits, found postsynaptically show fast 
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desensitisation properties (Mohler et al., 2002). The α4 subunit is expressed at very 

low abundance but is found most prominently in the thalamus and dentate gyrus 

(Pirker et al., 2000).  The α6 subunit is confined to cerebellar granule cells and 

inferior colliculus granule cells (Luddens et al., 1990).  Further to this, as GABAARs 

are compromised of two α and two β subunits, these themselves may contain two 

different isoforms (Benke et al., 2004; Minier and Sigel, 2004; Boulineau et al., 2005). 

 

In the extracellular domain, five pockets are created at the five subunit interfaces 

(Graham et al., 1996, Rudolph and Mohler, 2006; Olsen and Sieghart, 2009).  There 

are two GABA binding sites, created by two pockets at the α-β interface.  The β 

subunit creates the primary bond, with the α subunit being complementary.  Two 

GABA molecules are generally needed to open the Cl- channel.  GABAARs are 

important drug targets representing the sites of action of BZDs, barbiturates, and 

neurosteroids. At the interface of the α and γ subunits is a specific binding site for 

BZDs.  The α-subunit creates the primary bonding site, with the γ subunit being 

complementary.   

 

1.1.4 GABAA Receptor Distribution 

 
α1, β1,2,3 and γ2 subunits of the GABAAR are found throughout the brain, with some 

slight variations in distribution, whilst α2, 3, 4, 5, 6, γ1 and δ subunits are confined to 

certain brain areas, such as α2 in the forebrain  (Pirker et al., 2000; Sieghart and 

Sperk, 2002). The distribution of the GABAAR varies dependent upon the subtype. 

The α1 subunit is highly expressed in all layers of the cortex, whereas the α2 and α3 

subunits are expressed to a lesser degree (Sieghart and Sperk, 2002). More 

specifically, the density of GABAAR distribution across laminae in the motor cortex 

and somatosensory cortex tends to vary, while distribution within laminae tends to be 

more evenly distributed (Huntley et al., 1990). Sensory areas appear to have a higher 

receptor density than motor areas (Zilles et al., 1995). In adult rats the highest 

receptor density was found in LII/III followed by V, coinciding with the majority 

reception of cortico-cortical connections (Jones and Wise, 1977; Jones et al., 1978; 

Jones, 1986).  
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Subunit α1 α2 α3 α4 α5 δ β1 β2 β3 γ2 γ3 

Layer                       

LI xxx xx x xx x xxx xx xxx xxx xxx x 

LII/III xxx xx x xx x xxx xx xxx xxx x x 

LIV xxx xx x xx xx xx xxx xxx xx xx x 

LV xxx x xx x x xx xx xxx xxx x x 

LVI xxx x xx x xx xx xx xxx  xx x 

  
Table 1. 1 Relative density of receptor subunit staining in neocortex (adapted from Pirker et al., 

2000). 
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1.2 Types of Inhibition 

 

Inhibition of neuronal excitability exists in more than one form.  The actions of GABA 

can exist as synaptic transmission, involving the transient or ‘phasic’ activation of 

receptors, or they can exist as a persistent or ‘tonic’ activation of receptors, whereby 

the tonic conductance is temporally distinct from synaptic events (Mody, 2001; 

Semyanov et al., 2004; Farrant and Nusser, 2005). 

   

1.2.1 Phasic Inhibition 

 

Phasic inhibition involves the rapid and precise transmission of activity from the 

presynaptic neurone to the postsynaptic neurone.  An action potential arriving at the 

nerve terminal of the presynaptic neurone will cause a calcium influx, which induces 

fusion of a GABA containing vesicle to the membrane.  GABA is then released into 

the synaptic cleft at millimolar concentration. This release of GABA then activates the 

GABAARs located on the postsynaptic membrane, causing the synchronous opening 

of Cl- channels, which form the pore of the GABAARs (Mody et al., 1994).  Activation 

of these receptors induces a hyperpolarising inhibitory postsynaptic potential (IPSP) 

in the postsynaptic neurone. Even in the absence of hyperpolarisation (for example 

when the transmembrane Cl- gradient is symmetric and no net ion flow is observed), 

the actions of GABA can cause inhibition due to increased membrane conductance. 

So-called ‘shunting’ inhibition results in low membrane input resistance, acting as a 

brake on excitation and decreasing the likelihood of an action potential being fired 

(see Farrant and Nusser, 2005 for review; Mody et al., 1994). Of course, 

hyperpolarising and shunting inhibition are not exclusive and either or both effects 

may underlie the actions of GABA in given locations. Phasic inhibition is vital to the 

normal functioning of neuronal networks, preventing pathological states and also 

having a major role in more complex activities (Buzsaki and Chrobuk, 1995; Singer, 

1996; Freund, 2003; Somogyi and Klausberger, 2005), such as rhythmic network 

activity (Traub et al., 1998, Galarreta and Hestrin, 2001). 
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1.2.2 Tonic Inhibition 

 

GABA concentration decays rapidly from its post-release peak in the synaptic cleft 

(Overstreet et al., 2002) due to active uptake and diffusion away from the synaptic 

cleft.  This diffusion, or spillover, may activate receptors away from the synapse, 

either those at adjacent postsynaptic densities, or those located peri- or extra-

synaptically.  Spillover can therefore be attributed to phasic activation as it is 

temporally related to a release event; however, spillover can also contribute to an 

ongoing or ‘tonic’ conductance. Persistent or ‘tonic’ activation of receptors occurs in a 

variety of neurones (Mody, 2001; Semyanov et al., 2004; Farrant and Nusser, 2005) 

and often appears to be independent of any identified release event. Tonic activity of 

GABAARs seems to be a persistent activation of specific extrasynaptic or 

perisynaptic receptor populations by low concentrations (nM to mM) of ambient 

GABA (Cavelier et al., 2005; Farrant and Nusser, 2005; Santhakumar et al., 2006). 

 

Tonic GABAergic signalling in mature neurones was first identified in cerebellar 

granule cells (Kaneda et al., 1995; Brickley et al., 1996; Tia et al., 1996; Wall and 

Usowicz, 1997). Further studies have identified a tonic conductance in dentate gyrus 

granule cells (Nusser and Mody, 2002; Stell and Mody, 2002; Stell et al., 2003; 

Mtchedlishvili and Kapur, 2006), Pyramidal cells and inhibitory interneurones in the 

CA1 region of the hippocampus (Semyanov et al., 2003; Scimemi et al., 2005), 

Pyramidal neurones and interneurones in the somatosensory cortex (Yamada et al., 

2007; Keros and Hablitz, 2005) and thalamocortical relay neurones (Belelli et al., 

2005; Cope et al., 2005; Jia et al., 2005). Scimemi et al., (2005) noted that some of 

these studies used either additional GABA or GABA uptake blockers to record a tonic 

current, particularly in Pyramidal cells. However, interneuronal populations were 

likely to display a tonic current without the need for this enhancement of GABA 

concentration (Seymanov et al., 2003).   

 

Many studies have reported that tonic inhibition requires GABAARs to contain the δ-

subunit, which confers high affinity for GABA and limited desensitisation (Mortensen 

et al., 2010), both of which are required for an extrasynaptically located, tonic current. 

However, a few of the studies have noted modulation of the tonic current by the BZD 

site ligand zolpidem, which by the nature of its action requires a γ subunit (Semyanov 
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et al., 2003; Yamada et al., 2007).  In this context, it should be remembered that all 

GABAARs contribute to the generation of a tonic conductance if the ambient 

concentration of GABA is high enough to activate them and although δ-subunit 

containing receptors are exclusively extrasynaptic, non-δ-subunit containing 

receptors are not exclusively synaptic (Nusser et al., 1995; Brunig et al., 2002). 

Hence, tonic conductance by non-δ subunit containing receptors could reflect either 

increased ambient levels of GABA or a selective increase in the affinity of 

extrasynaptic non-δ subunit containing receptors by, for example, positive allosteric 

modulators (Farrant and Kaila, 2007). BZDs have been shown to enhance tonic 

conductance in interneuronal populations in hippocampus (Semyanov et al., 2003) 

and cortex (Yamada et al., 2007), suggesting α1γ2 subunit containing GABAARs can 

modulate tonic conductances. Increasing GABA concentrations uncovers a α5-

subunit containing receptor mediated tonic conductance in hippocampal Pyramidal 

cells (Caraiscos et al., 2004), while under normal conditions the conductance is 

mediated by δ-subunit containing receptors.  These studies imply that tonic activity is 

a dynamic process, with different GABAAR populations playing a role under different 

conditions, with differences dependent upon neuronal populations, pharmacological 

intervention with positive allosteric modulators, such as BZDs or changes to GABA 

uptake, all which could have an effect on network activity (Scimemi et al., 2005; 

Glykys and Mody, 2006; Glykys et al., 2008; Farrant and Kaila, 2007; Mann and 

Mody, 2010). 

 

The effect of tonic GABA conductance on cell excitability should not be disregarded. 

Recent work has shown that tonic inhibition has a biphasic effect on cell firing rates. 

Low tonic GABA conductances depolarise the cell and enhance voltage-dependent 

resting membrane potential (RMP) fluctuations that can lead to action potential 

generation.  However, as tonic conductance increases, these RMP fluctuations are 

shunted and the cell cannot fire an action potential (Song et al., 2011). 
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1.3 Benzodiazepine Pharmacology     

 
BZDs were first discovered in the 1950s with the synthesis of chlordiazepoxide 

(Sternbach, 1979), used as a tranquiliser for the relief of anxiety.  Problems with the 

use of barbiturates as tranquilisers, due to their low therapeutic index and issues of 

tolerance and safety, then drove work to find a BZD compound with similar clinical 

utility. The synthesis of diazepam soon followed that of chlordiazepoxide and this 

new class of drugs was used clinically to replace barbiturates.  The early group of 

drugs is known as the classical BZDs and all are allosteric modulators of the 

GABAAR. Binding to the receptor causes a leftward shift in the dose response curve 

(Figure 1.2).   GABAARs containing α1, α2, α3 and α5 subunits in combination with 

any β subunit and the γ2 subunit are sensitive to BZDs. Rogers et al., (1994) 

proposed that diazepam altered GABAAR current by acting to increase the apparent 

agonist association rate, which in turn increases the conduction of Cl- ions across the 

neuronal cell membrane. This increased conductance decreases the membrane 

potential of the postsynaptic neurone resulting in inhibition of neuronal firing (Choh et 

al., 1977; Macdonald and Barker, 1978).  Once bound to the BZD binding site, the 

BZD keeps the GABAAR in a conformation in which it has a greater affinity for GABA.   

 

 

 

 

 

 

 

 

 

 

 
 
Figure 1-2 Effect of BZDs & Barbiturates on GABAARs. GABA alone causes a concentration 
dependent increase in Cl

-
 current into neurones upon GABAAR activation (green). BZD agonists or 

barbiturates in the presence of GABA shift the curve to left (higher GABA affinity, red). High dose 
barbiturates can also activate GABAARs without the need for GABA and thus increase the current over 
GABA alone, leading to toxicity (black). BZD inverse agonists in the presence of GABA shift receptor 
function to the right (lower GABA affinity, blue). 

 

[GABA] 
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GABA receptors containing α, β and γ subunits are sensitive to BZDs and within this 

group the ligand binding profile of the various forms of α subunit containing receptors 

varies dramatically.  α1 subunit containing receptors have a much higher affinity for 

BZDs such as CL 218,872 and zolpidem than those containing the α2 and α3 

subunits (Barnard et al., 1998; Olsen and Sieghart, 2009; Davies et al., 2000).  α5 

containing receptors are found in lower abundance and are differentiated from α1, α2 

and α3 by extremely low affinity for CL 218,872 and zolpidem.  α4 and α6 are thought 

to be insensitive to BZDs (Rudolph et al., 1999).  Furthermore, the selective 

expression pattern of the subtypes has lead to selective modulation of distinct 

neuronal networks based on the efficacy of the different BZDs available (Mohler, 

2006).  For instance, those with high activity at α1 subunits are associated with 

hypnotic effects, whereas those with higher affinity for the α2 and/or α3 subunits have 

anxiolytic effects (Table 1.1 and associated references).   

 

 

 
Subunit 

 
Action 

 
Reference 

 
 

α1 

 
Hypnotic, anti-convulsant, 

locomotor 

 
McKernan et al., 2000, 

Rudolph et al., 1999, Low 
et al., 2000., Crestani et 

al., 2000 

 
α2 

 
Anxiolytic, muscle relaxant 

 
Low et al., 2000 

 
α3 

 
Anxiolytic*, anti-absence 
effects, anti-pyschotic, 

muscle relaxant 

 
Yee et al., 2005, * but see 

Low et al., 2000 

 
α5 

 
Anxiolytic, learning and 

memory, muscle relaxant 
 

 
Crestani et al., 2002b 

 
α4/6 

 
BZD insensitive 

 

 
Korpi et al., 1993, Yang et 

al., 1995 

 
Table 1.2 BZD activity mediated by the different GABAAR alpha subunit containing receptors.  
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The generation of mice with a point mutation on specific subunits of the GABAAR 

revealed the pharmacological actions of the different subunit types and, therefore, 

their relevance in wild type mice.  Hence, amino acid substitution (replacing histidine 

with arginine) within the binding pocket at the α–γ interface rendered target α 

subunits insensitive to diazepam.  This is also why α4 and α6 subunits are BZD 

insensitive; they contain an arginine residue where the BZD binding site is located 

(Korpi et al., 1993; Yang et al., 1995).  This research has helped to identify a group of 

novel drugs, specific for the different α subunits and therefore mediating specific 

effects, such as anxiolysis or sedation, which the classical BZDs could not do (Table 

1.2 and associated references; Rudolph et al., 1999; Crestani et al., 2000; McKernan 

et al., 2000; Wingrove et al., 2002).  The β subunit does not appear to significantly 

affect BZD binding to the GABAAR (Graham et al., 1995; Pritchett et al., 1989).  

 

 
Drug 

 
Activity 

 
Interaction 

 
Reference 

 
Zolpidem 

 
Hypnotic 

 
α1 

 
Damgen and  

Luddens, 1999 
 

 
Zopiclone 

 
Hypnotic 

 
Little difference in affinity 

at α subunits 
 

 
 

Davies et al., 2000 

 
CL 218,872 

 
Anxiolytic, 

anticonvulsant 
 

 
α1 

 
Sieghart, 1995 

 
L-838,417 

 
Anxiolytic 

 
Comparable affinity at 
α1,2,3 and 5 but no 

efficacy at α1 
 

 
 

McKernan et al,. 
2000 

 
Diazepam 

 
Anxiolytic, 

anticonvulsant, 
hypnotic 

 

 
Comparable affinity at all 

α subunits 
 

 
Sieghart, 1994 

 
Table 1.3 Interaction and activity of ligands that are active at the BZD site of the GABAAR.  
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1.4 Local GABAergic Inhibitory Interneurones 

 
 
Inhibitory GABAergic interneurones play an important part in cortical circuitry.  

Interneurones form distinct networks and play a part in oscillatory activity, with their 

axons commonly making short-range connections and releasing GABA onto their 

targets (McBain and Fisahn, 2001; Somogyi and Klausberger, 2005).  Characteristics 

and types of interneurones vary between species (Zaitsev et al., 2009) with the 

number of interneurones much greater in primates than rodents (Gabbott et al., 

1997). Firing properties also vary compared to those seen in rodents (Krimer et al., 

2005).  Their mutual inhibition is critical in cortical networks and oscillatory dynamics 

(McBain and Fisahn, 2001).  Interneurone types are diverse and many characteristics 

have been used to define and categorise them, for example, characterisation by 

physiology, morphology, histochemistry, postsynaptic targets and the presence of 

electrical synapses are commonly used techniques (Kawaguchi, 1993; Jones 1993; 

McBain and Fisahn, 2001).  GABAergic inputs from specific subtypes of inhibitory 

interneurone may also target spatially distinct zones on principal neurones (axonic, 

perisomatic, proximal or distal dendritic), and this is important in regulating neuronal 

actions (inhibition of spiking, synchronisation, integration of synaptic input) in the 

cortex (Miles et al., 1996; Pouille and Scanziani, 2001; Somogyi and Klausberger, 

2005; Szabadics et al., 2006). It is often difficult to classify interneurones into one 

particular group due to significant overlap of characteristics.  Dendritic morphology 

has the most variability, but axonal arborisation and connectivity with other cells can 

go some way to identify the interneurone (Markram et al., 2004).  

Electrophysiological characterisation classifies interneurone types into four broad 

groups; fast spiking cells (FS), low threshold spiking (LTS; or burst spiking cells), late 

spiking cells (LS) and regular spiking non-Pyramidal cells (RSNP) (Kawaguchi and 

Kubota, 1997).  Of these four groups, FS and RSNP cells are more commonly found 

in the cortex, whereas LS and LTS cells only make up a small proportion of 

interneurones in the cortex.  

 

What follows is an overview of characteristics of inhibitory interneurones found in the 

cortex and I will be using this description in this thesis, however, it should be noted 

that more recently, researchers have called for a change in how interneurones are 
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classified (Ascoli et al., 2008).  Gupta et al., (2000) first noted that there are more 

electrophysiological characteristics than could be easily placed into four groups, and 

Steriade (2004), reported that characteristics defined in vitro are not consistent and 

that firing properties of individual neurones can change dependent on current 

injection intensity, but also, in vivo, firing characteristics show some dependence on 

the behavioural state of the animal.  There is no agreement on the number and 

identity of interneurones within the cortex, partly due to a lack of agreement on what 

criteria to use to define a cell, therefore different researchers will use different criteria 

to define cells.  

 

Fast spiking (FS) cells are identified by a non-adapting, high frequency pattern of 

firing in response to depolarising current injection.  They are known to be 

immunopositive for the calcium binding protein, parvalbumin (PV), and are 

morphologically classed as basket or chandelier-like (Kawaguchi 1993a, 1993b, 

Kawaguchi, 1995; Kawaguchi and Kubota, 1997; Galarreta and Hestrin, 2002).  FS 

cells display brief action potentials and a large afterhyperpolarisation (AHP) 

(Kawaguchi and Kubota, 1995). Their axons most commonly terminate on somata 

(Jones, 1993; Kawaguchi and Kubota, 1997; Mann et al., 2005) within motor cortical 

layer (L) II/III with dendrites extending to all layers of the motor cortex (McCormick et 

al., 1985; Connors and Gutnick, 1990).  

 

Low threshold spiking (LTS) cells (Kawaguchi 1993a, 1993b; Kawaguchi and Kubota, 

1997) show two or more spikes from hyperpolarising potentials after current injection.  

Neurochemically, they test positive for calbindin, also a marker for GABAergic cells 

(Kawaguchi and Kubota, 1997; McBain and Fisahn, 2001).  Morphologically they are 

classed as double bouquet cells, where axon terminals are on dendritic shafts and 

spines of Pyramidal cells (Jones, 1993; Kawaguchi and Kubota, 1997). Spikes tend 

to be wider than those seen in FS cells and LTS cells have a much higher input 

resistance and a more positive resting membrane potential than most interneurones. 

LTS cells were also later referred to as Burst Spiking Non Pyramidal (BSNP) cells 

(Kawaguchi and Kubota, 1997).  Their dendrites tend to be bitufted or multipolar.  

Their axons originate from the pial side of the soma, with the main axon ascending 

with collaterals into L1. Some axon collaterals are distributed throughout LII/III and 
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LV (Kawaguchi, 1993; Kawaguchi and Kubota 1993; Kawaguchi, 1995; Kawaguchi 

and Kubota, 1997).  

 

Late spiking (LS) cells show a slow depolarising ramp to near threshold level before 

regular action potential firing after a considerable delay (Kawaguchi, 1995; 

Kawaguchi and Kubota, 1997; Chu et al., 2003) and can be induced to fire from both 

hyperpolarised and depolarised states. Morphologically, they are neurogliaform cells 

with multipolar symmetrical dendrites (Kawaguchi and Kubota, 1997) and their axons 

target dendrites and somata (Jones, 1993).  Their input resistance and spike width 

are much greater than FS cells, despite having a non–adapting firing pattern and a 

tendency to rest at more positive potentials (Kawaguchi, 1995; Kawaguchi and 

Kubota, 1996). 

 

Regular spiking non–Pyramidal (RSNP) cells are inhibitory cells (non-Pyramidal 

cells) that cannot be categorised into the above three groups. Regular spikes can be 

seen in response to current pulses and at depolarising potentials spiking is strongly 

adapting (Kawaguchi and Kubota, 1996, 1997 and 1998). They can display two types 

of behaviour depending on the depolarising current applied (Kawaguchi, 1995).  One 

group consisted of RSNP cells that exhibited a fast depolarising “notch” after a spike 

when they were depolarised from hyperpolarised potentials and the second group did 

not exhibit these “notches”. Those with a depolarising notch are multipolar, bipolar or 

bitufted, with axons originating from the soma or dendrites. Cells that do not show a 

depolarising notch have axonal branches that extend vertically and are multipolar 

and bitufted cells (Kawaguchi and Kubota, 1996, 1997 and 1998).  

 

Interneurones can also be divided according to their steady state response (Markram 

et al., 2004).  Non-adapting, adapting, stuttering, irregular spiking and bursting types 

have been identified.  These can then be subdivided dependent upon their onset 

response; bursting, delay and classic (with no bursts or delays and so their onset in 

indistinguishable from their steady state response (Markram et al., 2004)). It should 

be noted that a firing type does not automatically denote a morphological subtype. In 

fact, morphologically identified interneurones may have many firing behaviours 

(Kawaguchi and Kubota, 1997; Gupta et al., 2000; Wang et al., 2002; Kawaguchi, 

1993; Kawaguchi, 1995). 
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Cell 

Type 

RMP 

(mV) 

Spike 

Width 

(ms) 

Neurochemical 

substances 

Morphological 

type 

Synaptic 

targets 

FS 

 

-77.4 - 

-73.0 

0.43 – 

0.59 

Parvalbumin, 

cholecystokinin 

Basket, 

Chandelier 

Soma, AIS, 

thick dendrites 

RSNP 

 

-66.0 - 

-60.6 

0.75 – 

1.06 
somatostatin Martinotti 

Thin dendritic 

branches 

LTS, 

BSNP 

 

~ -57.5 
0.94 

VIP, calretinin, 

NPY 
Double bouquet 

Dendrites, 

soma 

LS 
 

~ -67.2 
0.77 calbindin Neurogliaform 

Dendrtitic 

spines 

 

Table 1.4 Properties of interneuronal subtypes that may exist in M1. Overview of the important 
properties that distinguish interneuronal subtypes from one another based on morphological and 
physiological and electrophysiological properties (Halasy et al., 1996; Kawaguchi, 1995; Kawaguchi 
and Kubotoa, 1997; Cauli et al., 1997). 

 

 

 

1.5 Network Activity within the Cortex 

 

Within the cortex, local networks of interneurones acting on the larger population of 

principal cells create synchronous oscillations from their electrical activity.  First 

described in humans by Hans Berger (1929) from electroencephalographic (EEG) 

data, oscillatory activity could be split into certain bands based on the frequency of 

the oscillations.  Each band was thought to relate to a certain type of behavioural 

state.  Slower waves i.e. delta (less than 4 Hz) and theta waves (4-8 Hz) were 

associated with drowsy and sleeping states, delta waves, particularly, can be seen in 

deep sleep (Amzica and Steriade, 1998).  Alpha waves (8-12 Hz) were associated 

with a resting state, and higher frequency activities such as beta (12-26 Hz) and 

gamma waves (26-100 Hz) were associated with active behavioural states (Traub et 

al., 1996).  However, more recently it has become clear that particular behavioural 

states are not confined to specific frequency bands, such that bands can in fact be 
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associated with multiple behaviours and may also co-exist with one another during 

behaviour.  Gamma rhythms have been of particular interest in the study of cortical 

oscillatory activity due to the fact that it is thought this particular rhythm is involved in 

higher cortical processes such as cognition and sensory input (Gray and Singer, 

1989; Traub et al., 1999).  Gamma oscillations were first reported in early 1930s 

through electroencephalogram (EEG) measurements. Wolf Singer was the first to 

hypothesise the importance for gamma oscillations by proposing the gamma binding 

hypothesis; that gamma oscillations could be the mechanism for perceptual binding 

(for review, see Singer, 2001). By synchronising assemblies of neurons, which 

process various features of an object within integrating time windows, gamma 

oscillations would allow neurons to synchronise and therefore multiply their output 

onto subsequently connected neurons.  The gamma-binding hypothesis has been 

further extended to include binding across sensory modalities (e.g. audio-visual 

integration) (Tallon-Baudry and Bertrand, 1999). 

 

Most work to date has been conducted in the hippocampus in vitro, while motor 

cortical oscillations have very rarely been studied in vitro although work carried out 

by Yamawaki et al., (2008) showed beta oscillations predominated in rat primary 

motor cortex (M1).  These oscillations were driven by kainic acid (KA) and carbachol 

(CCh) induction of interneurone network activity and relied upon GABAARs and gap 

junctions, but not AMPARs. The oscillation was likened to “interneurone network 

gamma” (ING), first shown in 1995 by Whittington et al., and proposed as a 

mechanism by Traub et al., (1996).   

 

1.5.1 Interneurone Network Gamma (ING) 

 
ING was considered as a mechanism for oscillation generation when gamma 

oscillations were observed without Pyramidal cell drive and by blockade of ionotropic 

glutamate receptors in the hippocampus in vitro (Whittington et al., 1995).  Two main 

mechanisms for the generation of ING were shown; tetanic stimuli and mGluR 

activation accompanied by ionotropic glutatmate receptor block (Whittington et al., 

1995; Traub et al., 1996; Traub et al., 1999).  Experiments using 2 µM pentobarbital 

also showed that a network of interneurones was involved.  At this concentration 

pentobarbital, a barbiturate that allosterically acts to enhance the effect of GABA on 
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GABAARs, has negligible effects on the intrinsic properties of the interneurones but 

can alter the frequency of the oscillation and can affect the conductance and/or time 

course of GABAA IPSCs.  The frequency of oscillations within a mutually inhibiting 

interneurone network is dependent on three factors; the excitatory driving current to 

the network, the GABAA decay time constant (TGABA(A)) and the amplitude of unitary 

hyperpolarising GABAAR mediated conductance (gGABA(A)) (Traub et al., 1996). 

 

1.5.1.1 Driving Current 

 
Mathematical modelling has shown that if a network of mutually inhibiting 

interneurones are firing synchronously and if they become more depolarised 

(provided the amount of depolarisation is approximately the same to each cell in the 

network) they will begin to fire faster (Traub et al., 1996; Jeffreys et al., 1996; Traub 

et al., 1999).  However, the linear relationship between driving current and frequency 

seen in the models was not entirely repeated in the experiments.  In experiments, 

using puffs of glutamate to regulate the amount of drug to a specific area, frequency 

increased with driving force up until a point, where frequency would then begin to 

decrease as driving force continued to increase (Traub et al., 1996; 1999).   

 

1.5.1.2 TGABA(A) 

 
The decay time constant, or Tau, is defined as the time taken for a postsynaptic 

GABA current to decay to 1/e (1/2.718 or about 37 %) of its peak value and provides 

a means of cross-comparing PSC kinetics regardless of variations in amplitude. After 

three time constants have elapsed the value of any current is below 15% of the 

original peak current. Most IPSCs follow mono or biphasic decay profiles, and so it is 

sometimes necessary to calculate both slow and fast Tau values for a given synaptic 

IPSC. As the decay time constant of the GABAA IPSCs increase, a decrease in the 

frequency of the oscillations is seen (Whittington et al., 1995; Traub et al., 1996; 

Fishan et al., 1998), reflecting the direct relationship between the large conductance 

of synaptic GABAAR currents and observable changes in local field potentials.  

Experiments using the barbiturate thiopental, which increased tau, showed a steady 

decline in frequency with increasing concentrations, which, although non-linear, fitted 

well with modelling data (Traub et al., 1996).     
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1.5.1.3 gGABA(A) 

 
Using the GABAAR anatagonist bicuculline to decrease GABAA conductance within 

the network and the BZD diazepam to increase GABAA conductance, experimental 

data showed an increase in network frequency with decreasing conductance and a 

decrease in frequency with increasing conductance that fit well with modelling data 

(Traub et al., 1996).  However, the slowing of the network frequency is probably also 

related to the affect of diazepam on TGABA(A) as well as gGABA(A)  (Traub et al., 1996, 

1999).   

 

Network activity within the thalamic reticular nucleus (nRT), which consists entirely of 

inhibitory GABAergic neurones, has been suggested as a biologically relevant role 

for ING (Traub et al., 1996b, 1999b), however, in the motor cortex, and in other 

areas, ING would most likely constitute a local phenomenon only, as the axonal 

length of interneurones is short (Traub et al., 1996b, 1999b, 2001, 2004). Long-range 

synchronisation would therefore not be expected to occur via ING in vitro or indeed, 

in vivo (Whittington et al., 1997b).  

 

For ING to be viable biologically, the interneuronal network would be required to be 

excited uniformly. Computer simulation of ING has suggested that this could be 

possible when interneuronal networks are linked via dendritic gap junctions providing 

such uniform excitation (Traub et al., 2001, 2003). 

 

1.5.2  Pyramidal-Interneurone Network Gamma (PING) 

 

During cortical oscillations, both Pyramidal neurones and interneurones are likely  to 

participate (Jagadeesh et al., 1992).  A recurrent synaptic feedback loop between 

Pyramidal cells and interneurones has been proposed to underlie network rhythms 

on a local scale (less than 400µm) (Freeman, 1968; Colling et al., 1998).  

Interneurones and Pyramidal cells fire in phase, to within a couple of milliseconds 

(Traub et al., 1996a; Whittington et al., 1997a).  The frequency of the oscillation can 

be modified by driving currents to the Pyramidal cells as well as by IPSC parameters 

(Traub et al., 1997; Whittington et al., 1997b). 
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Network simulations indicate that long-distance synchronisation of gamma 

oscillations (Gray et al., 1989) could occur when both Pyramidal neurones and 

interneurones participate.  Two-site tetanic stimulation in CA1 showed that both 

synaptic excitation and inhibition contribute. Using stimuli that are close to threshold 

for evoking a response, a transient oscillation is produced and provided the stimulus 

intensity is at least approximately balanced between sites, the oscillations at the two 

sites are synchronised to within <1 ms (Gray et al., 1989; Traub et al., 1996b; 

Whittington et al., 1997a, b).  Intracellular recordings (Whittington et al., 1997a) show 

a slow (hundreds of ms) depolarisation, larger than 10 mV is evoked in both 

Pyramidal cells and interneurones and is blocked in Pyramidal cells when blockers of 

metabotropic glutamate receptors are applied (Congar et al., 1997). During PING 

induced by a tetanic stimulus, ING is produced in the interneurone population, under 

conditions when Pyramidal cell somatic firing is greatly reduced (Whittington et al., 

2001). The resulting IPSPs are prominent in Pyramidal cells and can gate the timing 

of Pyramidal cell action potentials (Whittington et al., 1995).  However, showing that it 

is distinct from ING, PING can synchronise over distances as long as 3.5 mm (Traub 

et al., 1996b), and is dependent upon AMPA receptors (Traub et al., 1999b; 

Whittington et al., 1997a). A combination of modelling, mathematical analysis 

(Ermentrout and Kopell, 1998) and experimental evidence (Traub et al., 1996b) 

indicate that long range synchronisation is dependent on two mechanisms; narrow 

action potentials generated by the interneurones that follow each other at short 

intervals and on the rapid time course and large amplitude of EPSCs in 

interneurones (Geiger et al., 1997; Miles, 1990).  These properties are shown to drive 

action potentials that are precisely timed, and that give rise to interneurone doublets 

(double spikes) (Traub et al.,1996b, Whittington et al., 1997a; Bibbig et al., 2002).  

The within-doublet spike interval of which, provides to Pyramidal cells information 

about the firing time of Pyramidal cells at another site (Bibbig et al., 2002).  Under 

certain circumstances, this information acts as a feedback signal that stabilises the 

firing pattern in which the two sites fire synchronously (Ermentrout and Kopell, 1998). 

The second spike of the doublet is thought to be produced by synchronisation of 

AMPAR mediated excitatory input from local and distant Pyramidal cells.  The EPSP 

produced is powerful enough to overcome the strong AHP occurring immediately 

after the first spike of an inhibitory interneurone and generates the spike doublet. The 

resulting spike doublet summates IPSPs onto Pyramidal cells, which delays the 
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initiation of local Pyramidal cell spiking and, consequently, the phase lag of spikes 

between the local and distant Pyramidal cells is reduced. This long range 

synchronisation occurs at beta frequencies following a shift from gamma (Kopell et 

al., 2000). The inhibition of local Pyramidal cells following the spike doublets leads to 

a firing pattern by which interneurones only fire on every second gamma period 

(Bibbig et al., 2002).  

1.5.3  Persistent Gamma 

 

Bath application of pharmacological agents, such as KA and CCh, can induce 

oscillations lasting for hours (Buhl et al., 1998; Fisahn et al., 1998, 2002; Hormuzdi et 

al., 2001).  Persistent gamma oscillations have been hypothesised to be an  

experimental model of hippocampal gamma that persists during the theta state (Sik 

et al., 1995; Ylinen et al., 1995) and may also represent an oscillation dependent on 

chemical synapses and also on electrical coupling of both axons (principal cell) and 

dendrites (interneurone), which PING does not rely upon.  Persistent oscillations are 

a rhythmic field potential, < 1 mV in amplitude, reliant upon interneuronal firing, 

phasic excitation by AMPARs and gap junction coupling. 

 

Traub et al., (2000, 2003a) developed a network model that took into account the 

above features, the key idea being that the oscillation is driven by the plexus of 

electrically coupled Pyramidal cell axons. Spontaneous action potentials in these 

axons pass from axon to axon, generating waves of firing, most of which do not 

propagate antidromically to somata because of synaptic inhibition and shunting.  The 

firing of Pyramidal cell somata is rare (Traub et al., 2004), and so spikes spread 

throughout the axonal plexus. Such a mechanism requires AMPARs to propagate 

orthodromically and excite interneurones, and because the interneurone firing gates 

the gamma oscillation, GABAARs are required. The interneurone gap junctions act to 

increase coherence of gamma oscillations by leading to higher interneurone firing 

rates, and so a reduction in gamma power is seen when interneurone gap junctions 

are removed transgenically (Traub et al., 2004; Hormuzdi et al., 2001).  Functional 

evidence of electrical coupling has been shown in GABAergic interneurones of the 

hippocampus and neocortex (Beierlein et al., 2000; Galarreta and Hestrin, 1999; 

Gibson et al., 1999; Tamas et al., 2000; Venance et al., 2000). 
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This network model is consistent with data showing that KA excites interneurone 

axons (Semyanov & Kullmann, 2001), with GABA release perhaps exciting Pyramidal 

cell axons as well.   

 

1.5.4 Electrical Coupling 

 

Two types of electrical coupling have been shown to influence hippocampal 

population oscillations: those between dendrites of interneurones (Kosaka, 1983; 

Fukuda and Kosaka, 2000) and those between the axons of Pyramidal cells (Schmitz 

et al., 2001).  The effects on oscillations of these two types of coupling appear to be 

quite different (Traub et al., 2003a).   

 

Between interneurones, a slow hyperpolarisation or depolarisation in one cell 

produces a detectable slow hyperpolarisation or depolarisation, respectively, in the 

connected cell. In contrast, in the case of axonal electrical coupling, antidromic 

stimulation of hippocampal principal neurones (Schmitz et al., 2001) and 

somatosensory intrinsically bursting (IB) cells (Roopun et al., 2006) produces 

communication via spikelets.  Pyramidal cell electrical coupling is low in comparison 

to interneurone electrical coupling (Traub et al., 2004); about 1% in hippocampus 

(Deuchars and Thomson, 1996), compared to more than 50% of nearby 

interneurones being electrically coupled (Gibson et al., 1999; Venance et al., 2000). 

 

Connexin36 appears to be the major neuronal gap-junction protein required in 

interneurones of mature animals (Condorelli et al., 1998; Venance et al., 2000). 

Electrical coupling between principal neurones appears to be mediated by a protein 

other than connexin36 (Hormuzdi et al., 2001). Very fast oscillations involving 

hippocampal Pyramidal neurones, which are known to depend on electrical coupling 

(Draguhn et al., 1998), are indistinguishable in connexin36 knockout mice compared 

to wildtype mice (Hormuzdi et al., 2001). For oscillations to be generated in axonal 

networks, it is necessary that spikes be able to cross from axon to axon (LeBeau et 

al., 2003; Traub et al., 1999c). 
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1.5.5 Oscillations in the Primary Motor Cortex 

 
 
The primary motor cortex (M1) plays an important role in the execution of voluntary 

movement and oscillations are characteristically seen at beta (15 - 30 Hz) 

frequencies, particularly before the initiation of movement in primates (Murthy and 

Fetz, 1992; Donoghue et al., 1998), using local field potential (LFP) recordings.  It 

has long been known that movements elicit frequency specific changes in the EEG 

(Jasper and Penfield, 1949). In vitro electrophysiological studies have also shown 

beta oscillations in the motor cortex in control rats (Yamawaki et al., 2008), plus 

further distinguishable oscillations in the mu (8 - 14 Hz) and gamma (> 30 Hz) ranges 

using human MEG studies (Cheyne et al., 2008).  

  

These beta oscillations reflect interplay between GABAergic and glutamatergic 

neurones producing synchronised network activity (Yamawaki et al., 2008).  In vivo, 

beta oscillatory activity is associated with the resting state; pre-movement or 

anticipation (Cheyne et al., 2008) or sustained contraction (Baker et al., 2007).  

When movement is executed, a decrease in beta oscillatory power, coupled with an 

increase in gamma oscillations, is seen.  It is therefore thought that beta represents 

the preparatory state for movement and/or maintenance of postural tone.   

  

Sensorimotor gamma rhythms have been suggested to serve a similar role within the 

motor system as the gamma binding hypothesis serves in other cortical areas 

(Marsden et al., 2000; McAuley and Marsden, 2000). Using MEG studies, Cheyne et 

al., (2008) demonstrated that simple, self-paced movements of the upper and lower 

limbs in humans are accompanied by a burst of high-frequency (65 - 80 Hz) gamma 

activity that can be localised to somatotopically specific regions of M1.  

 

However, paradoxical to the normal beta oscillations seen in M1, pathologically 

enhanced beta activity is associated with the loss of voluntary movement including 

akinesia/bradykinesia and rigidity associated with Parkinson’s disease (PD) (Brown 

and Marsden, 1998) (See section 1.9 for further discussion). Beta in the normal 

brain, as discussed above is thought to be a preparatory state that switches to 

gamma when movement ensues. Enhanced beta oscillations would therefore be 

thought to disrupt movement. 
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1.6 Primary Motor Cortex 

1.6.1  Overview 

 
The motor cortex is comprised of three areas. Along with the pre-motor area (PMA) 

and the supplementary motor area (SMA), known as Brodmann Area (BA) 6, the 

primary motor cortex (M1) plays an important role in the execution of voluntary 

movement and is known as BA 4. In 1937, Penfield and Boldrey found that M1 was 

functionally organised in a somatotopic manner.  They called this the “Motor 

Homunculus” and it depicts a map of M1, with each area innervating a particular 

body part. The complexity of movement is variable – the homunculus allocation is 

related to the motor innervation of an area, which underlies the ability for more 

complex movement.  Stoney et al., (1968) followed up this work using intracortical 

electrical stimulation, where a microelectrode was inserted into M1 and then moved 

across the region using small steps.  It has consistently been shown that there is 

indeed a topographic organisation to M1, but areas for particular body parts are 

multiple, overlapping and widely distributed (Nudo et al., 1992; Sanes and 

Donoghue, 2000). A medial to lateral organisation of leg, arm and head and face is 

crudely defined, but more recently, studies have suggested functional sub-regions 

within M1 (Sanes and Donoghue, 2000).  Imaging techniques, such as positron 

emission tomography (PET) and functional magnetic resonance imaging (fMRI) have 

also confirmed these data by revealing  functional overlapping within M1 (Colebatch 

et al., 1991).  M1 is arranged in a columnar manner, each column consisting of five 

layers; layers I, II and III comprise the superficial M1 and layers V and VI comprise 

deep M1.  There is no layer IV in M1, making it distinct from other cortical areas and 

therefore considered an agranular area (Donoghue and Wise, 1982).  The motor 

cortex (M1) is well characterised in terms of motor output and long range cortical 

connections, however, its intrinsic connectivity is less well studied. 

 

In primary somatosensory cortex (S1, BA 1, 2, 3), stellate cells provide dense 

innervation of the superficial layers (LIV to LII/III), however, M1 has no LIV and 

appears devoid of stellate cells. What, then, are the ascending circuits in M1? M1 

receives and integrates inputs from motor and sensory systems and local circuits are 

involved in mediating motor-based behaviour. Weiler et al., (2008) found the 

strongest pathway in M1 is descending, from LII/III to LVa and the main ascending 



40 
 

pathway was from LVa to LII, which the authors thought to be similar to that of LIV - 

LII/III in S1.  Top-down organisation appears to dominate in M1, particularly in 

excitatory circuits (Weiler et al., 2008) with LII descending pathways dominating.  A 

strong LII/III to LV pathway, with recurrent excitation in upper layers, and which 

supplies feedforward excitation to lower layers that in turn project onto subcortical 

circuits may be a logical summary of network connectivity based on the extant 

literature. Using glutamate uncaging, Hook et al., (2011) have shown that the 

strongest excitatory connections within M1 are from LII/III to LVa and from LV to 

LII/III and also ascending within LV.  The superficial layers (LII to Va) are spatially 

compressed within M1 as compared to LII-V within S1 and as compared to LVb and 

VI within M1.  

 

Using anterograde tracing techniques, Capaday et al., (2004) reported horizontal 

connectivity within M1. In fact, boutons are located all along axonal projections, and 

not restricted to terminals (Capaday et al., 1998), allowing neuronal contact across 

large distances (Capaday et al., 2009).  Collaterals extend throughout M1 and to S1, 

with the majority of boutons forming excitatory connections (Capaday et al., 2009).  It 

is thought that this en passant structure, appearing along the axon as it extends, 

rather than a point-to-point structure, allows the binding of the representations of a 

variety of muscles, allowing for synergistic interaction between different cortical areas 

and allowing a wider range of possible movements (Capaday, 2004). Indeed, M1 has 

been shown to be a canonical circuit (Sanes and Donoghue, 1993) with excitatory 

and inhibitory neurones over a large region receiving inputs from a given site 

(Huntley and Jones, 1991; Keller, 1993; Capaday et al., 2004, 2009).  

 

1.6.2  Layer I 

 
Layer I (LI) of M1 lacks Pyramidal cells.  It contains axons from LII-VI, from other 

cortical areas and from the thalamic nuclei, which reciprocally synapse on the 

dendrites of Pyramidal cells in LII-VI.  Studies using GABAergic markers and looking 

at the morphological appearance of the cells in LI suggest that they are mainly 

inhibitory neurones.  Work by Chu et al., (2003) showed that late spiking (LS) 

interneurones provide inhibitory input to Pyramidal cells in other layers and to other 

layer neurones. 
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1.6.3  Layer II/III 

 
Layer II/III (LII/III) contains both Pyramidal cells and non-Pyramidal cells.  Non-

Pyramidal cells lack apical dendrites and their dendrites are aspiny. The non-

Pyramidal cells in LII/III are mainly GABAergic and consist of four subtypes.  Fast 

spiking (FS), low threshold spiking (LTS), late spiking (LS) and regular spiking non-

Pyramidal (RSNP) cells. RSNP can be divided into two further subgroups depending 

on whether they are fast depolarising (Kawaguchi, 1995).  Within LII/III, FS and 

RSNP cells are the most widely found interneurone types.  The diversity of non–

Pyramidal cells is also greater than in the deeper layers (Kawaguchi, 1995). 

Pyramidal cells in LII have undeveloped apical dendrites, while the main axons 

project to the white matter with many axon collaterals.  Their axon varicosities tend to 

be closely associated with the dendrites of corticospinal cells (Cho et al., 2004). LIII 

Pyramidal cells have well developed apical dendrites, which ascend to the pial 

surface (Lev and White, 1997) and form clusters, with axon patterns similar to those 

in LII (Cho et al., 2004).  The Pyramidal cells in these layers appear to have two 

output types; those which receive input from S1 and send axons to LV Pyramidal 

cells, including Betz cells (see section 1.6.6) and a more superficial Pyramidal 

neurone, which receives input from S1, but whose axon collaterals are restricted to 

LI-III. Pyramidal cells in these layers also project to ipsi/contra-lateral cortex 

(Kawaguchi and Kubota, 1997). Layer II/III receives multiple neurochemical 

projections including noradrenaline, 5-hydroxytryptamine (5-HT), and dopamine. 

Thalamic axons occur at their highest density in LII/III (Douglas and Martin, 2004). 

1.6.4  Layer V 

 
Layer V (LV) of M1 contains a large type of Pyramidal cell, known as the Betz cell.  

These are projection neurones of two types (see section 1.6.6 for a more detailed 

overview).  Smaller Pyramidal cells, similar to those encountered in more superficial 

layers are also present. These smaller Pyramidal cells have prominent apical 

dendrites, which are thick, ascend towards the pial surface, and have a well-

developed terminal tuft in the superficial layers (Cho et al., 2004).  Axons from these 

cells appear to extend to the spinal cord, however, two types of axon collateral 

distribution are observed: the first is restricted to infragranular layers and tends to 

originate in bursting type cells. The second is widely distributed towards neighbouring 
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columns and supragranular layers and tends to originate in intrinsically bursting 

Pyramidal cells. Lev and White, (1997) showed that the apical dendrites of LV 

Pyramidal cells organised into clusters, whilst their cell bodies also formed groups. 

Activity within these clusters was synchronous and each cluster excited by different 

afferents, thus creating functional modules.  Cells here project towards the brainstem 

and spinal cord (Kawaguchi and Kubota, 1997). 

 

1.6.5  Layer VI 

 
Pyramidal cells in layer VI (LVI) show reciprocal corticothalamic projections and 

widely project to other cortical areas and layers.  Interneurones within this layer are 

mostly parvalbumin (PV) positive.  Callosally projecting neurones synapse here and 

innervate interneurones in the contralateral hemisphere (Karayannis et al., 2007). 

Pyramidal cell apical dendrites terminate in LV with moderately developed apical tufts 

(Cho et al., 2004; Ledergerber and Larkum, 2010) and horizontally spread axon 

collaterals within infragranular layers that closely appose to corticospinal dendrites.  

Apical dendrites are thin and assemble into groups, terminating in LV (Lev and 

White, 1997).  Pyramidal cells project towards thalamus (Jones, 1981; Kang and 

Kayano, 1994; Kawaguchi and Kubota, 1997). Two types have also been reported 

dependent upon the finding of a depolarising after potential (DAP). DAP positive cells 

have a shorter apical dendrite with extensive arborisation in LV and terminations in 

LIII, with axon collaterals that are less recurrent that DAP negative neurones. DAP 

negative neurones have long apical dendrites extending to LI/III and the main axon 

extends into the white matter with ascending recurrent axon collaterals. Dendritic 

branches were most prominent in LV/VI, and gradually become sparser throughout 

more superficial layers. 

 

1.6.6  Betz Cells 

 

In deep motor cortex, specifically LVa, a specialised giant Pyramidal cell exists that is 

not seen in any other cortical area (though Meynert cells of the visual cortex do share 

some features).  First discovered by Betz in 1874, and thus termed the giant 

Pyramidal cells of Betz, they are approximately 20 times the volume of other 

Pyramidal cells in deep motor cortex and make up ~12% of the Pyramidal cell 
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population (Rivara et al., 2003).  Although very similar to large Pyramidal cells, they 

can be distinguished by a number of features.  Where Pyramidal cells have an apical 

dendrite and further dendrites leave the cell basally in a symmetrical fashion, Betz 

cell dendrites can leave the cells body at any site and have an asymmetrical nature 

(Wise, 1985).  The cell bodies are also heterogeneous in nature, and therefore not 

necessarily Pyramidal, but can also exist in triangular and spindle like forms (Braak 

and Braak, 1976). They also appear to be distributed in a manner related to 

somatopy, with the densest distribution in large muscle representations (i.e. leg and 

foot) (Lassek, 1940).  Betz cells can also be split into two types dependent upon their 

response to hyperpolarising current injection. Type one Betz cells show a decrease 

in firing rate after a hyperpolarising step, whilst type two Betz cells show an increase 

in firing rate (Spain, 1991a, 1991b, 1994). Further to this, Betz cells have been 

discussed in terms of their projections. One type of Betz cell sends cortical outputs to 

the striatum, superior colliculus, spinal cord, and basal pons.  They have thick, tufted 

apical dendrites and exhibit intrinsic burst firing characteristics (see Molnár and 

Cheung, 2006 for review). A second type of Betz cell sends its axon to the 

contralateral hemisphere or ipsilateral striatum. These cells have slender, obliquely 

oriented apical dendrites and always show regular spiking characteristics (Molnár 

and Cheung, 2006). Betz cells that are found in LVb tend to possess smaller cell 

bodies than those in LVa. Those cells found in LVa are known to send axons to the 

basal ganglia (BG); in particular, the striatum is well innervated (Lei et al., 2004). 
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1.7 Primary Somatosensory Cortex 

 

1.7.1  Overview 

 
The primary somatsosensory cortex (S1), also referred to as BA 3b, consists of a 

mediolateral strip of cortex that extends from the medial wall of the cerebral 

hemisphere towards the lateral sulcus, where it curves anterior and ends on the 

ventral surface of the frontal cortex. The main function of rodent S1 lies in its vibrissal 

system, by which three parallel pathways run from the whiskers to the barrel area of 

S1.  The lemniscal pathway is the classic route by which information reaches S1 after 

thalamic processing, although two other, parallel, pathways also exist; extralemniscal 

and paralemniscal. There are no striking differences in the appearance of S1 

between species, apart from the absence of barrel cortex in man, most likely due to 

there being a similar evolutionary and functional importance for this cortical area 

across all mammals. Differences in long range and short-range connectivity are 

dependent on the cortical laminar separation. LIV spiny neurones are thought to have 

no long-range connections and are therefore termed “excitatory interneurones” 

(Staiger, 2008).   

 

1.7.2  Layer I 

 

LI has no Pyramidal cells (Ren et al., 1992) and is involved in direct regulation of 

feed forward information transfer from thalamus (Galazo et al., 2008) and feedback 

information from higher cortical areas, which could have reciprocal connections and 

could also innervate terminal tufts of Pyramidal cells arborising in LI (Zhu and Zhu, 

2004).  

 

1.7.3  Layer II/III 

 

LII is densely packed with Pyramidal cells with no apical dendrite due to proximity to 

surface. Inputs to LII tend to be from LIV, but a prominent input from LVa also exists. 

Outputs preferentially target LII and LVa within home and neighbouring columns.  LII 

of rodent S1 is responsible for long-range associational and some callosal 
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projections (Jones, 1984) and therefore sensory-motor integration as the major 

supragranular long range connections appear to be to M1 (Alloway, 2008). LIII has a 

high density of Pyramidal cells of which apical dendrites extend to LI where they tuft.  

Local intralaminar connections are outweighed by LIV translaminar input (Lefort, 

2009).  Outputs extend to LVb and VI.   

 

1.7.4  Layer IV (The Barrel Cortex) 

 
“The "canonical microcircuit", a closed loop of within-area connections consists of a 

series of excitatory feed forward projections, in which the thalamus innervates LIV via 

the lemniscal pathway then projects to LII/III. These superficial layers then innervate 

LV, which send projections to subcortical target sites, but also give rise to a collateral 

projection to LVI.  LVI then closes the loop with the thalamus (Douglas et al., 1989).  

 

The barrel cortex, is densely packed with small sized Pyramidal cells, spiny stellate 

cells (with no apical dendrite) and star pyramids. Two substantial input sources are 

known; the lemniscal thalamic projection (Gibson et al., 1999; Bureau et al., 2006) 

and local collaterals of neurones residing within the same column (Feldmeyer et al., 

1999; Petersen and Sakmann, 2000). Also, intracolumnar feedback projections 

originating from all layers as well as transcolumnar projections directly originating in 

LIV of neighbouring columns can also be found (Martin and Whitteridge, 1984; 

Staiger et al., 2000; Schubert et al., 2003; Egger et al., 2008).  

 
Each whisker is represented by a discrete and well-defined structure in LIV of S1 

(Woolsey and van der Loos, 1970) and is arranged almost identically to the whisker 

layout.  Functional operation of cortical circuits is under rapid and strong top down 

control (Gilbert and Sigman, 2007). 

 

There exist two important parallel pathways for signalling whisker sensory 

information to the barrel cortex. The lemniscal pathway originates from neurones in 

the principal trigeminal nucleus that innervate VPM somatosensory thalamocortical 

neurones. VPM neurones then terminate in S1 LIV (and some LVI). Direction 

selective action potentials from mechanosensensitive neurones of the trigeminal 

ganglion are activated by deflections of the whiskers (Aronoff et al., 2010).  
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Trigeminal sensory neurones, innervating trigeminal brainstem nuclei, which project 

to spinal interpolaris nucleus and then posterior medial nucleus of thalamus, form the 

paralemniscal pathway (Furuta, 2009). Each whisker is represented by a termination 

field of somatotopically arranged thalamocoortical axons that define the cortical 

barrel map (Woolsey and van der Loos, 1970; Aranoff et al., 2010).  Between the 

barrels of LIV S1 are areas known as septa, which have their own microcircuits 

separate from the barrels (Kim and Ebner, 1999).   

 

Excitatory LIV neurones have dendrites and axon arbors confined to a single barrel 

(Feldmeyer et al., 1999; Petersen and Sakmann, 2000). LIV excitatory neurones 

primarily innervate LII/III in the immediate overlying area (Lefort et al., 2009).  The 

spread from LI to VI and confinement to the width of one barrel is designated a 

column (Petersen and Sakmann, 2001).  Arborisations of LII/III extend beyond the 

barrel boundary to other LII/III columns. LII/III to LV and LV to LII/III are other robust 

connections within a column (Reyes and sakmann, 1999; Bureau et al., 2006; Lefort 

et al., 2009). Single whisker deflections evoke only one action potential or less, with 

the contralateral hemisphere being where the response is found (Ferezou et al., 

2007).   

 

Neurones of S1 may also differ to those of M1.  Egger et al., (2008), found that 

dendritic arbors were asymmetrical and were closely linked to cortical columns most 

frequently in LIV.  In barrels, dendrites orientate away from barrel borders and are 

subject to intrabarrel confinement.  The main neurones in barrel cortex are spiny 

stellate and star Pyramidal cells.  Spiny stellate and star Pyramidal cells differed in 

their dendritic symmetry and integration into different cortical circuits. Star Pyramidal 

cells are radially symmetric and spiny stellate cells are asymmetric and most likely 

located near to barrel border. 

 

1.7.5  Layer V 

 

LVa consists of medium Pyramidal cells with terminal tufts in LI.  Connections are 

mainly intra- and trans-columnar inputs from LVa and also trans-laminar from LIV.  

LVa Pyramidal cells have major projections to M1 and the striatum (Alloway, 2008), 

whereas the LVb projections are diverse, projecting downstream of the thalamus to 
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the trigeminal nucleus, spinal cord and other areas.  IB cells in this layer are the 

major contributor to driving sub cortical circuits (de Kock and Sakmann, 2008). LVb 

consists of a mixture of different sized Pyramidal cells in much higher density than 

LVa.  Also, very large Pyramidal cells are present (Schubert et al., 2001).  Medium 

RS cells have home column connections while large IB cells connect trans-

columnarly.  Strong feedback is received from LVI (Mercer et al., 2005).   

 

1.7.6  Layer VI 

 

LVIa consists of spiny Pyramidal neurones. Intra-columnar, cortico-thalamic 

connections rarely target each other, but prefer interneurones. Neurones in this layer 

receive afferent input from local LV and LIV neurones (Mercer et al., 2005; Lefort et 

al., 2009).  Efferent outputs project to the thalamus and also to LIV (Ledergerber and 

Larkum, 2010).  LVI sub-cortical projections are restricted to the thalamic lemniscal 

ventrobasal nucleus and reticular nucleus, which themselves are reciprocally 

connected (Bourassa et al., 1995). LVIb is less densely packed than other layers and 

is tightly intermingled with horizontal pathways (Clancy and Cauller, 1999). 
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1.8 M1-S1 connections 

 
 
Several pieces of evidence suggest that S1 modulates M1 neuronal activity. 

Electrophysiological studies have indicated that S1 modulates activity in M1 (Kosar et 

al., 1985; Zarzecki, 1989; Kaneko et al., 1994; Farkas et al., 1999; Kelly et al., 2001) 

and direct connections have been demonstrated repeatedly in cats and rodents 

(Asanuma et al., 1982; Donoghue and Parham, 1983; Porter and Sakamoto, 1988; 

Izraeli and Porter, 1995).  Anatomical connectivity can be studied by various 

techniques, including directly injecting anterograde or retrograde tracers or viral 

vectors into the brain regions of interest, fluorescent proteins and by voltage-

sensitive dye (VSD) imaging.   

 

VSD imaging has shown that (whisker) motor cortex serves to integrate sensory input 

with motor commands (Ferezou et al., 2007). Whisker deflections evoked a response 

in M1. This begins in S1 and is relayed to M1 in a manner dependent on ongoing 

behaviour.  Monosynaptic excitatory pathways from S1-M1 appear to dominate 

(Izraeli and Porter, 1995; Hoffer et al., 2003; Alloway et al., 2004; Ferezou et al., 

2007; Chakrabarti et al., 2008). Reciprocal connections have, however, also been 

shown from M1 to S1 (Hoffer and Alloway, 2001). 

 

S1 and M1 are often grouped together as the "sensorimotor cortex" and numerous 

connectivity studies show why. Peripheral inputs from particular body parts have also 

been shown to be relayed through somatosensory cortex to the area of motor cortex 

that produces the associated movement (Porter and Sakamoto, 1988). Further to 

this, destruction of S1 induces a slight loss of motor skills and also disrupts the ability 

of the animal to lean complex motor skill (Sakamoto et al., 1989). 
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Much of the connectivity of the sensorimotor cortices in rodents, as is the focus of the 

thesis, is conducted in barrel cortex.  Of course, motor cortex and somatosensory 

cortex in rodents is not entirely a vibrissal representation and studies utilising similar 

tracing approaches in different motor and somatosensory representations have 

produced similar results.  Kaneko et al., (1994a) showed two pathways projecting 

from S1 to M1. One direct route following superficial connections, later shown to be a 

definite cortico-cortical connection (Kaneko et al., 1994b) and one indirect route via 

the thalamus. There is a detailed somatotopic arrangement of the vibrissa in M1, 

consistent with the barrel cortex.  Frostig et al., (2008), after postmortem LIV 

cytochrome oxidase staining of S1 and M1, showed the spread of activity away from 

a peak location evoked individually from stimulations of three large whiskers.  Long-

range horizontal connections to M1 were found and large, highly overlapping activity 

spread away from the peak in a decreasing gradient.  This activity appeared to ignore 

functional and anatomical borders that have previously been set.  Activity is therefore 

not necessarily restricted to vibrissal M1.  Porter (1999) showed the synaptic 

relationships between neurons in a specific cortico-cortical pathway between 

Figure 1-3 Connectivity of M1. Schematic diagram summarising the key connections revealed in 

connectivity studies (adapted from Kaneko et al., 1994). Major input to M1 is from the somatosensory cortex, 
mainly via a superficial connection. Thalamic input enters via the deeper layers, perhaps in relay with S1, with 
weaker inputs to the superficial layers. Descending pathways exit deep M1 to subcortical structures such as the 
basal ganglia and spinal cord.  
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somatosensory cortex areas 3a and 2, and M1. Projections from area 3a to area 2, 

and from area 2 to MI have also been shown to be somatopically organised in cats 

(Waters et al., 1982a; Yumiya and Ghez, 1984; Avendano et al., 1992) and monkeys 

(Pons and Kaas, 1986). In area 2 of both species, layer II–III pyramidal cells give rise 

to the M1 projection (Ghosh et al., 1987; Porter, 1992), and area 3a axons terminate 

in layers II and III. 

  

Connections from BA 2a, whereby projections from area 3 were thought to relay, 

appear to stay superficial (Kosar et al., 1985; Porter and Sakamoto, 1988; Porter et 

al., 1988) and connections from area 3, which have since been shown to be direct, 

appear to terminate in all layers of M1 (Herman et al., 1985; Porter, 1991).  From 

barrel cortex to M1, the densest innervations come from cells in LII/III and project to 

LV/VI (Izraeli and Porter, 1995; Zarzeki, 1989; Kelly et al., 2001).  Welker et al., 

(1988) showed projections from barrel columns via anterograde tracing.  Prominent 

projections to motor cortex came via smooth medium-thick fibres that ran through 

deeper cortical layers, and branched in LI.  Dual anterograde tracing paradigms were 

also used to characterise patterns of S1 projections to M1 (Hoffer et al., 2003).  Many 

of these projections were shown to arise from septal regions, areas in-between the 

barrels (Alloway et al., 2004; Chakrabarti and Alloway, 2006).  Some neurones in 

septal regions send the same information to M1 and S1.  The barrel and septa 

represent two functionally distinct cortical circuits (Kim and Ebner, 1999), with S2 

receiving information from both, whereas M1 receives information only from septal 

circuits (Chakrabarti and Alloway, 2006).  Barrel and septal compartments have local 

intracortical connections that are largely segregated.  Rostral barrels project to rostral 

parts of M1, and caudal to caudal.   Labelling in M1 also appeared as a mirror image 

of that in S1, showing the topographic organisation of M1 and S1 to be a mirror 

image of each other (Hoffer et al., 2003).  Sensory processing in motor cortex is most 

evident in LII/III and is differentially regulated as compared to action potential firing of 

LV/VI Pyramidal cells, which contribute directly to motor control.   
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1.9 Oscillations in Pathological states 

 

1.9.1 Overview 

 
Mechanisms that mediate the generation of activity in cortical circuits are prime 

candidates for understanding the pathophysiology of many neurological diseases. 

Neuronal network oscillations are a fundamental mechanism for enabling coordinated 

activity during normal brain functioning (Singer, 1999; Buzsaki and Draguhn, 2004). 

Parkinson’s disease (PD), Alzheimer’s disease (AD), schizophrenia, epilepsy and 

stroke have all been linked to a disruption of normal oscillatory activity (see below).  

Oscillations in the low (theta and alpha) and high (beta and gamma) frequency 

ranges establish precise temporal correlations between distributed neuronal 

responses. Oscillations in the high frequency range establish synchronisation in local 

cortical networks (Womelsdorf et al., 2007), and appear in all cortical structures. 

Lower frequency ranges tend to establish synchronisation over longer distances (von 

Stein et al., 2000); however long range communication may also be subserved at 

beta frequencies (Kopell et al., 2000). There is abundant evidence for a close 

relationship between the occurrence of oscillations and cognitive and behavioural 

responses, for example, gamma rhythms are associated with perception, attention 

and memory (Jefferys et al., 1995; Fries et al., 2001), whilst beta oscillations are 

associated with sensory gating, motor control and long range synchronisation 

(Murthy and Fetz, 1996; Kopell et al., 2000; Hong et al., 2008).  

 

1.9.2 Parkinson’s disease 

 
PD is a progressive neurodegenerative disease affecting more than ten million 

people worldwide.  It is characterised by symptoms of akinesia, bradykinesia, rigidity 

and tremor.  The motor abnormalities associated with PD have been hypothesised to 

be related to changes in the firing activity of neurones in the basal ganglia (BG).  In 

6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

(MPTP) models of PD in animals and also in PD patients taken off their medications 

certain changes have been identified.  Disordered activity in the indirect pathway has 

been stipulated in the “rate model” of abnormal firing in PD (DeLong, 1990).  

Decreased firing in the external globus pallidus (GPe), along with increased firing in 
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internal globus pallidus (GPi) and subthalamic nucleus (STN) along with periodic 

bursts at tremor frequency has been noted (Wichmann et al., 1994; DeLong and 

Wichmann, 2007).  This has lead to the conclusion that disinhibition in the STN leads 

to increased excitatory drive to GPi and therefore increased inhibition of thalamo-

cortical circuits i.e. the motor circuitry.  This causes the emergence of akinesia and 

bradykinesia.  It has also been shown that alterations of GP and STN firing are 

affected by changes in cortical activity (Magill et al., 2000).  As well as the rate 

model, changes in single cell and LFP firing rates have been of particular interest, 

particularly those in the beta range.  Increased beta activity is seen in GPi, STN and 

SNr in both animal models and patients taken off their dopamine replacement 

therapy (Brown et al., 2001; Brown and Williams, 2005; Gatev et al., 2006; Hammond 

et al., 2007; Steigerwald et al., 2008).  Excessive synchrony has been strongly linked 

with bradykinesia (Brown, 2007).  Dopamine replacement therapy sees a decrease in 

beta power and the emergence of gamma oscillations associated with the return of 

movement (Brown et al., 2001; Magill et al., 2001; Steigerwald, 2008).  It must be 

noted that beta synchrony within the motor system is not a cause of PD symptoms; 

rather, excessive, pathological synchrony is hypothesised to be the problem.  Hence, 

beta synchrony is seen normally and effectively represents an idling state or the 

preparatory state before movement (Cheyne et al., 2008).     

 

1.9.3  Schizophrenia 

 

Schizophrenia is characterised by prominent psychotic symptoms that include 

hallucinations, delusions, reduction in affect and behaviour (negative symptoms) and 

disorganisation of thought and language/speech (thought disorder). In addition, 

patients with schizophrenia exhibit impairments in both basic sensory processing and 

higher cognitive functions, such as language, reasoning and planning and also 

display social dysfunction. The onset of symptoms usually occurs in young 

adulthood.  

 

Patients with schizophrenia show a reduction in the amplitude and phase locking of 

evoked oscillations during the processing of visual information and also demonstrate 

reduced amplitude and synchronisation of self-generated, rhythmic activity in several 

cortical regions (Canive et al., 1996). This suggests an impaired ability to precisely 
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align oscillatory activity with incoming sensory information (Spencer et al., 2004; 

2008). Deficits in the high gamma band have also recently come to light (Ford et al., 

2007). An impaired performance in an organisation task also showed widespread 

reduction in gamma-band power in the right temporal lobe 50-300 ms after stimulus 

onset and further studies have also reported changes to low frequency oscillations 

(see Uhlhaas and Singer, 2010 for review). 

 

1.9.4  Alzheimer’s Disease 

 

AD is associated with a wide range of cognitive dysfunctions that typically start with 

the characteristic memory impairment. This is followed by deficits in visuo-spatial and 

executive processes. EEG measurements during the resting state of AD patients 

show an increase in the theta and delta band (Poza et al., 2007) activity that 

coincides with a reduction in activity in the alpha and beta bands, associated with 

impaired synchrony. The reduction in alpha band activity has been shown to be well- 

correlated with the severity of the disease and the cognitive deficits observed (see 

Uhlhaas and Singer, 2006 for review).  

 

1.9.5  Epilepsy 

 

Epilepsy is characterised by recurrent seizures, representing pathological states of 

hypersynchrony that may spread to encompass the entire cortical mantle. Numerous 

pathological oscillations, including beta activity (Hirai et al., 1999), very fast 

oscillations (Fisher et al., 1992) and augmented theta activity (Clemens, 2004) have 

been associated with epilepsy of various forms. 

 

1.9.6  Stroke 

 

A stroke is characterised as the rapidly developing loss of brain function due to a 

disturbance in the supply of blood to the brain. Classified into two major forms based 

on aetiology, stroke can be due to ischemia, caused by an interruption of the blood 

supply caused by a blockage (thrombosis, arterial embolism), or a haemorrhage, 

resulting from the rupture of a blood vessel or abnormal vascular structure. As a 
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result, the affected area of the brain is unable to function resulting in certain 

symptoms such as the inability to move one or more limbs on one side of the body, 

the inability to understand or formulate speech, or an inability to see one side of the 

visual field (Donnan et al., 2008).  

 

Recent work by Hall et al., (2010) has shown the emergence of abnormal oscillations 

in the peri-infarct area of an ischemic stroke patient, indicating that the neuronal 

tissue surrounding the lesion exhibits pathological oscillatory activity years after the 

initial injury.  Increases in the power of the theta and beta frequency bands were 

most notable and could not been seen in the hemisphere contralateral to the infarct.  

Administration of zolpidem, but not zopiclone, at sub-sedative doses had a powerful 

desynchronising effect on the enhanced theta and beta oscillations that correlated 

with an improvement in cognitive and motor function.   An increase of slow frequency 

band powers and a reduction of relative fast band powers were also found in stroke 

patients in the affected hemisphere (Tecchio et al., 2006). 
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1.10 Aims and Hypotheses 

 

1.10.1 Hypothesis 

 
Oscillations in M1 have shown to be pathologically enhanced in Parkinson’s disease 

(PD).  Modulation of these pathological oscillations would appear to be a prime target 

for treating PD.  Zolpidem, an imadizopyridine, which acts at the benzodiazepine 

(BZD) site of α1 subunit containing GABAARs, has recently been shown to modulate 

oscillatory activity in vitro.  In vivo work with zolpidem at sub-sedative doses in PD 

and stroke patients has also shown modulation of beta oscillations, particularly the 

desynchronisation of such rhythms, corresponding to an improvement in motor 

function (Hall et al., 2010; 2011).  If the action of zolpidem in vivo is indeed 

modulated via the α1 subunit, then we would expect low doses of zolpidem to be 

desynchronising in vitro.  If this is true, then other non-α1 specific BZD site ligands 

would have a different profile of modulation compared to zolpidem. It is therefore 

hypothesised that zolpidem at low doses in vitro will modulate beta oscillations in M1 

by its action at the α1 subunit of the GABAAR and will act to desynchronise the 

oscillatory activity. 

1.10.2 Aims 

 

 To produce stable oscillations in M1 in vitro 

 To determine the effects of different concentrations of zolpidem on beta 

oscillatory activity in M1 

 To determine if the effects of zolpidem are mediated by the α1 subunit of the 

GABAAR 

 To determine the profile of modulation of beta oscillations by other BZD site 

ligands 
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Chapter 2  Methods 
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2.1 Cortical Slice Preparation 

 
Coronal slices were prepared from male Wister rats (juvenile, ~postnatal day 20-21, 

40-70g). Each rat was anaesthetised with isoflurane until no heartbeat was detected 

(following the Animals Scientific Procedures Act 1986, U.K.) and transcardially 

perfused with ice-cold sucrose-based artificial cerebrospinal fluid (aCSF) containing 

(in mM); 205 sucrose, 2 KCl, 1.6 MgSO4, 26 NaHCO3, 1.25 NaH2PO4, 10 glucose, 5 

pyruvate and 2 CaCl2 and saturated with 95% O2 and 5% CO2. Following perfusion 

with approximately 100 ml aCSF, the brain was extracted and incubated in the same 

sucrose-based aCSF. Indomethacin (45 μM), a cyclo-oxygenase inhibitor was added 

to the sucrose-based aCSF to improve cell viability (Pakhotin et al., 1997).  The anti-

oxidants ascorbic acid (300 µM) and uric acid (400 µM) were also added as 

neuroprotectants (Rice et al., 1994).  Coronal slices were cut at 450 μm for 

extracellular recordings and 350 µm for whole–cell recordings and were cut in 

sucrose-based aCSF cooled to 3-4ºC, using a HM 650 V microslicer and CU 65 

cooling unit (Microm, De.).  Slices were subsequently stored in an interface chamber 

(for extracellular recordings) or a submersion chamber (for patch–clamp recordings) 

filled with oxygenated glucose-based aCSF containing (in mM); 126 NaCl, 3 KCl, 1 

MgCl2, 26 NaHCO3, 1.25 NaH2PO4, 10 glucose, 2 CaCl2 and 0.30 ascorbic acid at 

room temperature (20-25oC).  Storage aCSF also contained indomethacin (22.5 µM) 

and uric acid (400 µM).  For extracellular recordings, slices were then transferred to a 

recording chamber (Scientific System Design Inc, Canada, figure 2.1) and 

continuously perfused with glucose-based aCSF for 60 minutes.  The temperature of 

perfusing aCSF was maintained using a PTC03 proportional temperature controller 

(Scientific System Design Inc., Canada) at 33-34 oC.  After 60 minutes, kainic acid 

(KA, 400 nM) and carbachol (CCh, 50 µM) were added to the perfusing aCSF (but 

see chapter 3).  KA and CCh have been shown to elicit oscillations in cortical slice 

preparations. For intracellular recordings, slices were transferred to a submerged 

recording chamber where they were maintained at room temperature (see next 

section for more details).  
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During the project, details of the slice cutting and storage procedures were altered in 

order to improve the viability of M1 slices, hence the final procedure used in slice 

preparation was as follows (but see chapter 3 for further details). Sucrose based 

aCSF was adjusted to contain extra neuroprotectants (in mM); Sucrose, 171; KCl, 

2.5; MgCl2, 10; NaH2PO4, 1.25; NaHCO3, 25; CaCl2, 0.5; Glucose, 10; Ascorbic acid, 

1; NAC, 2; Taurine, 1; Ethyl Pyruvate, 20. The irreversible iNOS inhibitor 

Figure 2-1 Recording Chamber. Diagram of the recording chamber consisting of two compartments. 
The upper compartment housed the slice at an interface between perfused aCSF and humidified air. 
The acrylic lid was placed over this to trap the humidified air. The lower chamber was filled with 
distilled water, the temperature of which was controlled by a thermoregulator, to which the heater was 
connected. The water was constantly bubbled with 95%O2 - 5%CO2. Red arrows indicate direction of 
gas flow. Blue arrows indicated direction of aCSF flow. 
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aminoguanidine (200 μM) was used for dissection and slice preparation, along with 

indomethacin and uric acid, to help circumvent cell death. This was shown to be the 

best method to improve cell viability, particularly when used for transcardial 

perfusion. Storage of slices was kept to the original method, with the concentration of 

indomethacin reduced to half the original concentration (now 22.5 μM). During the 

course of method development, it was discovered that cooling the sucrose based 

aCSF to 3-4 °C was unnecessary during the slice preparation (but was still needed 

during dissection and transcardial perfusion). Slices were therefore cut at room 

temperature. 

 

2.2 Electrophysiological Recordings 

2.2.1 Extracellular recording 

 
Extracellular techniques were used to record local field potential activity (LFPs) of 

neuronal networks.  LFPs are mainly thought to arise from dendro-somatic activity 

within 250 m of the electrode tip.  They therefore represent the inputs and local 

processing of a specific brain area.  LFPs occur in low frequency ranges and are 

thought to represent the synchronous activity of neural populations (Logothetis, 2003; 

Mitzdorf, 1985; 1987; Rasch et al., 2007). 

 

Borosilicate glass microelectrodes were pulled using a Flaming/Brown micropipette 

puller (P-97, Sutter instrument Co, U.S.A.) with an open tip resistance of 1-3 MΩ. The 

microelectrodes were filled with glucose-based aCSF and used to record LFPs. 

Silver wire coated with silver chloride was inserted into the microelectrodes, which 

were then mounted on to manually-operated micromanipulators (Kanetec, Japan).  

 

Microelectrodes were placed in LV M1, which was located using a stereomicroscope 

(Leica Wild M3Z, U.K.) and the rat brain atlas of Paxinos and Watson as a reference 

(Figure 2.2).  The recorded voltage was passed through an Al402 ultra-low noise 

amplifier headstage (Molecular Devices, U.S.A.), where it was amplified x50.  The 

signals were further amplified x100 and low-pass filtered at 200 Hz through a 

programmable signal conditioner, CyberAmp 380 (Molecular Devices, U.S.A).  Low-

pass filtering was applied to expose the slower wave component of the voltage 

signal, which is thought to be the LFP.  This low-pass filtration also separates 
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multiunit activity from the slower waveform.  Neuronal network activity was visualised 

at 40 MHz on a HM507 oscilloscope (Hameg Instruments, U.K.) and signals were 

simultaneously digitised at 10 kHz sampling rate using an analogue to digital 

converter (Micro-1401 mk II; Cambridge Electronic Design, CED, U.K.).  Spike2 

software (CED, U.K.) was used for recording and for analysis both on- and off-line. 

 

2.2.2 Whole-cell recordings 

 

Whole-cell recordings were made using low resistance borosilicate electrodes 

applied to the surface of neurons identified visually using infra-red videomicroscopy 

with differential interference contrast (DIC ‘Nomarski’) optics (Olympus, BX51WI). 

Whole-cell patch-clamp access was achieved by rupturing the cell membrane so that 

the cell, whose interior then came into contact with the solution in the pipette, could 

be voltage or current-clamped. During patching, an area of membrane is electrically 

isolated from the external solution and the current flowing into the patch is recorded. 

This is achieved by pressing a glass pipette, which has been filled with a suitable 

electrolyte solution, against the surface of a cell and applying light suction. If the 

glass pipette and cell membrane are clean, a seal whose electrical resistance is >1 

GΩ (Gigaseal) is formed. Under these conditions, the glass pipette and the cell 

membrane will be less than 1 nm apart. A high seal resistance will complete the 

electrical isolation of the membrane patch and reduce the current noise of the 

recording.  

 

As the pipette was advanced through the surface of the bath solution, slight positive 

pressure was applied to the inside of the pipette to keep the tip free of contamination. 

Contact with the cell was identified by a slight rise in pipette resistance and 

indentation of the visualized cell surface. Gentle suction was applied to the pipette, 

and a seal formed, with the pipette holding current set to -70 mV, similar to the 

expected membrane potential of the cell. After forming a gigaseal, the fast capacity 

transients associated mainly with pipette capacitance to the bath were compensated. 

The membrane patch was ruptured by applying strong suction. A successful break- 

through was indicated by the sudden appearance of large capacitance transients at 

the leading and trailing edges of the pulse. Whole cell capacitance compensation 

was not applied, nor was series-resistance compensation. 
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Microelectrodes were filled with two different solutions (dependent on the experiment 

conducted) and attached to a microelectrode holder. 

 

2.2.3 Voltage-Clamp 

 

In order to characterise the contribution of phasic and tonic inhibitory currents during 

neuronal network oscillations, voltage-clamp recordings were conducted. The 

membrane potential is held constant in this technique, and the current flow due to ion 

channel opening can be measured, allowing the study of ion channel activity. 

Borosilicate glass microelectrodes with resistance of 3-5 MΩ were used and were 

fabricated using a P-2000 laser puller (Sutter Instruments, USA). The microelectrode 

holder was connected to a CV-7B headstage (Molecular Devices, U.S.A.). Voltage–

clamp recordings were made in LV M1 in a submersion recording chamber, perfused 

at 5-7 ml/min with glucose–based aCSF, at 32°C. Slices were visualised at x400 

magnification using infra-red differential interference contrast (DIC) ‘Nomarski’ optics 

on an upright microscope (Olympus BX51WI). Electrodes were filled with an internal 

solution containing (in mM): HEPES, 40; QX-314, 1; EGTA, 0.6; MgCl2, 5; TEA-Cl, 

10; CsCl, 100; ATP-Na, 80; GTP-Na, 6; and IEM 1460, 1 (titrated with CsOH to pH 

7.25) at 295 mOsm. The chloride-loaded solution allowed the study of inhibitory 

postsynaptic currents recorded at -70 mV using an Axopatch 700A amplifier 

(Molecular Devices, U.S.A.). Series resistance (Rs) was measured regularly using the 

capacitance transient on a line-frequency voltage step (5 mV) during recording. Any 

recording showing >20 % change in Rs was discarded from analysis. Data were 

recorded and filtered above the Nyquist threshold for aliasing (sampled at 10 kHz, 

filtered (8-pole low-pass Bessel filter) at 2 kHz and digitised using a Digidata 1440A.  

 

2.2.4 Current-Clamp 

 

During current–clamp recording, membrane current is clamped at zero, allowing the 

study of changes to the membrane potential. To characterise the firing properties of 

an individual interneurone, electrodes were filled with an internal solution prepared 

such that no ion channels were blocked and containing (in mM): KMeSO4, 130; 
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HEPES, 10; EGTA, 5; NaCl, 4; ATP-Mg, 4; GTP-Na, 0.4; at 295 mOsm. Borosilicate 

glass microelectrodes with resistance of 3-5 MΩ were pulled (P-2000, Sutter, USA), 

filled with the above solution and attached to a microelectrode holder. The 

microelectrode holder was connected to a headstage (CV-7B; Molecular Devices, 

U.S.A.) and current–clamp recordings were made in all layers of M1 as described 

above for voltage-clamp experiments. Active membrane properties were 

characterised using a current-step protocol. A current source can inject current into 

the cell in a series of DC current steps, to either hyperpolarise or depolarise the cell. 

A series of 250 ms current steps in increments of +0.1 nA from an initial holding 

current of -0.4 nA, until threshold for action potential firing was reached, were 

conducted. Different interneuron subtypes were identified dependent upon the firing 

response to the current injection. 
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2.3 Noise concerns  

 
Physical and electrical interference of the biological signals in electrophysiological 

recordings pose a problem.  However, there are numerous ways in which most 

interference can be eliminated.  Vibration, which could disrupt the recording, is 

caused mainly by three sources; ground vibration, acoustic noise and direct force 

disturbances.  A vibration isolation table (TMC, USA), specifically designed to reduce 

these types of noise, was used.  In addition, the use of well-designed 

micromanipulators ensured no destructive vibration was transmitted to the cell.  

Electrical noise is mainly derived from external sources; radiative electrical pickup 

(e.g. 50/60 Hz noise from lights/power sockets), magnetically-induced pick-up (e.g. 

electromagnets in power supplies), or ground-loop noise (e.g. when shielding is 

grounded in more than one place and differences in potential create currents and 

introduce noise into the shielding).  Electrical noise was negated by shielding 

recording devices with a Faraday cage (TMC, USA) and connecting the shielding to a 

common ground (e.g. microelectrode amplifier).  All signals from microelectrodes 

were additionally passed through a Humbug (Quest Scientific, Canada).  Humbugs 

eliminate 50/60 Hz noise by cancelling out electrical interferences in real time. The 

hum bug is not a filter, so there were no phase delays in the signal processing, no 

amplitude errors and no waveform distortion. 

Figure 2-2 Location of M1 in the (A) sagittal and (B) coronal plane. Nissl stained slides showing 
placement of primary motor cortex (arbitrarily demarcated by black lines) and primary somatosensory 
cortex in both the A) sagittal and B) coronal plane of the rat brain. All recordings were conducted 
within this area unless otherwise stated and the majority of slices recorded from contained M1 and S1 
and thus were “sensorimotor” slices.  Adapted from The Rat Brain Atlas (Paxinos and Waston, 1998). 

A) B) 

M1 
S1 

S1 

M1 
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2.4 Drug preparation and application 

 
Stock solutions were prepared for each drug (purchased from Sigma or Tocris) at a 

known concentration and were stored at -20 ºC before use.  The required drug was 

directly applied to the perfusing aCSF after a stable control period of oscillatory 

activity (usually 20-40 minutes).  Subsequent neuronal activity was then recorded for 

at least a further 30 minutes. 

 

2.5 Data collection and analysis 

 

2.5.1 Data analysis 

 

All extracellular electrophysiological data were converted from analog to digital 

waveform and recorded in Spike 2.  The sampling rate used for this conversion was 

chosen to be 10 KHz, which is sufficient for reconstructing the original signal of below 

200 Hz.  According to the Nyquist-Shannon sampling theorem, the sampling 

frequency must be more than twice the frequency (bandwidth) of the original input 

signal in order to perfectly reconstruct the signal digitally (Axon Guide, 1993).  Time-

series analysis was undertaken to examine the data, specifically the frequency–

domain method, which uses a fast Fourier transform (FFT) algorithm to create a 

power spectrum, whereby the waveform is split into its frequency components and 

any distinct periodic component can be highlighted. The amplitude of the constituent 

sine/cosine waves into which the signal is decomposed is expressed as power at a 

particular frequency.  All data were low-pass filtered at 80 Hz off-line in order to 

elucidate the low-frequency components of network activity. The FFT block size of 

1.6384 seconds was used, as this gave a spectral resolution (frequency resolution of 

each bin) of 0.61 Hz, the highest available in Spike 2 software. Unless otherwise 

stated, 60 second epochs of sampled data were analysed. Pooled data are 

presented as mean peak power values ± SEM. All statistical analyses have been 

performed using these mean peak values, and, unless otherwise stated, it is these 

values that are reported in the text. 

 



65 
 

Spontaneous (s)IPSCs were recorded using Clampfit 10.2 (Molecular Devices, USA) 

and analysed using the Mini-Analysis programme (Synaptosoft, U.S.A.). At least 200 

events were taken from each recording so that sIPSC amplitude and frequency 

(interevent interval) could be calculated for further analysis. Cumulative probability 

distributions (the probability that a real-value random variable X with a given 

probability distribution will be found at a value less than or equal to x) were plotted for 

each of the mentioned variables in control and drug conditions.  

 

For cell characterisation analysis the following parameters were recorded; the input 

resistance (Rin) was calculated by applying steps of a hyperpolarising current pulse 

(amplitude -0.4 nA, step change 0.1 nA, duration 250 msec). The analysis of the 

waveform of the first spike of a depolarising current pulse (+0.1 nA) was performed 

(250 msec, sampling rate 10 kHz). The amplitude of the first action potential was 

measured from the threshold to the peak of the spike. The duration of the action 

potential was measured at half amplitude (spike half width). The amplitude of the 

afterhyperpolarisations (AHPs) was measured between the spike threshold and the 

peak of the AHP. 

 

2.5.2 Cross-correlation analysis 

 
Cross-correlation analysis was used to reveal a temporal relationship between two 

different signals (X(t) and Y(t)).  Cross-correlation estimates the degree to which two 

data series are correlated by assigning values between -1 and +1.  The closer to 1, 

the more close the correlation. Information regarding common frequency components 

as well as phase differences between two signals can be obtained. Cross-correlation 

is calculated by multiplying two waveforms together and summing the products. The 

results are expressed as cross-correlation coefficient by Spike 2 (i.e. a normalised 

value, falling between -1 and +1). Positive values indicate series that are in phase, 

whilst negative values indicate series that are out of phase. Epochs of 60 seconds 

(the same timescale used for FFT analysis) were used from two waveforms recorded 

from the same slice.  
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2.5.3 Spectrogram analysis 

 
The Mortlet - Wavelet time series analysis was used to calculate changes in power 

(amplitude) of the signal over time (Wallisch et al., 2009) in order to provide a better 

frequency/time representation of the signal than the FFT.  The spectrogram created 

shows high power activity as “hot” colours (i.e. red/orange/yellow), while less 

powerful activity (or a less active state) are represented as “cold” colours (i.e. blue).  

Matlab was used for this analysis.  A period of signals, recorded in Spike 2, was 

selected and stored initially as a notepad file.  These data were subsequently 

converted by a Matlab script (written by Dr. S. D. Hall, Aston University), resampled 

to 1000 Hz and analysed in Matlab to create a spectrogram.  

2.5.4 Statistical analysis 

 
For extracellular data and changes in to the tonic inhibitory current, the statistical 

tests used were the paired Student’s t-test, unless normality failed where a Mann-

Whitney test was used in its place.  These tests were performed to determine 

statistical significance between two sets of data.  For the Student’s t-test, one-tailed 

P values were selected when certain assumptions were made relating to the 

outcome, and two-tailed P values were used when no assumptions were made.  All 

data are shown as mean ± standard error of mean (SEM) unless otherwise stated.  

Statistical significance (P < 0.05) is designated by *.  A paired student t-test was 

conducted between the current and previous drug response for cumulative dose 

response experiments. 

 

For changes to the phasic inhibitory currents, a cumulative probability distribution 

was plotted for sIPSC amplitude and inter event interval (IEI) during control and drug 

conditions and the two sample Kolmogorov–Smirnov test was used to see if the two 

distributions differed significantly.  

 

2.5.5 Live/dead ratio 

 

Cell counts were performed in superficial (LII) and deep (LV) motor cortex and the 

live/dead ratio determined as a representation of slice viability.  LII recordings were 

taken at a depth from the pial surface no greater than 400 μm in an area 120 μm2. 
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Readings from deep LV M1 were taken at a depth from the pial surface no greater 

than 1300 μm and, more specifically, where Betz cells began to appear in the visual 

field. Three readings were taken in each slice, one grid apart. Cell counts were taken 

within the confines of the grid, where cells were completely within the boundary lines, 

or touching the bottom or right-hand boundary line.  Counts were taken 1 hour after 

incubation in the storage chamber to coincide with the timescale of recordings in 

experiments. 

 

Live cells were considered viable when they had clear, smooth somata and, in the 

case of Pyramidal cells, when prominent apical dendrites were present.  Cells with a 

shrunken appearance or cells that were swollen, with vacuolation and nuclear 

pyknosis were considered to be dead (unviable) cells.  
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Chapter 3 Increasing Viability  of Slices 
Containing the Primary Motor Cortex 
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3.1 Introduction 

 
The brain-slice technique (Yamamoto and McIlwain, 1966; Andersen et al., 1972; 

Alger et al., 1984) has greatly facilitated the investigation of the electrical properties 

of neurones and neuronal network activity.  In acute brain slice preparations, the 

connections between neurones are preserved to a certain extent, however cell loss 

can be a large problem, either during the preparatory method or during storage.  The 

slicing process causes some damage to the cells, a problem that may result in 

altered electrical properties or even cell death. The viability of acute brain slices is 

therefore essential for the success of in vitro experiments.  Numerous studies have 

been undertaken with the aim of protecting neurones from damage, with varying 

success rates. Alterations to artificial cerebrospinal fluid (aCSF) have been the major 

target for neuronal protection. For example, replacing NaCl with sucrose was one of 

the first interventions to show prevention of cell swelling and lysis by reducing the 

acute neurotoxic effects of passive Cl- entry and associated water transport and 

swelling (Aghajanian and Rasmussen, 1989). More recently, the replacement of 

sucrose with glycerol in the preparatory aCSF (Ye et al., 2006) had been shown to 

benefit viability, perhaps because sucrose is difficult for the cell to utilise and its entry 

into cells can lead to similar problems as seen with NaCl.   

 

Work in M1 commenced by looking at P21, coronal, acute brain slices.  With only 

8.96 ± 0.98 % of slices used showing oscillatory activity, experiments started slowly, 

and colleagues from other laboratories noted that M1 was very difficult to work with 

and impossible to perform single-cell recordings in (M. Vreugdenhil, personal 

communication).  I therefore commenced work trying to find a solution to the low 

viability of M1 coronal slices.  Using a standard aCSF solution (Table 3.1) different 

neuroprotectants were added to the storage and cutting solutions in an effort to 

augment and prolong slice viability (Table 3.2).  Nothing appeared to provide a long-

term effect until a new aCSF solution was devised incorporating an array of 

neuroprotectants, a change in slice plane and a new dissection method (Table 3.1).  

This new method increased viability so that 20 % of slices now showed network 

oscillations on a regular basis.  Subsequently, a change in the source of rats, along 

with the new slice and storage methods brought about an increase to almost 60 % of 

slices now showing oscillatory activity. This chapter describes work performed over 2 
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years in development of a reliable method for the production of slices of M1 in which 

the highly sensitive Betz cell population remains intact and functional. 

 

3.2 Results 

3.2.1 Changes to Storage aCSF 

 

Work originally conducted in this laboratory showed that M1 exhibited oscillations at 

beta frequencies (27.8 ± 1.1 Hz) (Yamawaki et al., 2008).  Using coronal slices from 

P21 rats, current experiments showed this to be the case (25.05 ± 0.39 Hz, Fig. 3.3).  

However, slice viability was low with a live/dead ratio (see methods) of cells of 2.25 in 

superficial layers and 0.79 in deep layers (photograph 1, Fig. 3.2), which meant that 

only 9 % of slices showed any oscillatory activity (figure 3.1).  In order to improve the 

success rate, work from this low starting point began with alteration of the slice 

storage solutions and precise details of how the slices were stored.  Various 

neuroprotectants were added to prolong the life of the slices prior to the use of 

excitants (KA and CCh) to try and induce oscillatory activity.  Some neuroprotective 

agents were already used in the laboratory, such as uric acid and indomethacin, in 

storage and preparation of slices from entorhinal cortex.  

 

3.2.2  Changes to cutting aCSF 

 

After a period of time, with no long term-effects being seen through adjusting the 

storage solution only, steps were taken to create a new preparatory aCSF solution 

with enhanced neuroprotective properties and increased biological relevance.  

Numerous studies over the past few decades have attempted to protect neurones 

from damage and more recent reports (Hajos and Mody, 2009) have shown that 

adding certain compounds to the aCSF may create a more biologically relevant 

environment of neuromodulators that would normally be washed away in a standard 

in vitro experiment using a basic aCSF solution.  Keeping these neuromodulators at 

levels found in vivo might be expected to maintain neuronal signalling patterns that 

would be seen in the intact brain.  To this end, N-acetyl-cysteine (NAC), ascorbate, 

aminoguanidine and taurine were added as neuroprotectants to the cutting solution 

(see below for a more detailed description).  This new cutting solution along with a 
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new method of dissection, transcardial perfusion, enhanced slice viability from only 

8.96 ± 0.98 % of slices that oscillate to a much larger percentage (Fig. 3.1 13.16 ± 

3.51 %), while the live/dead ratio did not alter in superficial layers (2.04) but 

increased to 1.16 in deep layers (Fig. 3.2).   
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Original aCSF 

 

  
Modified aCSF 

 

 
Substance 

 
Concentration 

(mM) 

 
Substance 

 
Concentration 

(mM) 
 

 
Sucrose 

 
206 

 
Sucrose 

 

 
171 

 
KCl 

 
2 

 
KCl 

 

 
2.5 

 
MgSO4 

 
1.6 

 
MgSO4 

 

 
10 

 
NaHCO3 

 
26 

 
NaHCO3 

 

 
25 

 
NaH2PO4 

 
1.25 

 
NaH2PO4 

 

 
1.25 

 
Glucose 

 

 
10 

 
Glucose 

 

 
10 

 
CaCl2 

 

 
2 

 
CaCl2 

 

 
0.5 

 
Pyruvate 

 
5 
 

 
Pyruvate 

 

 
20 

   
NAC 

 

 
2 

   
Taurine 

 

 
1 

   
Ascorbic Acid 

 

 
1 

 

Table 3.1 Original aCSF and the changes made to the modified aCSF. Note the main difference is 
the addition of Ascorbic acid, NAC and taurine and increased pyruvate. 
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Changes to aCSF composition are not uncommon and sucrose has been used in 

many laboratories as a replacement for NaCl in the cutting solution.  The rationale 

underlying the use of sucrose was that a steady depolarisation of the cells when Cl- 

was present in the aCSF led to an influx of Cl- and associated water entry until 

swelling reached a point at which cell lysis would occur (Rothman, 1985).  While this 

is also thought to be the case with sucrose (Ye et al., 2006), the process appears to 

take much longer than with NaCl based aCSF.  Taurine, an abundant free amino acid 

(Jacobsen and Smith, 1968), has been implicated in mitochondrial function (Palmi et 

al., 1999), cell viability (Boldyrev et al., 1999) and intracellular Ca2+ homeostasis (Wu 

and Prentice, 2010).  Therefore, addition of 1 mM to the aCSF has been suggested 

to prevent its depletion during acute brain slice preparation and thus helping to 

prevent excitotoxicity. Taurine is also recognised as an inhibitory neurotransmitter 

and has been shown to be a modulator of GABAergic function at glycine receptors at 

low concentrations (< 1 mM) and GABA receptors at higher concentrations (> 3 mM) 

(Wu and Xu, 2003). Taurine has also been shown to increase tonic inhibition in 

ventrobasal thalamus (Jia et al., 2008). Ascorbic acid, a naturally occurring 

antioxidant, synthesised from glucose in the liver of rats (Padayatty et al., 2003), is 

found at its highest concentration in the cerebral cortex of the brain, with neuronal 

concentrations reaching 10 mM and extracellular fluid concentrations around 500 µM 

(Rice, 2000).  During brain slice preparation, up to 80 % of ascorbic acid is depleted.  

Addition of 1 mM ascorbate to the aCSF could mitigate this sudden decrease in 

extracellular levels.  NAC, also an antioxidant, increases cellular pools of free radical 

scavengers.  During traumatic brain injury, such as the acute brain slice preparation, 

NAC can help to restore mitochondrial function (Xiong, Peterson and Lee, 1999).  

Addition of 2 mM NAC to the modified cutting solution was therefore proposed.  

Finally, inducible nitric oxide synthase (iNOS) is known to be induced during 

ischemia (Rice, 2000).  With a similar ischemic neuronal cell loss occurring during 

acute brain slice preparation, aminoguanidine, an irreversible iNOS inhibitor (Griffiths 

et al., 1993) known to improve neurological function, decrease cell swelling and 

attenuate cell death, was added to the solution at a concentration of 200 µM.   
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Opposite Page - Photograph 3.1 Superficial and deep M1 neurones in different conditions. A) 
Superficial layer cells in the original method. B) Deep layer cells in the original method. C) Superficial 
layer cells in the modified aCSF solution (MaCSF). D) Deep layer cells in the MaCSF. E) Superficial 
layer cells in MaCSF and after a change to the rat colony. F) Deep layer cells in MaCSF and after a 
change to the rat colony. Note particularly the difference in the deep layers. This is where the most 
noticeable difference occurred in cell viability. Scale bar 15 μm. 



75 
 

 

B 

C D 

E F 

A 



76 
 

  

Substance Action Why and where used Reference 

Indomethacin NSAID, inhibits 
COX1 and 2 

used daily in preparatory and 
storage aCSF 

Pakhotin et al 1997; 
Tutak et al., 2005 

Uric Acid Strong reducing 
agent and 
antioxidant 

used daily in preparatory and 
storage aCSF 

Proctor, 2008 

Ketamine NMDAR antagonist can prevent excitotoxicty as an 
NMDAR antagonist but also 
implicated in apoptosis, used in 
storage and preparatory aCSF 

Green and Cote, 
2009 

Kynurenic 
Acid 

antiexcitotoxic and 
anticonvulsant 

NMDAR antagonist, prevent 
excitotoxcity, used in storage 

Fatokun et al.,2008 

Ascorbic Acid Strong reducing 
agent and 
antioxidant 

Used in storage and circulating 
aCSF for expermients 

Rice, 2000 

NAC Antioxidant used in storage Tian et al., 2003 

CHPG Selective mGlu5 
agonist 

used in circulating aCSF to induce 
oscillatory activity 

Nistri et al., 2006 

CNQX AMPA/Kainate 
receptor antagonist 

used in storage to prevent 
excitotoxicity 

Margaryan et al., 
2010 

IEM Voltage dependent 
open channel 
blocker of AMPAR 

used in storage, blocks AMPAR, 
improves inhibitory functions, vital 
for oscillations 

Buldakova et al., 
1999 

Glutathione Antioxidant, free 
radical scavenger 

used in storage for neuroprotection Warner et al., 2004 

α – lipoic acid Antioxidant used in storage for neuroprotection Connell et al., 2011; 
Toklu et al., 2010 

  
Table 3.2 Neuroprotective agents used for storage purposes. Over the course of altering the 
solutions used, various neuroprotective agents were added to the storage aCSF with varying results.  
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3.2.3  Transcardial Perfusion 

 

This method, as it stands, was first proposed by Palay et al., (1962) as a method of 

fixation, but more recently has been used for the improved viability of brain slices.  

Good tissue perfusion with cutting solution is critical to obtain healthy slices as many 

recent studies have shown (Michaloudi et al., 2005; Ye et al., 2006).  An incision was 

made at the level of the xyphoid process, which was then opened and the diaphragm 

punctured. Ribs were sectioned bilaterally to open the thoracic cavity to expose the 

right atrium.  A 20-gauge needle was used for the perfusion and was placed into the 

apex of the heart, piercing the left ventricle. 20-40 ml of cutting solution was injected 

until the outflow from the opened right atrium was clear. White colour of the brain 

indicated a good perfusion, while red or pinkish colour indicates poor perfusion.  
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Figure 3-1 Changes in viability of slices Changes to the aCSF (modified (M) aCSF detailed 
above) increased the number of slices that produced oscillatory activity (8.96 ± 0.98 % to 13.16 ± 
3.51 %). However, viability was still quite low and so further alterations were sought. A change to 
the slice plane (sagittal MaCSF) increased the viability further to 17.32 ± 2.97 %. Changes to the 
source of rats (sagittal, MaCSF +) more than tripled the number of viaibale slices again (57.73 ± 
5.76 %, P < 0.0001).  
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3.2.4  Rat Colony 

 

After changing the slice preparation procedure with a modified aCSF, the number of 

slices that showed oscillatory activity was still very low. Hence, although cell counts 

indicated that slices from the in house rats were indeed better in the modified aCSF, 

particularly in the deeper layers; eliciting oscillatory activity was still a struggle.  At 

this point, a change in slice orientation was introduced, with activity now recorded in 

sagittal slices and the number of slices exbibiting beta activity increased to 17.32 ± 

2.97 %.  However, difficulty in eliciting oscillations was also found to be a problem in 

hippocampus and entorhinal cortex, suggesting a system wide issue, and it was at 

this point that we decided to introduce new breeding stock into the Wistar colony. 

Working with the new rats, along with the new cutting solution and a change in the 

slice orientation increased the number of slices showing oscillatory activity to nearly 

60 %, and the live/dead ratio of cells increased dramatically to 10.00 in the superficial 

layers and 5.77 in the deep layers (Fig. 3.1 and 3.2). The most noticeable difference 

to the slices, which is most probably the determining factor in the increase in 

oscillatory activity, was the increased interneurone and Betz cell viability in the deep 

layers (Photograph 2. A-D). Photograph 2 shows interneurones adjacent to large 

Pyramidal cells (most likely Betz cells) in deep M1 along with a higher number of 

these preserved Pyramidal cells. 
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Figure 3-2 Changes to the live/dead ratio of cells in the three different conditions. Superficial 
layers generally had a greater number of cells than deep layers, as shown by the live/dead ratio. In 
the original method the live/dead ratio of cells viewed in the superficial layers (L2/3) in M1 was 2.25 
and 0.79 in deep layers (L5) of M1. In the modified aCSF solution (MaCSF) there was no change to 
the live/dead ratio of cells seen in the superficial layers (2.04). An increase in the live/dead ratio of 
cells was observed in the deep layers (1.16).  When a change to the source of rats was introduced 
(MaCSF +), the live/dead ratio increased dramatically to 10.00 (P < 0.001) and 5.77 respectively (P < 
0.01). 
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Photograph 3.2 Increase in viability of interneurones– Betz cell pairs in the revised preparatory 
method.   
The modified aCSF and, most importantly, a change to the rats resulted in the increased viability of 
interneurone – Betz cell pairs, as well as an increase in the number of deep cells leading an to an 
increase in the viability of slices. Photographs from four different preparations, all comprising of the 
modified aCSF and the new rat colony. Closed triangles indicate proposed Betz cells. Open triangles 
indicate proposed interneurones. Scale bar 15 μm. 
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3.2.5  Changes in Frequency and Power 

 

Whilst the changes to the method were carried out, differences in frequency and 

power of the oscillation were also observed. Coronal slices cut in the original sucrose 

based aCSF solution had a mean peak frequency of 25.05 ± 0.39 Hz and a mean 

peak power of 129.5 ± 18.85 μV2. Changes to the aCSF were carried out as detailed 

above, and mean peak frequency then increased to 29.9 ± 1.0 Hz and mean peak 

power was 50.64 ± 16.73 μV2. The introduction of a change to the slice plane from 

coronal to sagittal saw increased viability and further alterations to the frequency and 

power of oscillations was observed. Mean peak frequency had increased to 32.66 ± 

0.89 Hz and mean peak power was now 103.5 ± 23.19 μV2.  As mentioned in the 

previous section, problems were not only being encountered in the motor cortex and 

a change to the rat colony was introduced. Mean peak frequency was increased 

again to 34.15 ± 0.65 Hz and mean peak power was reduced to 46.81 ± 6.54 μV2. 

The changes to the frequency do not appear to be totally dependent on the slice 

plane, but also due to the alteration of aCSF and the rat colony, indicating a 

correlation with viability. 
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Figure 3-3 Differences in oscillation frequency and power before and after changes to the 
preparatory method. A) Mean peak power of the oscillations varied dependent upon the 
preparatory method. Coronal slices in the original aCSF solution had a mean peak power of 129.5 
± 18.85 μV

2
, which decreased to 50.64 ± 16.73 μV

2
 in the MaCSF (P < 0.05). When the slice plane 

was switched from coronal to sagittal, mean peak power rose to 103.5 ± 23.19 μV
2 

(P > 0.05). 
When a change to the rat colony was introduced, mean peak power decreased to 46.81 ± 6.54 μV

2 

(P < 0.001). B) Alterations to the aCSF resulted in a change in the frequency and power of the 
oscillations being observed. Frequency increased from 25.05 ± 0.39 Hz in coronal slices to 29.9 ± 
1.0 Hz in MaCSF (P < 0.001). When the modified aCSF was used with an alteration to the slice 
plane, oscillation frequency increased further to 32.66 ± 0.89 Hz (P < 0.001). When a change to 
the rat colony was introduced frequency increased further to 34.15 ± 0.65 Hz (P < 0.001). 
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3.2.6  Changes in KA and CCh concentrations 

 

A further difference that was found during the alterations to the preparatory method 

was the effect of changes to the concentrations of kainate (KA) and carbachol (CCh) 

required to elicit oscillatory activity.  Previous studies in somatosensory (Buhl et al., 

1998) and motor cortex (Yamawaki et al., 2008) had noted the need for 400 nM KA 

and 50 µM CCh to elicit oscillatory activity, where other areas needed either KA or 

CCh.  In my experiments, a change from the original aCSF to the modified aCSF 

solution, a marked increase in epileptiform activity occurred at these high 

concentrations of KA and CCh and they therefore had to be reduced.  In addition, 

changing the rat colony saw a significant reduction in the concentrations that were 

used in subsequent experiments, the optimal concentrations reduced to 100 nM KA 

and 5 µM CCh (for a further discussion, see Appendix 1). 

 

3.2.7  Pharmacology 

 

After changes to preparation to increase viability of slices, pharmacological 

experiments were conducted to ensure that responses of beta oscillatory activity to 

10 nM zolpidem (discussed further in Chapter 4) were the same between 

experiments.  All three experimental setups available in the laboratory showed a 

desynchronisation of beta oscillatory activity at 10 nM zolpidem (Fig. 3.4 – aCSF 

showed a reduction to 47.01 ± 16.09 % of BL, MaCSF showed a reduction to 54.26 ± 

8.16 % of BL and MaCSF + showed a reduction to 75.27 ± 8.81 % of BL). 

Interestingly, the amount of desynchronisation of the beta oscillation decreased as 

viability of the slices increased. 
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Figure 3-4 Pharmacological responses of beta oscillations in the three different 
conditions. Addition of zolpidem (10 nM) caused a desynchronisation of beta oscillations 
in M1 in all three conditions. Oscillations evoked in the original aCSF solution showed a 
reduction to 47.01 ± 16.09 % of BL (P < 0.05, n = 6). Oscillations evoked in the modified 
(M) aCSF showed a reduction to 54.26 ± 8.16% of BL (P < 0.001, n = 11) and oscillations 
evoked in the MaCSF when a change to the source of rats was also introduced showed a 
reduction to 75.27 ± 8.81% of BL (P < 0.05, n = 6).  
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3.3 Discussion 

 

3.3.1  Changes to storage 

 
The largest difference to slice viability was seen when the preparatory method was 

changed and alteration of storage solutions after this point made little or no difference 

to slice viability.  This indicates that most of the damage is done either during 

dissection of the animal or during the preparation of the acute brain slice.  Replacing 

anaesthesia and decapitation with transcardial perfusion helped to maintain 

neuroprotection and preserve the brain that would normally be exposed to greater 

anoxia and excitotoxic activity and thus appears vital to obtain healthy slices.  

 

3.3.2  Changes to aCSF 

 

Slice viability and neuronal network activity increased significantly when four core 

neuroprotectors were present in a modified aCSF solution used for preparation of 

acute brain slices. Hence, use of NAC, aminoguanidine, taurine and ascorbate 

induced a step-change in slice viability and delivered immediate benefits in terms of 

successful production of neuronal network oscillations in deep M1.  NAC has been 

shown to have neuroprotectant actions, in that during a traumatic brain injury it helps 

to restore mitochondrial function and increase antioxidant availability (Xiong, 

Peterson and Lee, 1999).  It acts to increase the pool of glutathione, a reactive 

oxygen species (ROS) scavenger, thus inhibiting the actions of NF-kB (nuclear factor 

kappa-light-chain-enhancer of activated B cells, a protein complex involved in cellular 

responses to stimuli such as stress) and TNF–α (tumor necrosis factor-alpha, a 

cytokine involved in systemic inflammation) (Ferrari et al, 1995, Chen et al, 2008).  

This, along with reducing the activity of other inflammation related factors, helps to 

significantly decrease the likelihood of apoptosis (Ferrari et al., 1995; Chen et al., 

2008).  The possibility of this being achieved is due to the conversion of NAC to 

cysteine, a glutathione precursor.  NAC has also been reported to prevent excitotoxic 

cell death by reducing N-Methyl-D-aspartate receptor (NMDAR) activation during 

anoxic and ischemic conditions (Monje et al., 2000).  Along with decreased 

extracellular concentrations of Ca2+, a loss of protein synthesis is avoided, thus 

preserving neuronal electrophysiology and morphology.   
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Another ROS scavenger associated with preventing apoptosis after ischemia is the 

biological compound aminoguanidine (Sun et al., 2010; Hunot et al; 1996, Dawson et 

al., 1993).  Excessive production of Nitric Oxide (NO) is neurotoxic.  NO is produced 

from L-arginine by nitric oxide synthase (NOS).  NOS is found in three isoforms, and 

as well as being involved in neurotransmission also plays a role in plasticity, control 

of sleep, appetite, body temperature and neurosecretion (Calabrese et al., 2007).  

Inducible NOS (iNOS) is induced following inflammatory or traumatic events and not 

usually detectable in the normal brain (Sun et al., 2010), but may be produced in 

excess following brain damage. NO undergoes oxidative reduction to form reactive 

oxygen (nitrogen) species (Hunot et al., 1996; Dawson et al., 1993).  Cytotoxicity 

after traumatic events is thought to be due to a process of excitotoxicity caused by 

NMDAR hyperfunction (Dawson et al., 1993), which in turn induces iNOS expression.  

Aminoguanidine is an inhibitor of iNOS (Griffiths et al., 1993; Sun et al., 2010).  When 

given after a traumatic event, aminoguanidine improves neurological function, 

decreases brain swelling and attenuates necrotic and apoptotic cell death.   

 

NMDAR mediated neurotoxicity has been linked with an influx of Ca2+ (Dawson et al., 

1993; El Idrissi et al., 2008), which is a known cause of mitochondrial death.  

Taurine, a modulator of cytosolic and intra-mitochondrial calcium concentrations, can 

be employed to prevent mitochondrial death, and thus cell death, during traumatic 

events (Ellren and Lehmann, 1989).  Increasing the taurine concentrations in the 

modified aCSF was of particular use, as taurine itself is depleted during ischemia 

(Torp et al., 1991).  Cell volume regulation is a vital process (Inoue et al., 2005) and 

is regulated in part by taurine (Beetsch and Olson, 1998).  Neuronal activity such as 

neurotransmission and neuronal discharge (Rothmann, 1985; Kimelberg and 

Kettenmann, 1990) contribute to changes in intracellular osmolarity by altering 

osmolyte transport.  Cells readjust to this by regulatory volume decrease (RVD; 

Hoffman and Simonsen, 1989, Lang et al., 1998).  Activation of the Cl- current in 

response to cell swelling is one of the mechanisms that cells utilise to restore their 

volume.  At normal resting potentials, this current causes the efflux of intracellular Cl- 

(Hoffman and Simonsen, 1989, Kubo and Okada, 1992), thereby decreasing 

intracellular osmolarity.  During brain slice preparation, along with storage in a 

solution that lacks the osmolytes (amino acids) required for maintenance of the cell 
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volume, taurine levels fall and the processes controlling cell volume are further 

affected (Kreisman and Olson, 2003).   

 

Ascorbic acid, an important antioxidant and neuromodulator is found at its highest 

concentration in the brain (Rice, 2000).  It is found in CSF and extracellular fluid and 

is taken up by neurones where it is found at its highest concentration at 10mM.  High 

levels of ascorbic acid are required for protection against glutamate induced neuronal 

death.  Loss of antioxidants from intracellular compartments during ischemia leaves 

cells vulnerable to oxidative damage. Providing ascorbic acid in the modified aCSF 

means it can directly scavenge ROS’ and can be hetero-exchanged with glutamate, 

increasing levels in the extracelllar fluid to minimise excitotocity. 

 

Taken together, these four neuroprotectants combined in a modified aCSF solution 

have increased the preservation of neurones in M1 and also helped to increase 

number of slices that display neuronal network activity and show a definitive rise in 

slice viability. The overwhelming theme of neuronal cell loss is that of an excitotoxic 

event by which prevention/correction cannot occur when the four neuroprotectors are 

not present in the aCSF and resulting from their concentrations being diminished 

during slice preparation. NMDAR mediated excitotoxicity is associated with an influx 

of Ca2+ and Cl- ions; Ca2+ due to the activity of the receptor itself, which sets of a 

second messenger cascade resulting in necrotic or apoptotic cell death (Tymianski et 

al., 1993; Szydlowska and Tymianski, 2010) and Cl- to compensate for the excessive 

depolarisation excitotoxicity causes (Rothman, 1985; Aghajanian and Rasmussen, 

1989;, Olney et al., 1986).  It is this process that resulted in sucrose replacing NaCl in 

preparatory methods for acute brain slices (Aghajanian and Rasmussen, 1989).  

Brain injury can cause ischemia, reduced blood flow to the injured areas followed by 

an accumulation of glutamate in the extracellular fluid.  It is this build up of glutamate 

that induces excitotoxicity. More recently, further methods for maintaining viable 

slices have been proposed, including glycerol as a replacement for sucrose (Ye et 

al., 2006). Glycerol is a naturally occurring alcohol and in the Ye et al., study it 

prevented cell swelling and lysis, producing twice as many live cells as compared to 

sucrose based aCSF.  Tanaka et al., (2008) have shown that replacing NaCl/sucrose 

with NMDG (N-methyl d-glucamine chloride) specifically helps to preserve 

GABAergic interneurones in cerebral cortex. They also showed that sucrose-, 
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NMDG-, choline- and glycerol-based cutting solutions all produced viable slices as 

opposed to a NaCl based solution. 

 

As well as changes to the cutting solution, adding further biologically available 

compounds to the perfusing aCSF also makes a difference to neuronal activity.  K+, 

Ca2+ and Mg2+ are usually found in varying concentrations across laboratories, but 

even subtle differences can affect neuronal activity.  Neurotransmitter molecules are 

normally not added to aCSF but are found in CSF and have been found sufficient to 

affect tonic conductances (Glykys and Mody, 2007) and oscillatory activity (Glykys et 

al., 2008).  The amount of GABA and glutamate available in acute brain slice 

preparations can vary vastly this being dependent upon preparation and storage. 

Along with other neurotransmitters, such as taurine, ascorbate and serotonin, the 

aCSF could be used to increase slice viability as suggested by Hajos and Mody 

(2009).   

 

3.3.3  Rat Colony 

 

Changing the breeding pairs of the Wistar rats resulted in the greatest increase to the 

viability of the slices, increasing the occurrence of oscillatory activity to over 50%.  

Wistar rats are an outbred strain and are generally used where isogenicity is not 

required.  Outbred animals should not be kept in a breeding program where breeding 

occurs between parent/offspring or between littermates (Harris, 1997).  Due to 

heterogeneity, outbred strains are usually larger, more robust and more resistant to 

stress than inbred rat strains.  However, over time a closed outbred colony, such as 

is kept at Aston University, will become inbred to a certain degree, the extent 

dependent upon the size of the starting population.  Thus, a few points should be 

taken from this; 

 The colony should be started with as many breeding pairs as possible 

 The colony should be restarted every few years, either with new breeding 

pairs, or by replacing one sex of the breeding pairs from outside sources.  

 

Inbreeding with parents/littermates produces a level of homozygosity that can result 

in inbreeding depression, a state where a population’s ability to reproduce and 

survive is reduced.  This arises due to an increase in harmful recessive alleles that 
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would normally be heterozygous and thus having a dominant normal gene.  

Inbreeding depression is most noticeable in its reduction of size, growth, fertility and 

resistance to stress. One of the most noticeable problems with the Wistar colony was 

the increased occurrence of enlarged ventricles.  Enlarged ventricles are implicated 

in many neurological disorders, such as schizophrenia, Parkinson’s disease, 

Alzheimer’s disease and ADHD.  Schizophrenia, Parkinson’s disease and 

Alzheimer’s disease are all known to affect normal oscillatory activity (Uhlhaas and 

Singer, 2006; 2010; Donnan et al., 2008; Hall et al., 2010).  

 

3.3.4  Changes to KA and CCh concentrations 

 

KA alone can generate oscillatory activity in hippocampus (Fisahn et al., 1998), 

entorhinal cortex (Cunningham et al., 2003) and somatosensory cortex (Roopun et 

al., 2006).  However, KA and CCh are required for the generation of oscillatory 

activity in the primary motor cortex (Yamawaki et al., 2008).  Kainate receptors (KAR) 

act principally as modulators of synaptic transmission and neuronal excitability (for 

review see Contractor et al., 2011). KARs perform this function through diverse 

mechanisms; Postsynaptic depolarisation at a subset of excitatory synapses 

(Campbell et al., 2007), presynaptic modulation of both excitatory and inhibitory 

transmission (Cossart et al., 1998; Frerking et al 1998.,) and balance of excitation 

and inhibition and thus control of oscillations (Huxter et al., 2007). KA is also a 

powerful neurotoxin implicated in seizures, as shown by Smolders et al., 2002, 

whereby KAR antagonists prevented pilocarpine induced epileptiform activity.  

Acetylcholine has many cognitive functions, including the cortical modulation of 

sensory information (Lucas-Meunier et al., 2003).  Muscarinic acetylcholine receptors 

(mAChRs) are found as two subtypes; M1 like, consisting of the subunits M1, 3 and 

5, and M2-like, consisting of the subunits M2 and M4 (Caulfield and Birdsall., 1998).  

Addition of CCh, a mAchR agonist, increases glutamate release, first in GABAergic 

interneurones, via a fast hyperpolarisation, then in Pyramidal cells, via a slow 

depolarisation (Lucas-Meunier et al., 2003).    

 

The requirement of both KA and CCh to elicit oscillatory activity in M1 may be due to 

a consequence of reduced resilience of M1 during acute brain slice preparation, 

possibly due to a decline in the structural and functional properties of the neuronal 



90 
 

circuits.  This led to the requirement of 400 nM KA and 50 μM CCh to elicit oscillatory 

activity in previous studies (Buhl et al., 1998; Yamawaki et al., 2008).  During the 

present study, when the aCSF was modified, KA and CCh concentrations had to be 

reduced due to an increase in the frequency of epileptiform activity observed in the 

slices.  The final concentrations required in the new preparation were 100nM KA and 

5μM CCh. KA concentrations could be used up to 150 nM, as required, but the best 

network activity was acquired when CCh concentrations were retained at 5 μM.  This 

adds credence to the hypothesis that damage caused by the acute brain slice 

preparation requires a higher concentration of excitatory agents to elicit oscillatory 

activity. In vitro preparations reduce synaptic background activity (Dexteshe and 

Pare, 1999), which is required for oscillation generation.  Decreased synaptic 

background activity leads to decreased neuronal responsiveness (Ho and Dexteshe, 

2000).  Pyramidal cells in the neocortex receive 5,000-60,000 synapses, of which 70 

% originate from other cortical neurones (Dexteshe and Pare, 1999).  If the slice 

viability is dramatically reduced, this would account for the loss of interneurones and 

connectivity and thus the increased amount of excitation required to elicit oscillatory 

activity. Preservation of cortical neurones with the new preparatory method, and 

possibly increased synaptic activity in sagittal slices could account for the reduced 

requirement of KA and CCh required for network activity in M1.  

 

3.3.5  Changes to Frequency 

 

Traditionally, oscillations in the motor cortex have been characterised as beta 

frequency oscillations.  However, the ranges of frequencies classified as beta (or 

gamma) are not consistent from one report to another.  Murthy and Fetz (1992) 

define beta as 25-35 Hz and later (1996a, b) define beta as 20-40 Hz. Baker et al., 

(1999) define the range as 20-30 Hz, whilst it has been considered to be as low as 

15 Hz (Traub et al., 1996).  Beta has also been split into two frequency bands 

consisting of low beta 1 (15-20 Hz) and high beta 2 (20-30 Hz) (Roopun et al., 2006). 

The crossover with gamma has long been debated, with the range of gamma itself 

also varying, from 25 Hz and above (Whittington et al., 1995) to 30 Hz and above.  

Other studies have chosen not to define frequency bands, instead including all 

activity in the 15-50 Hz range (Sanes and Donoghue, 1993, 1998).  The differences 

in oscillatory frequency seen here vary by up to 10 Hz, all of which could either be 
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considered either beta or gamma.  Therefore, activity in the motor cortex may not be 

restricted to beta frequencies.  Beta has been described as the resting frequency of 

the motor cortex (Murthy and Fetz, 1992) and is most often seen during gripping 

whilst awaiting a cue to move (Murthy and Fetz, 1992; 1996a; Baker et al., 1999), 

where a switch to gamma frequencies is then seen (Murthy and Fetz, 1996a; Donner 

and Siegel, 2011; Ball et al., 2008; Donner et al., 2009; Ricket et al., 2005).  The only 

clear way to determine if an oscillation is the same between the acute brain slices in 

these experiments is via pharmacological manipulation.  All oscillations were 

modulated in the same manner by 10 nM zolpidem, suggesting that although the 

frequency varied considerably, they are indeed the “same” oscillation.  The 

differences seen between slices could mainly reflect differences between slice 

planes, as the major difference in oscillation frequency was the change in that seen 

between sagittal and coronal slices.  Gamma and beta frequency oscillations have 

been proposed to reflect differences in circuitry.  Gamma has been proposed as a 

local circuit phenomena (Kopell et al., 2000) encoding information within local 

neuronal populations (Donner and Siegel, 2011).  Beta has been proposed to 

mediate long-range interactions that mediate integrative cognitive functions and 

therefore linking local neuronal populations (Kopell et al., 2000; Donner and Siegel, 

2011).  This would therefore indicate that coronal slices have more long range 

connections than are seen in sagittal slices.  M1 is separated into distinct zones 

dependent upon muscle innervations.  Aroniadou and Keller (1993) postulated that 

inhibitory networks limit postsynaptic responses of an organised excitatory network 

rather than to control spatio-temporal patterns of network activity in an unorganised 

network.  Therefore, specific circuits of inhibitory interneurones could exist for this 

activity and control of the circuits would be dependent upon the power of the 

excitation.  

 

Yamawaki et al., (2008) previously reported that the beta oscillation seen in M1 

resembles the pharmacologically induced persistent gamma oscillation described by 

Fisahn et al., (1998) and subsequently Cunningham et al., (2003).  Pyramidal cells 

were found to fire at a lower frequency than the field oscillation, while FS cells were 

found to fire on every gamma cycle (Fisahn et al., 1998). Furthermore, Pyramidal 

cells and FS cells were found to receive IPSPs at gamma frequency, which strongly 

correlated with field activity.  Fisahn et al., (1998) attributed this to a mechanism 
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whereby Pyramidal cells fired producing monosynaptic EPSPs in neighbouring 

Pyramidal cell dendrites, which were curtailed by disynaptic perisomatic IPSPs from 

neighbouring interneurones.  Yamawaki et al., (2008, thesis) found that EPSPs did 

indeed occur at a much lower frequency than IPSPs.  It was also found that the beta 

oscillation appeared to be AMPA current independent, where the persistent gamma 

oscillation was AMPA current dependent, indicating a lesser role for recurrent phasic 

excitation in beta oscillation generation.  The requirement of kainate-dependent and 

muscarinic-dependent tonic excitation, seen in coronal slices in the original aCSF 

solution (400 nM and 50 μM respectively), is much reduced in the modified aCSF, 

sagittal slices and new rat colony (100 nM and 5 μM respectively), perhaps indicating 

that the preservation of Pyramidal cells and interneurones is introducing an AMPA-

dependent current to these networks that was not seen in previous studies and thus 

producing the higher frequency observed in these slices.  Further experiments will be 

required to determine involvement of recurrent excitation and, thus, the involvement 

of an AMPA-dependent current in these newer slices.   

 

3.3.6  Conclusion 

 

In this chapter I have shown optimal neuronal network responses obtained from brain 

slices cut in a modified aCSF solution containing taurine, ascorbic acid, NAC and 

aminoguanidine.  This was confirmed in extracellular studies of beta frequency 

network activity in the motor cortex and by cell counts.  I could consistently obtain a 

stable oscillatory recordings in >50 % of slices, as compared to 9 % of slices cut in 

the original aCSF solution, with frequency and power responses mediated by the 

same properties to those of responses in the original aCSF as confirmed by 

pharmacological studies.  What part of the altered process is most important remains 

unknown, but taken together healthy, viable slices have been obtained.  In 

conclusion, I have here described a slice preparation method, which has allowed 

improved viability of primary motor cortical slices from rats.  The slice preparation 

technique recommended in the present chapter is used throughout this thesis for 

electrophysiological studies on the neuronal circuits of the primary motor cortex. 
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Chapter 4 Pharmacological Modulation of 
Oscillatory Activity in the Primary Motor 
Cortex in vitro 
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4.1 Introduction 

 
The primary motor cortex (M1) plays an important role in the execution of voluntary 

movement and is associated with characteristic neuronal oscillatory activity at beta 

(15-30 Hz) frequencies.  These beta oscillations reflect interplay between GABAergic 

and glutamatergic elements producing synchronised network activity (Yamawaki et 

al., 2008).  In vivo, beta oscillatory activity is associated with the resting state; pre-

movement or anticipation (Cheyne et al., 2008) or sustained contraction (Baker et al., 

2007).  When movement is executed, a decrease in beta oscillatory power, coupled 

with an increase in gamma oscillations (>30 Hz), is seen.  It is therefore thought that 

beta represents the preparatory state for movement and/or maintenance of postural 

tone.  In PD, beta oscillations of an increased power are often observed, and are 

thought to be pathological, such that movement is inhibited and this results in the 

commonly seen symptoms of bradykinesia and rigidity (Brown, 2007).   In recent 

years, transdural high frequency stimulation of M1 in animal models of PD (Drouot et 

al., 2004) and in groups of PD patients (e.g. Pagni et al., 2003) and transcranial 

magnetic stimulation (TMS) (Lefaucheur et al., 2004) of the same region have been 

shown to improve motor impairments.   

 

Previous studies in vivo and in vitro have shown that beta oscillations can be 

modulated by zolpidem (Hall et al., 2010; Yamawaki et al., 2008), a non-BZD drug 

that acts at the α1 subunit of the GABAAR.  Zolpidem is a non-BZD imidazopyridine 

that at the BZD site of the GABAAR and acts to-augment the agonist action of GABA 

on the receptor (Crestani et al., 2000).  GABA binding regulates the permeability of 

the GABAAR to Cl- ions and application of a BZD can augment these effects.  Binding 

of BZDs increases the frequency of the channel opening, but cannot directly open 

these channels without GABA having bound first.  The α-subunit of the GABAAR 

determines the recognition of BZDs and the γ subunit must also be present (Cope et 

al., 2004; 2005) since the BZD binding site is shared between the α subunit and the γ 

subunit.  BZD binding is therefore separate to GABA binding on the receptor.   
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Figure 4-1 Oscillatory activity in M1 is dependent on GABAergic inhibitory mechanisms. Ai) 
Mean peak frequency (30.14 ± 0.50 Hz) and mean peak power (139.9 ± 6.53 µV

2
) of a beta oscillation 

in M1 (n = 128). Aii) Representative power spectrum of a beta oscillation in deep (L5) M1. Bi) Bar 
chart showing the decline in beta power in response to increasing concentrations of gabazine, a 
GABAAR antagonist (n = 6). Gabazine (250 nM) caused a decline in oscillatory power to 49 ± 8.24% of 
baseline (BL) (P < 0.001) and further decline in power at 2 µM to 32.39 ± 4.64% of BL. (P < 0.001) Bii) 
Representative power spectrum showing the decline in beta power upon cumulative addition of 
gabazine at 250 nM and 2 μM. Ci) Bar chart showing the varying response of a beta oscillation to 
increasing concentrations of tiagabine, a GABA uptake inhibitor (n = 6).  At low concentrations 
tiagabine (1 μM) increases beta power to 180.70 ± 24.72 % (P < 0.05) and at high concentrations 
tiagabine (10 μM) decreases power to 80.17 ± 25.4 % (P < 0.01). Cii) Representative power spectrum 
showing the varying responses of a beta oscillation to increasing concentrations of tiagabine.  
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Although zolpidem effects are thought to be specifically mediated through the α1 

subunit containing GABAAR (Rudolph et al., 1999), at higher concentrations zolpidem 

will potentiate function at receptors containing α2/3 subunits (Pritchett and Seiburg, 

1990).  Zolpidem, used clinically as a sedative, was recently shown to awaken 

patients in a persistent vegetative state (Clauss et al., 2000), suggesting that it might 

have paradoxical effects under certain (pathological) conditions.  In 2010, Hall et al. 

showed a reduction in beta power after the administration of sub-sedative doses of 

zolpidem in stroke patients, which correlated with an increase in cognitive ability and 

motor function. The role of zolpidem in treating these neuropatholgies may be to 

desynchronise aberrant oscillatory activity. This research has opened up the 

possibility of using non-invasive therapeutic approaches for diseases in which 

aberrant neuronal network oscillatory activity is a feature. Such “oscillopathies” 

include, stroke, PD, AD and some of the epilepsies. This paradoxical ability of 

zolpidem at sub-sedative doses to improve cognitive and motor function in patients 

suffering from neurological disease was the motive for the experimental work 

described below, which aimed to investigate possible mechanisms by which 

zolpidem might modulate network function in the in vitro M1 slice. 
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4.2 Results 

4.2.1  Effect of zolpidem on beta oscillatory activity  

 
Initial in vitro studies of the actions of zolpidem on beta oscillatory activity suggested 

that zolpidem (100 nM; Yamawaki et al., 2008) augmented beta power, and this was 

in apparent conflict with in vivo data suggestive of a decrease in beta power in 

human subjects (Hall et al., 2010). Hence, I began this programme of work with the 

question, why are there conflicting effects of zolpidem in vivo and in vitro?   

 

Synchronous activity was primarily elicited by the co-application of 400 nM kainic 

acid (KA) and 50 µM carbachol (CCh) (or later, 100 nM and 5 μM respectively (see 

chapter 3)), as M1 does not show any robust spontaneous oscillatory activity 

(Yamawaki et al., 2008).  Activation of KA receptors has repeatedly been shown to 

elicit oscillations in the cortex (Hormuzdi et al., 2001; Cunningham et al., 2003), 

however, KA receptor activation alone does not appear to be sufficient within the 

motor cortex.  CCh was also co-applied after it was found that the addition of both 

receptor ligands would induce oscillations within the somatosensory cortex (Buhl et 

al., 1998) and was therefore thought to be sufficient to induce oscillations in M1. 

Oscillations were allowed to stabilise for 30-60 minutes before drug application, and 

measures of beta power were repeated during this time to ensure stability and 

consistency of the baseline activity so that any changes produced in the neuronal 

activity could confidently be attributed to drug application.   
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Figure 4-2 Concentration-dependent effects of zolpidem on beta oscillations in L5 M1. Ai) Raw 
data showing changes to oscillatory activity in 0-500 nM zolpidem and Aii) 10 nM zolpidem Bi) Bar 
chart showing the change in beta power in the presence of 30-500 nM zolpidem (n = 7). Mean 
oscillatory power would increase at 30 nM (319.17 ± 119.9 %, P < 0.05) and then showed a steady 
decline at higher concentrations (100 nM 230.2 ± 106.1 % and 500 nM 135.2 ± 62.67 %). Bii) 
Representative power spectrum showing changes to the beta oscillation in the presence of 30-500 nM 
zolpidem (n = 7). Ci) Bar chart showing the mean change in beta power in the presence of 10 nM 
zolpidem (60.15 ± 6.85%, P < 0.001, n = 21).  Cii) Representative power spectrum showing the 
decline in beta power in the presence of 10 nM zolpidem (n=7). 
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All recordings were conducted in deep (L5) M1 as previous studies have shown this 

to be the source of oscillatory activity in M1 and also to have the most robust 

synchronous activity (Yamawaki et al., 2008).  Mean oscillatory frequency was 30.14 

± 0.5 Hz and average power was 119.9 ± 16.53 µV2 (Fig. 4.1A, n = 128). The 

oscillation in M1 is thought to be dependent on GABAAR-mediated phasic inhibition 

(Yamawaki et al., 2008). I tested two concentrations of the selective GABAAR 

antagonist gabazine (Fig. 4.1B). At 250 nM, gabazine decreased the power (Fig. 

4.1B 49.00 ± 8.24 % of baseline, P < 0.001, n = 6). At higher concentrations (2 µM, n 

= 6), gabazine decreased beta power further (Fig. 4.1B 32.39 ± 4.64 % of BL, P < 

0.001). Tiagabine, the GABA uptake blocker, was also tested at two concentrations. 

At 1 µM, tiagabine increased the beta power (Fig. 4.2C, 180.7 ± 24.72 %, P <0.05, n 

= 6) and at 10 µM tiagabine decreased the beta power in M1 (Fig. 4.2C, 80.17 ± 

25.38 %, P < 0.01, n = 6). 

 

Zolpidem was applied in a cumulative manner at increasing concentrations.  Each 

application of zolpidem was left for 30 minutes before application of the higher dose 

to allow any drugs effects to clearly appear and for activity to stabilise.  A dose 

response curve was constructed and revealed a parabolic effect on the oscillations.  

A maximum response was reached at 30 nM (Fig.  4.2B & C 319.17 ± 119.9 %, P < 

0.05, n = 7) and a decline was seen at further concentrations (Fig. 4.2B & C, 100 nM 

zolpidem, 319.17 ± 119.9 % to 230.2 ± 106.1 % was recorded and 500 nM zolpidem 

saw a further fall to 135.2 ± 62.67 %).  To investigate this effect further, experiments 

including a lower dose of zolpidem were conducted.  It was found that 10 nM 

zolpidem reduced the power of oscillations in M1 and therefore has a 

desynchronising effect (Fig. 4.2E & F, 10 nM zolpidem 60.15 ± 6.85%, P < 0.001, n = 

21).  It was also found that after application of 10 nM zolpidem, network activity could 

not be “resynchronised” with the addition of 30 nM zolpidem.  10 nM zolpidem 

experiments were therefore conducted separately to the dose response experiments.   

 

To further investigate the role of the α1 subunit of the GABAAR in beta oscillatory 

activity in M1, a further dose response experiment was conducted with CL 218,872.  

CL 218,872 is a BZD agonist displaying selectivity for α1 subunit-containing 

GABAARs.   
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Figure 4-3 Concentration-dependent effects of CL 218,872 on beta oscillations in L5 M1. Ai) 
Raw data showing the changes in oscillatory activity in 0-500 nM CL 218,872. Aii) Raw data showing 
the change in oscillatory activity in the presence of 10 nM CL 218,872 Bi) Histogram showing the 
average changes in beta power in the presence of 30-500 nM CL 218,872. Bii) Representative power 
spectrum in the presence of 30-500nM CL 218,872 (30 nM 144.18 ± 21.79 % P < 0.05, 100 nM 62.15 
± 23.39 % and a further reduction to 40.99 ± 27.47 % at 500 nM, n = 7). Ci) Bar chart showing the 
mean change in beta power in the presence of 10 nM CL 218,872. Cii) Representative power 
spectrum showing a decline in beta power in the presence of 10 nM CL 218,872 (46.18 ± 13.24 %, P 
<0.05, n = 7). 
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The amino acid determining the α1 subunit selectivity of CL 218,872 and zolpidem 

are the same, confirming a high affinity of the GABAA BZD site for these two ligands 

(Wingrove et al., 2002).  Using CL 218,872 as a comparison with zolpidem, I sought 

to see if the desynchronising properties at lower doses were specific effects of the 

drugs at the BDZ site.  With a similar outcome to zolpidem, 30 nM CL 218,872 

significantly increased the power from control (Fig. 4.3B & C, 144.18 ± 21.79% of BL 

power, P < 0.05, n = 6).  Higher concentrations then induced a desynchronisation of 

β synchrony in M1 (Figure 4.3B, C & F, 144.18 ± 21.79 % to 62.15 ± 23.39 % at 100 

nM and a further reduction to 40.99 ± 27.47 % at 500 nM). 10 nM CL 218,872 also 

showed the desynchronisation of beta oscillations as with zolpidem (Figure 4.3E & F, 

oscillatory power fell to 46.18 ± 13.24 %, P < 0.05, n = 6). These data suggested that 

zolpidem’s desynchronising effect was not due to a non-specific, non-BZD site 

action.  

 

4.2.2  Effect of non-α1 subunit specific BZD agonists on beta 
oscillatory activity 

 
To further characterise the role of GABAARs on neuronal network activity in M1, dose 

response experiments were conducted for zopiclone and diazepam. Zopiclone is also 

used as a sedative, even though its effects are not specific to the α1-subunit.  

However, it does show higher affinity for α1-subunit containing GABAARs over those 

containing α3, or α5 and its efficacy is similar at α1,2,3 and 5 (Brunello et al., 2009).  

Zopiclone is a non–α1 subunit selective BZD site agonist at the BZD site and was 

expected to show a steady increase of the power of the oscillations with increasing 

concentrations (Fig. 4.4B & C). Oscillatory power increased to 281.67 ± 142.6 % 

above BL and then again to 282.2 ± 142.6 % at 100nM and finally to 989.8 ± 812.5% 

at 500 nM (P > 0.05, n = 7).  However, further experiments conducted with 10nM 

zopiclone showed the same effect as zolpidem; 10 nM zopiclone decreased the 

oscillatory power (Figure 4.4E & F - 27.64 ± 7.45% of BL, P < 0.05, n = 6).  As the 

most commonly available BZD site agonist, I also repeated the experiments with 

diazepam.  In knock-in point mutations, diazepam has been shown to mediate its 

effects through the α2 but not the α3 or α5 subunit containing GABAARs (Löw et al., 

2000; Crestani et al., 2002). The dose relationship of diazepam would then be 

expected to be similar to that of zopiclone. However, 30 nM diazepam showed a non-
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significant tendency towards increased power, with similar effects at 100 nM and 

500nM (Fig. 4.7B, 30 nM 115.5 ± 11.97 %, 100 nM 116.7 ± 48.07 % and 500nM 

121.3 ± 48.55 of BL, P > 0.05, n = 6).   
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Figure 4-4 Concentration-dependent effects of zopiclone on beta oscillatory power in L5 M1. Ai) 
Raw data showing oscillatory activity in 0-500 nM zopiclone Aii) Raw data showing oscillatory activity 
in 0-10 nM zopiclone (Bi) Bar chart showing the mean change in beta power in the presence of 30-500 
nM zopiclone. Oscillatory power increased to 281.67 ± 142.6 % above BL and then again to 282.2 ± 
142.6 % at 100 nM and finally to 989.8 ± 812.5% at 500 nM (P > 0.05, n = 7). Bii) Representative 
power spectrum in the presence of 0-500 nM zopiclone. Ci) Bar chart showing the mean change in 
beta power in the presence of 0-10 nM zopiclone (27.64 ± 7.45% of BL, P < 0.05, n =6). Cii) 
Representative power spectrum showing a decrease in beta power in the presence of 0-10 nM 
zopiclone.  
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Given that the desynchronising effects of zolpidem could be achieved at very low 

doses, when it might be expected that only α1-subunit containing GABAARs would be 

bound, I decided to test the effects of 100 nM L-838,417, a partial agonist which has 

the unique effect in that it shows equal affinity at α1, α2, α3, and has a threefold 

lower affinity at the α5 subunit containing GABAARs, but has no efficacy at α1-subunit 

containing receptors. I hypothesised that L-838,417 would boost oscillatory power 

and also block the effects of zolpidem at the α1-subunit containing GABAAR. On 

application of L-838, 417, the power of the oscillation increased (Fig. 4.5B, D & F, 

average increase from BL of 216.2 ± 58.24 % across the three conditions, n = 18).  

However, application of zolpidem (10 nM) in the presence of L-838,417 induced a 

marked desynchronisation of beta activity (Fig. 4.5A, B & C, 44.99 ± 11.59 % of BL, P 

< 0.05, n =6).  The same was seen for zopiclone (Fig. 4.6A & B 42.67 ± 7.97 % of 

BL, P < 0.05, n = 6) and diazepam (Figure 4.6C & D  27.93 ± 9.13 % of BL, P < 0.05, 

n = 6).   

 

4.2.3  Effect of BZD site inverse agonist on beta oscillatory 
activity  

 
Notwithstanding the effects of L-838,417, the data so far implicated the α1 subunit 

containing GABAAR in desynchronisation of beta activity in M1. I hypothesised that 

an inverse agonist with selectivity for the α1 subunit might have opposite effects to 

zolpidem. β-CCM is an inverse agonist at the BZD site of the GABAAR and 

cumulative application showed a steady decline in the power of oscillations (Fig. 

4.7A).  β-CCM was ineffective at doses selective for α1 subunit containing GABAARs 

(Fig. 4.7A reduction to 77.64 ± 12.54 % of BL, P > 0.05, n = 6), while higher doses 

induced a steady decline in the power of the oscillations:  100 nM and 500 nM (Fig. 

4.7A – reduction to 61.66 ± 15.71 %, P < 0.01 and 42.15 ± 14.20 % respectively, P < 

0.01, n = 6).   
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Following Page - Figure 4-5 The desychronising effects of zolpidem in vitro are mediated by the 
α1 subunit of the GABAAR.  Ai) Morlet wavelet time – frequency plot (Matlab R2010a, Natick, USA) 
in control, L-838,417 (100 nM) and zolpidem (10 nM). Control conditions show peak amplitude within 
the beta (15-30 Hz) oscillatory band in M1. When 100 nM L-838,417 is added, a marked increase in 
amplitude is observed. When 10 nM zolpidem is added, this oscillation is abolished, as shown in the 
earlier experiments with zolpidem. Aii) Band – pass filtered envelope of RMS power in the 15 - 30 Hz 
range shows the increase in amplitude with 100 nM L-838,417 and the decline of the oscillation below 
that of control conditions with 10nM zolpidem. Bi) Bar chart showing the dose response of L-838,417 
(100 nM, 165.20 ± 45.10 %, P > 0.05) followed by zolpidem (10 nM, 44.99 ± 11.59 % of BL, P < 0.05, 
n = 6). Bii) Representative power spectrum showing the response to L-838,417 (100 nM) followed by 
zolpidem (10 nM). 
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Following Page - Figure 4-6 The desychronising effects of zopiclone and diazepam in vitro are 
mediated by the α1 subunit of the GABAAR.  A) Morlet wavelet time – frequency plot (Matlab 
R2010a, Natick, USA) in control, L-838,417 (100 nM) and zopiclone (10 nM). Control conditions show 
peak amplitude within the beta (15-30Hz) oscillatory band in M1. When 100 nM L-838,417 is added, a 
marked increase in amplitude is observed. When 10 nM zopiclone is added, this oscillation is 
abolished, as shown in the earlier experiments with zolpidem. Bi) Bar chart showing the dose 
response of L-838,417 (100 nM, 177.9 ± 40.95 %, P > 0.05, n = 6) followed by zopiclone (10 nM, 
42.67 ± 7.97 %, P < 0.05, n = 6). Bii) Representative power spectrum showing the response to L838, 
417 (100 nM) followed by zopiclone (10 nM). C) Morlet wavelet time – frequency plot (Matlab R2010a, 
Natick, USA) in control, L-838,417 (100 nM) and diazepam (10 nM). Control conditions show peak 
amplitude within the β (15-30Hz) oscillatory band in M1. When 100nM L-838,417 is added, a marked 
increase in amplitude is observed. When 10nM diazepam is added, this oscillation is abolished, as 
shown in the earlier experiments with zolpidem. Di) Bar chart showing the dose response of L-838,417 
(100 nM, 323.4± 191.0 %, P < 0.05, n = 6) followed by diazepam (10 nM, 27.93 ± 9.13 %, P < 0.05, n 
= 6). Dii) Representative power spectrum showing the response to L-838,417 (100 nM) followed by 
diazepam (10 nM). 
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4.2.4  Effect of different ligands on oscillation frequency. 

 
At 500 nM, zolpidem elicited a significant decline in the frequency of the oscillation 

(Fig. 4.8A, 20.75 ± 0.83 Hz to 19.94 ± 0.75 Hz, P < 0.05, n = 7). There was a trend 

for the frequency to decline in the dose response experiments for the other BZD site 

ligands also, but perhaps most surprisingly, this was not the case for CL 218,872.  

However, because of the size of the frequency bins used for analysis, this could be 

due to an averaging effect. 

 

The work in this chapter shows that beta oscillations in M1 appear to be under 

GABAergic control, and can be modulated in one of two ways. BZD agonists at low 

concentrations desynchronise beta oscillations and this effect does not appear to be 

specific to one particular agonist as first thought. However, the desynchronising 

effect at agonist concentrations above 100nM does indeed appear to be specific to 

α1 subunit selective BZD site agonists.  
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Figure 4-7 Concentration-dependent effects of β-CCM and diazepam on beta power. Ai) Bar 
chart showing the decline in beta power in the presence of 0-500 nM β-CCM (30 nM 77.64 ± 12.54 % 
of BL, P > 0.05, 100 nM 61.66 ± 15.71 %, P < 0.01 and 500 nM 42.15 ± 14.20 %, P < 0.01, n = 6).  Aii) 
Representative power spectrum in the presence of 30-500 nM β-CCM (n=6), an inverse agonist at α1 
containing GABAARs. Bi) Bar chart showing the increase in beta oscillatory power in increasing 
concentrations of diazepam (30 mM 115.5 ± 11.97 %, 100 nM 116.7 ± 48.07 % and 500nM 121.3 ± 
48.55 of BL, P > 0.05, n = 6). Bii) Representative power spectrum showing the changes to beta power 
in the presence of increasing concentrations of diazepam.  
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4.2.5  M1-S1 interactions 

 
If there is a sensory component to motor control, then we might expect the properties 

of zolpidem on beta oscillations to also be evident in the primary somatosensory 

cortex (S1).  Sensory gating is known to be a problem in PD.  For example, a PD 

patient who is walking will suddenly be faced with rigidity and akinesia when coming 

to a doorway.  There is an obvious link between sensory and motor function and this 

is still to be explored in PD.  M1 and S1 have already been shown to display long 

range synchronous oscillatory activity (Murthy and Fetz, 1992, 1996).  Extracellular 

techniques were employed here to record oscillatory activity in S1 simultaneously 

with M1.  In a combined slice, the mean frequency of beta oscillations in M1 was 29.3 
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Figure 4-8 Dose-dependent effects of zolpidem, zopiclone, CL 218,872 and β -CCM on the 
frequency of β oscillations in M1. A) Bar chart showing the effect of increasing concentrations of 
zolpidem on frequency (n = 7). B) Bar chart showing the effect of increasing concentrations of 
zopiclone on frequency (n = 6). C) Bar chart showing the effect of increasing concentrations of CL 
218,872 on frequency (n = 6). D) Bar chart showing the effect of increasing concentrations of β -CCM 
on frequency (n = 6).  
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± 1.2 Hz, whilst the mean frequency of beta oscillations in S1 was 31.3 ± 0.81 Hz 

(Fig. 4.9A, P > 0.05, n = 6). Cross-correlation analysis showed a link between M1 

and S1 oscillatory activity with a positive correlation at beta frequency; the two 

signals co-varied at 31Hz (Fig. 4.9D).  An auto-correlation in M1 (Fig. 4.9D, black 

line) showed a time-scale similar to that of the cross-correlation. Using 10 nM 

zolpidem, as seen in earlier experiments, oscillatory activity was reduced in M1, with 

the same occurring in S1 (Fig. 4.9C, 10 nM zolpidem decreased the power to 30.01 ± 

7.2 % of BL and 13.37 ± 4.1 % respectively, P < 0.001, n = 4).  However, a time 

course analysis revealed that S1 activity started to desynchronise before M1 (Fig. 

4.9E). S1 began to desynchronise 25.0 ± 5.0 minutes after zolpidem application and 

M1 started to desynchronise 36.67 ± 3.33 minutes after zolpidem application (n = 4). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



113 
 

 
 

1 10 100
0

20

40

60

80
M1 control

M1 10nM zolpidem

S1 control

S1 10nM zolpidem

frequency (Hz)

p
o

w
e

r 
(

V
2
)

1 10 100
0

50

100

150

200

250
M1

S1

frequency (Hz)

p
o

w
e

r 
(

V
2
)

0 10 0 10
0

50

100
S1

M1

***
***

zolpidem (nM)


 p

o
w

e
r 

(%
)

0.02 0.04 0.06 0.08 0.10

-1.0

-0.5

0.0

0.5

1.0

1.5

time (s)c
ro

s
s
 -

 c
o

rr
e
la

ti
o

n
 c

o
e
ff

ic
ie

n
t

S1 M1
20

25

30

35

fr
e

q
u

e
n

c
y

 (
H

z
)

M1 S1
0

20

40

60

ti
m

e
 (
m

in
)

A) B)

Ci) Cii)

D) E)

 
 
Figure 4-9 M1 – S1 Interactions. A) Histogram showing the frequency of beta oscillations in M1 and 
S1 (M1 29.3 ± 1.2 Hz, S1 31.3 ± 0.81 Hz, P > 0.05, n = 6). B) Representative power spectrum 
showing beta oscillatory power in M1 and S1 of a conjoined sensorimotor slice. Ci) Histogram 
showing changes to beta oscillatory power after application of zolpidem (10 nM M1 30.01 ± 7.2 %, 
S1 13.37 ± 4.1 %, P < 0.001, n = 4) to a sensorimotor slice.  Cii) Representative power spectrum 
showing the effects of zolpidem (10 nM) on M1 and S1 in a sensorimotor slice. D) Cross–correlation 
showing the correlation between beta oscillations in a sensorimotor slice. M1/S1 (red) and M1/M1 
(black). E) Bar chart showing that S1 activity would start to desynchronise before that in M1 (S1 25.0 
± 5.0 mins, M1 36.67 ± 3.33 mins, P > 0.05, n = 4). 
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4.3 Discussion 

4.3.1  Changes in Power 

 
In the present study, the concentration–effect relationship of zolpidem, a non-BZD 

that acts at the α1 subunit of the GABAAR, on beta oscillations in M1 was studied in 

vitro.  Beta oscillations are characteristic of M1 and reflect GABA network activity 

(Yamawaki et al., 2008).  It has previously been shown that administration of 

zolpidem at sub–sedative doses (5 mg) reduces beta power and correlates with an 

improvement in motor function in PD and stroke patients (Brefel–Courbon et al., 

2007; Hall et al., 2010).  However, studies in vitro showed an increase in beta power 

at 100 nM (Yamawaki et al., 2008) in contrast to the in vivo data.  This study 

therefore looked at the cumulative dose response of zolpidem on M1 oscillations in 

vitro and the effect that the different concentrations had on said oscillations.  Here, it 

has been shown that sub-sedative doses of zolpidem do indeed dresynchronise beta 

oscillations.  However, this is also the case for non-α1 subunit specific BZDs, 

suggesting a dose specificity that is not limited to a particular ligand.   

 

It is widely acknowledged that BZD administration corresponds with an increase in 

beta power in the EEG (Baker and Baker, 2003; Van Lier et al., 2004).  Power and 

frequency in the EEG represent the activity of underlying Pyramidal neurones within 

the cortex.  In terms of motor activity, beta oscillations are associated with inactivity 

or a resting state; pre-movement, or anticipation (Cheyne et al., 2008), and sustained 

contraction (Baker et al., 1997).  In Parkinson’s disease (PD), increases in beta 

power are seen, and these are thought to inhibit movement resulting in the commonly 

seen symptoms; particularly bradykinesia and rigidity (Brown, 2007).  These 

increases in EEG beta power after BZD administration would tie in with the effects of 

zolpidem as a sedative and with the cessation of movement associated with 

sedation.   This is reflected in the 30 nM data that has been shown here.  A 

corresponding increase in beta power is associated with sedation and the normal 

function of the drug.  These sedative effects have been widely attributed to the α1 

subunit of the GABAAR (Crestani et al., 2000), of which zolpidem shows its highest 

affinity.  However, this does not explain the paradoxical effect seen at 10 nM 

zolpidem, where desynchronisation beta oscillatory power was observed.   
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Zolpidem shows selectivity for the α1 subunit, with its affinity in the nanomolar range 

(Crestani et al., 2000).  However, the increase in beta power seen after zolpidem 

administration is not necessarily α1 subunit mediated.  Lier et al., (2004) showed that 

diazepam and zolpidem increase beta activity in the EEG, as did Hall et al., (2009) 

using diazepam in MEG studies and this has previously been termed the “beta buzz” 

(Glaze et al., 1990).  Diazepam shows no subunit selectivity, with equal affinity at all 

subunits (Sieghart, 1994).  Work here with zopiclone, a non-subunit selective drug, 

showed the same increase in beta power at 30 nM as zolpidem, also showing that 

the increase in beta activity is not necessarily α1 subunit mediated.  Work in this 

study with L-838,417 (100 nM) also showed an increase in beta oscillatory power.  L-

838, 417 has equal affinity at all subunits but no efficacy at the α1-subunit i.e. it is a 

mixed α2/3 agonist and neutral α1-subunit antagonist at the GABAAR (McKernan et 

al., 2000).  As zolpidem also has efficacy at α2/3-subunits, albeit at higher 

concentrations, this could be where it is exerting its effects at 30nM and possibly at 

100nM as seen in previous experiments (Yamawaki et al., 2008) and this may 

explain the increased beta power observed.  Indeed, in studies in mice, where the α1 

subunit has been made BZD-insensitive due to an amino acid substitution in the BZD 

binding site, hyperlocomotion is seen with diazepam administration, suggesting that 

movement is α2/3 subunit mediated and α1-subunit mediated sedation masks 

locomotion driven by the α2/3 subunits (Rudolph et al., 1999, Reynolds et al., 2001).  

However, McKernan et al., (2000), using α1 subunit knock-out mice noted that 

diazepam administration did not decrease locomotor activity to the same extent as 

wildtype mice, suggesting that locomotor activity is subject to modulation by α1-

subunits. Further studies conducted using CL 218,872 were in agreement with the 

original zolpidem data.  CL 218,872 is thought to have an affinity for the α1-subunit 

that matches that of zolpidem (Seighart, 1995).  A decrease in beta synchronisation 

is noted with an increase in movement (Cheyne et al., 2008).  If locomotor activity is 

tied to the α1 subunit, then this would explain the data seen in the McKernan study 

and the results seen in this study with 10 nM zolpidem. 

 

How 10 nM zolpidem could out-compete 100 nM L-838,417 at the α1 subunit 

suggests an intriguing story as to how 10 nM zolpidem is exerting its effect. It could 

be as simple as that while L 838,417 is potentiating the effects of output neurones 

expressing the α2/3 subunits, zolpidem is affecting the output of a subset of 
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interneurones that preferentially express the α1 subunit. However, L-838,417 has 

been shown to be an antagonist at the α1 subunit (Mckernan et al., 2000) and it is 

unlikely that zolpidem could out-compete L 838,417 at the concentration ratio used 

above.  

 

It seems likely that populations of receptors could show distinct pharmacological 

profiles at different zolpidem concentrations as they do at different GABA 

concentrations (Semyanov et al., 2003).  The beta desynchronisation seen could in 

fact be due to different receptor localisations, i.e. synaptic or extrasynaptic, with 

distinct affinities for zolpidem.  GABAergic signalling can be either phasic or tonic, 

with phasic signalling being mediated by inhibitory postsynaptic potentials (IPSPs) at 

the synapse.  The second form of GABAergic signalling is mediated by receptor 

activity away from the synapse, and is known as tonic inhibition.  GABAARs involved 

in tonic signalling are thought to contain the δ subunit.  However, Semyanov et al., 

(2003) found a tonic current in interneurones that used the α1γ2 subunits and was 

shown to be modulated by zolpidem.  The work done here with 10 nM zolpidem may 

be increasing the tonic current, corresponding with a disruption to a class of 

interneurones and thus a decline in the overall power of the oscillations.  

Furthermore, distinct GABAARs are found synaptically and extrasynaptically (Nusser 

et al., 1998; Fritschy and Brünig, 2003) and α1 subunit containing GABAARs have 

been shown to be found extrasynaptically (Mohler, 2002, Semyanov et al., 2003).   

 

FS, or fast spiking cells, are a specific type of interneurone found in M1.  FS cells fire 

at the same frequency as the LFP (Yamawaki, 2008; thesis).  Due to this strong 

phase relationship, any disruption to the FS cell would significantly affect the LFP.  

The tonic current is an important determinant of interneuronal excitability and firing 

and may determine firing rates of the neurones presynaptic to the interneurone.  

Strong mutual inhibition is required to produce a stable oscillation (Whittington et al., 

1995; Pauluis et al., 1999).  Inhibition is required to be strong enough to override any 

excitation within the network and to therefore set each cycle of oscillations by a train 

of synchronous IPSCs (Pauluis et al., 1999).  It is possible that at 10 nM zolpidem 

disrupts mutual inhibition, rather than adding to it and therefore causes 

desynchronisation of the beta oscillations, and hence, it may be that the network in 
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the presence of 10 nM zolpidem is unable to sufficiently excite enough inhibitory 

interneurones to propagate synchronous IPSCs to the whole network.   

 

The higher concentrations of zolpidem (i.e. 30 nM and 100 nM), could be affecting 

IPSC kinetics and/or having the opposite effect to that of the tonic current, creating 

the apparent paradox seen in these results.  The GABA subunits are not only 

distinctly distributed by brain region, but also at the subcellular level (Fritschy and 

Mohler, 1995; Pirkir et al., 2000). Interneurone signalling properties are shaped by 

the type of GABAAR expressed either synaptically or extrasynaptically. For instance, 

the soma of a hippocampal Pyramidal cell is innervated by two types of interneurone.  

The FS cells form synapses containing α1 subunit containing GABAARs, which 

display fast kinetics of deactivation (Freund and Buzsaki 1996; Nyíri et al., 2001; 

Klausberger et al., 2002; Pawelzik et al., 2002), whereas the synapses of the RSNP 

cells contain α2 subunit containing GABAARs, which display slower kinetics than α1 

subunit containing receptors (Brussaard and Herbison, 2000; Hutcheon et al., 2000; 

Nyíri et al., 2001; Jüttner et al., 2001; Vicini et al., 2001).  Axon initial segments of 

Pyramidal cells also contain α2 subunit containing GABAARs, which appear to be 

responsible for simple on/off signalling (Rudolph and Mohler, 2004; Mohler, 2006). 

Activating α1 subunit containing GABAARs could depress GABA release and 

therefore prohibit oscillatory activity generated by the output neurones, whereas 

activating α2/3 subunit containing GABAARs will not depress GABA release, and 

therefore potentiate the oscillation.  Although zolpidem has its highest affinity at the 

α1-subunit, its ability to increase GABA evoked currents (i.e. its efficacy) was shown 

to be higher at α2  (Sanna et al., 2002; Brunello et al., 2009; Petroski et al., 2006) 

and α3  (Petroski et al., 2006) subunits. Thus, different interneurones operate with 

the appropriate GABAAR subtypes to regulate network behaviour.   

 

4.3.2  Changes in Frequency 

 
Previous work by Yamawaki et al., (2008) has equated oscillations in M1 to an 

interneurone network gamma (“ING”) like network.  Theoretical and experimental 

work showed rhythmic network activity that could be generated by reciprocally 

connected and mutually inhibiting GABAergic interneurones.  The generation of these 

oscillations is induced through excitation of metabotropic receptors (glutamate or 
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cholinergic/muscarinic acetylcholine) (Whittington et al., 1995; Traub et al., 1996 and 

1999; Yamawaki et al., 2008). Within this “ING” network, three factors are known to 

affect frequency of the oscillations; excitatory driving current, the GABAA decay time 

constant (TGABA(A)) and the amplitude of unitary hyperpolarising GABAAR mediated 

conductance (gGABA(A)).  Of these three, the latter two are attributed to decreases in 

frequency, showing an inverse, non–linear relationship and have been shown to be 

modulated by the BZD diazepam (Traub et al., 1996 and 1999; Fisahn et al., 1998).  

The work done in these experiments with various BZD site ligands have shown a 

trend to a decrease in the frequency of the oscillations with increasing concentrations 

of the drug, which appears to be independent of the changes in power observed.  

Zolpidem, in this situation, can be equated to the actions of diazepam in the Traub 

study, with particular emphasis on the changes in TGABA(A).  It is also likely that 

zolpidem will affect the conductance. 

   

Although “ING” was found to induce gamma oscillations in the Whittington and Traub 

studies, their definition of gamma was much broader, often including frequencies as 

low as 20 Hz, which encompasses the beta oscillations seen within M1.  Beta 

oscillations are thought to be preferred when excitatory drive is low, decay time is 

slow and conductance is high.  This fits with the beta model within M1 and further 

reduction in frequency when BZDs are added to the network.   

 

4.3.3  M1-S1 interactions 

 
Cross-correlation analysis performed on oscillatory activity in M1 and S1 in a 

sensorimotor slice revealed a cortical connection between the two areas, with no 

siginificant phase differences, indicating that M1 and S1 are in near synchrony with 

each other.  Given that the delay seen between the two brain areas is minimal, a 

near-zero phase lag relation could arise from reciprocal communication between the 

two areas or from the two areas being primed for communication by a third set of 

areas (Rajagovindan and Ding, 2008).  Connections between M1 and S1 are 

prominent, particularly between M1 and S1 vibrissal regions in rodent cortex (Izraeli 

and Porter, 1995; Welker et al., 1998; Hoffer et al., 2003; Chakrabarti and Alloway, 

2006; Ferezou et al., 2007) and connections are also evident via spread of oscillatory 

activity (Crotchet and Peterson, 2006; Murthy and Fetz, 1996). Electrophysiological 
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studies have also indicated that S1 modulates M1 (Kosar et al., 1985; Zarzecki, 

1989; Kaneko et al., 1994; Farkas et al., 1999; Kelly et al., 2001).  Functional 

connectivity between the two areas has also been confirmed at the cellular level. 

Intracortical microstimulation of S1 caused short-latency, monosynaptic EPSPs in the 

neurones located in the superficial layers of M1 (Kosar et al., 1985) and antidromic 

stimulation studies have shown connectivity between M1 and S1 (Kelly et al., 1999; 

Zarzeki et al., 1989).  Similar responses to pharmacological modulation by zolpidem 

represent two highly interconnected areas with a similar GABAAR subunit distribution, 

while the desynchronisation of S1 occurring first is most likely representative of 

activity in S1 collapsing and M1 following, suggesting that the S1 to M1 connections 

are either stronger than M1 to S1 or a reflection of the direction of connections that 

dominate.  The response of M1 to desynchronise following S1 could therefore be due 

to disrupted signalling between the two areas and not just due to termination of 

synchronous oscillations occurring independently of one another.  Learning of motor 

skills has been attributed to plasticity of synapses from projection neurones of S1 to 

neurones in the superficial layers of M1 (Kaneko et al., 1994) while inactivation of 

somatosensory cortex eliminates activity in M1 (Andersson, 1995). 

 

S1 has a similar topographical organisation to M1 (Huffman and Krubitzer, 2001), 

and although connections are reciprocal between the two areas (Veinante and 

Deschenes, 2003) connections from S1 to M1 appear to dominate (Izraeli and Porter, 

1995, Welker et al., 1998).  From the way sensory information is interpreted and 

transmitted to M1 (Ferezou et al., 2007), it appears logical that abolition of S1 activity 

would precede that of M1, and thus be the cause of abolition of M1 activity.  

 

4.4 Conclusion 

 
Beta desynchronisation is seen when movement is initiated and beta activity is then 

kept at low levels during motor tasks, where gamma activity predominates (Baker et 

al., 1997; Cheyne et al., 2008), this is known as event related desynchronisation, 

(ERD) and a rebound in beta power is seen when movement has stopped, known as 

post movement beta rebound (PMBR) (Cheyne et al., 2008).  In PD, the inability to 

desynchronise beta oscillations appears to be what causes the symptoms (Galvan 

and Wichman., 2008) and treatment with levodopa and deep brain stimulation 
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corresponds with a decrease in beta activity and a corresponding increase in gamma 

activity (Brown et al., 2001).  Treatment with zolpidem may be useful as a non-

invasive method of treating the pathological beta oscillations and helping to improve 

motor function.   
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Chapter 5  Uncovering a Tonic Inhibitory 
Current in Interneurones in Primary Motor 
Cortex 
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5.1 Introduction 

 

As discussed above, primary motor cortex (M1) in vitro exhibits ongoing neuronal 

network oscillatory activity in the beta (15-30 Hz) frequency range, as has also been 

shown in vivo at rest (Baker et al., 1997; Murthy and Fetz, 1996). The power of this 

oscillatory activity is dynamic, changes being coupled with the anticipation, initiation 

and termination of movement (Baker et al., 2007; Cheyne et al., 2008). Thus, 

excessive synchronisation and raised oscillatory power may underlie motor and 

cognitive deficits associated with the ‘oscillopathies’ which include stroke (Tecchio et 

al., 2006; Hall et al., 2010), Alzheimer’s disease (Poza et al., 2007), Parkinson’s 

disease (Brown, 2003; Kuhn et al., 2006) and schizophrenia (Canive et al., 1996; 

Ford et al., 2007). 

 

Using magneto-encephalographic techniques it has recently been shown that 

cognitive and motor deficits observed in stroke (Hall et al., 2010) and Parkinson’s 

disease (Hall et al., 2011) are associated with an increase in slow wave (4-12 Hz) 

and beta (~20 Hz) activity. Sub-sedative doses of the hypnotic drug zolpidem, which 

acts at the BZD binding site of GABAARs (Crestani et al., 2000; Cope et al., 2004) 

reduced oscillatory power, an action which correlated with improved clinical scores 

(Hall et al., 2010). However, in vitro studies in this report and previously (Yamawaki 

et al., 2008) have shown that zolpidem, at a concentration of 30 nM and 100 nM, 

increases beta power and at lower (10 nM) concentrations, reduces beta power. 

Here, data is presented to reconcile these contradictory observations and provide a 

mechanistic understanding of neuronal network desynchronisation in M1. 

 

As with gamma (30-80 Hz) frequency activity observed in hippocampus and other 

cortical regions (Whittington et al., 1995; Traub et al., 1996), beta oscillatory activity 

in M1 is generated as consequence of mutual inhibitory connectivity, where 

simultaneously activated fast spiking (FS) inhibitory interneurones are able to entrain 

each other to fire in a synchronous manner. In this way Pyramidal cell activity is 

sculpted by repetitive (phasic) inhibitory discharges, the frequency of which is directly 

dependent upon the kinetics of the inhibitory postsynaptic potentials (Whittington et 

al., 1995; Fisahn et al., 1998; Traub et al., 2000). Recently, evidence has emerged 



123 
 

that a sustained inhibitory membrane conductance (Itonic), arising from spillover of 

GABA and mediated by high affinity extrasynaptic GABAARs (Farrant and Nusser 

2005; Bright et al., 2007), plays a fundamental role in shaping network excitability 

(Semyanov et al., 2004; Mann and Mody 2010; Kochubey et al., 2011). Itonic has been 

extensively studied in the thalamus (Belelli et al., 2005; Cope et al., 2005, 2009; 

Bright et al., 2007), the granule cells of dentate gyrus (Nusser and Mody 2002) and 

cerebellum (Brickley et al., 1996; 2003). In these regions Itonic is maintained by the 

activity of GABA receptors containing the α4 or α6 subunit and the ∂ subunit. 

However, Itonic may also be mediated by receptors containing the α5 and ∂ or γ 

subunits (Clarkson et al., 2010, Glykys and Mody, 2006, Glykys et al., 2008) and, 

under some circumstances by α1 and γ2 subunits which renders Itonic BZD-sensitive 

(Semyanov et al., 2003; 2004, Yamada et al., 2007). As Itonic is present in 

interneurones but not Pyramidal cells under normal conditions (Semyanov et al., 

2003), any effect of BZD on Itonic in a single FS cell could have a profound effect on 

the synchronous activity in a large number of Pyramidal cells. Thus, the paradoxical 

actions of zolpidem observed may be explained through receptor subunit expression, 

subcellular location and differences in receptor affinity for GABA yielding 

concentration-dependent effects.  
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5.2 Results 

5.2.1  Inhibitory interneurone types in M1 as determined by 
electrophysiological characterisation. 

 

I set out to specifically determine the different types of inhibitory interneurone located 

in deep layers of M1.  Using whole–cell recordings in current clamp mode, I identified 

interneurones based on their non–Pyramidal shape and smaller size as compared to 

Pyramidal cells in deep (LV) M1.  Specific targets were small, round cells located 

next to or near to the soma of large putative Betz cells.  Current injections at 

hyperpolarising and depolarising levels were used to determine the spiking 

characteristics of putative inhibitory interneurones (Figure 5.1).  The most commonly 

encountered cell type was the low-threshold spiking cell (LTS) (n = 10), characterised 

by a rebound spike on hyperpolarising current injections (Figure 1c). Regular spiking 

non-Pyramidal cells (RSNP) were also encountered (n = 7) (Figure 5.1b) and fast 

spiking (FS) cells were encountered less frequently (n = 6) (Figure 5.1a).    All 

neurons sampled by whole-cell recording from the motor cortex had resting potentials 

more negative than -40 mV and overshooting spikes. 
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Figure 5-1 Neuronal subtypes located in deep (LV) M1. A) A fast spiking interneurone 
characterised by its short spike width, large AHP and high (>100Hz) firing frequency. B) A regular 
spiking non–Pyramidal cell, characterised by an adapting firing pattern at depolarising currents. Spike 
width is greater than that of FS cells and the AHP is much less pronounced. C) A low threshold spiking 
interneurone, most commonly identified by the rebound spike seen after hyperpolarising current 
injection. Adapting action potentials can also be seen at larger depolarising steps (not shown).  D) A 
Pyramidal cell charaterised by larger spike width and low amplitude AHP. Current injection protocol 
used to study the firing properties of inhibitory interneurones in deep (LV) M1 consisted of steps 
ranging from -0.4 nA to + 0.1 nA.  
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The most distinguishable feature of FS cells was their short-duration action potentials 

with AHPs that were much larger than the other classes of cells (see Table 5.1, 

further properties shown in appendices).  Another feature that was frequently 

encountered was their lower input resistances as compared to the other cell types. 

FS cells had spike widths at half amplitude shorter than 0.5 msec and input 

resistances that were relatively small, usually lower than 120 MΩ, and the resting 

membrane potentials of FS cells were more negative than those of LTS and RSNP 

cells. The discharge frequency of FS cells increased with stimulation intensity, but 

adaptation of firing was minimal or not seen at all. The maximum frequency 

measured for high intensities of depolarising currents ranged from 80 to 198 Hz.  

 

 

 
PC 

 
(n = 6) 

FS 
 

(n = 6) 

LTS 
 

(n = 10) 

RSNP 
 

(n = 7) 

Resting 
Potential (mV) 

 
-84.9 ± 1.95 -71.55 ± 2.85 -66.53 ± 2.97 -64.79 ± 2.58 

Input 
resistance 

(MΩ) 
 

107.3 ± 19.93 98.95 ± 5.97 145.7 ± 18.22 119.8 ± 5.93 

Spike width at 
half amplitude 

(msec) 
 

1.75 ± 0.19 0.76 ± 0.03 1.31 ± 0.16 1.13 ± 0.19 

Amplitude of 
AHP (mV) 

 
-8.59 ± 1.38 -17.35 ± 1.56 -11.62 ± 1.88 -11.07 ± 1.41 

Spike 
amplitude 

(mV) 
78.48 ± 2.79 91.96 ± 5.73 75.84 ± 2.75 92.50 ± 5.74 

 
Table 5.1 Properties of four types of motor cortical cells.   
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The other two classes of interneurones, LTS and RSNP, were distinguished from FS 

cells by longer duration action potentials, larger input resistances, less negative 

resting potentials and lower amplitude AHPs. Further, LTS interneurones were 

discriminated by the presence of one or more rebound spikes on the hyperpolarising 

current injection steps, although it has been reported that LTS cells are a type of 

RSNP cell (Cauli et al., 1997). In motor cortex, the largest proportion of interneurones 

encountered, which could not sustain high frequency repetitive discharges, were 

classified as RSNP cells. Spike width at half amplitude evoked by current injection in 

RSNP cells had a longer duration and a small AHP. RSNP and Pyramidal cells could 

be differentiated by the amplitude and duration of their action potentials. Action 

potentials emitted by Pyramidal cells were slower and had a smaller AHP than those 

of RSNP cells (Table 5.1). The most common defining feature that was used to 

distinguish interneurones from Pyramidal cells, was the size and shape of the soma, 

however, this was not used to categorise the cells.  

 

In LTS cells, application of a hyperpolarising current injection produced a 

depolarising rebound that triggered action potentials. This rebound or low-threshold 

spike (LTS) is thought to be mediated by low voltage-activated Ca2+ channels (Cauli 

et al., 1997). Trains of frequency-adapting action potentials can also be observed at 

depolarising current steps, making them a type of RSNP cell (Connors and Gutnick, 

1990; Kawaguchi, 1993, Cauli et al., 1997).  
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5.2.2  Oscillatory activity in LV M1 is dependent on GABA 
inhibitory mechanisms 

 

Several reports have indicated that GABAARs containing α1 and ϒ2 subunits are 

present on inhibitory interneurones, including FS cells involved in the generation of 

network oscillations in hippocampus (Thompson, 2000; Bartos et al., 2002; 

Klausberger et al., 2005) and neocortex (Bacci et al., 2003). Since the BZD binding 

site lies at the interface between these subunits (Crestani et al., 2000; Cope et al., 

2004), and GABAergic interneurones have been shown to be subject to cell-type 

specific GABA tone (Semyanov et al., 2003), I hypothesised that BZD site activation 

would act, via GABAergic interneurones, to modulate network oscillatory activity. I 

generated persistent beta oscillations (119.9 ± 16.53 μV2; modal peak frequency 27.8 

Hz; range 22-31 Hz; n = 128) in slices of rat primary motor cortex (M1) using KA (100 

nM) and CCh (5 μM). Since beta oscillations may (Roopun et al., 2006) or may not 

(Roopun et al., 2010) involve activation of local circuit GABA interneurones, I tested 

for involvement of GABAergic mechanisms using the GABAAR antagonist, gabazine. 

The beta oscillations were highly sensitive to gabazine, being reduced to 49.0 ± 8.24 

% of baseline in the presence of 250 nM gabazine and to 32.39 ± 4.64 % of baseline 

in the presence of 2 μM gabazine (n=10). Fig. 5.2Bi shows the effects of gabazine on 

beta activity in M1. 
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Figure 5-2 Beta oscillations in M1 are dependent on GABA inhibitory mechanisms. Ai) Bar chart 
detailing Mean frequency (30.14 ± 0.5 Hz) and mean power (119.9 16.53 μV2) of beta/gamma 
oscillations recorded in deep (LV) M1 (n = 128). Aii) Power spectrum showing a representative 
oscillation seen in M1. Bi) Bar chart showing the decline in beta power in response to increasing 
concentrations of gabazine, a GABAAR antagonist. Gabazine (250nM) caused a decline in oscillatory 
power to 49 ± 8.24% of baseline (BL) (p < 0.001, n = 10) and further decline in power at 2µM to 32.39 
± 4.64% of BL. (p < 0.001) Bii) Representative power spectrum showing the decline in betapower 
upon cumulaticve addition of gabazine at 250 nM and 2 μM. 
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5.2.3  Oscillatory activity in LV M1 can be modulated by 
benzodiazepine site ligands 

 
In order to investigate the role of the BZD site in modulation of beta oscillatory 

activity, I again generated beta activity and applied the imidazopyridine, zolpidem. In 

initial dose-ranging experiments, zolpidem application generated a bell-shaped dose-

response curve, with reduction of beta power at very low (10 nM) or high (>500 nM) 

concentrations (see chapter 4) and a clear augmentation of beta power at 30-100 

nM, consistent with our previous observations (Yamawaki et al., 2008). As Fig.5.3Ai 

shows, application of 30 nM zolpidem potentiated network oscillations (319.7 ± 

119.9%, n = 7). However, at 10 nM, zolpidem reliably decreased oscillatory power 

(60.15 ± 6.83%, n = 21). In order to rule out non-BZD site effects, I repeated these 

experiments in the presence of the BZD site antagonist, flumazenil. At 1 μM, 

flumazenil prevented the potentiation of oscillatory power previously observed with 

zolpidem at 30 nM (Fig. 5.3Cii), and also blocked the desynchronising effects of 

zolpidem at 10 nM, suggesting that zolpidem exerted both facilitatory and 

suppressive effects on beta power through the BZD binding site. Interestingly, 

application of flumazenil alone augmented beta power (276.7 ± 111.4% at 100 nM, 

292.1 ± 90.8% at 200 nM and 273.2 ± 90.02% at 500 nM from BL, n = 6, Fig.5.3Bi), 

suggesting a tonic suppressive effect of endogenous BZD activity on neuronal 

network oscillations.  
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Figure 5-3 Concentration-dependent modulation of beta oscillations in LV of deep M1 by 
zolpidem. Ai) Bar chart showing the decline in beta oscillatory power to 60.15 ± 6.83% (p < 0.001, n = 
21), induced by zolpidem (10 nM) and the increase in oscillatory power to 319.7 ± 119.9% of BL (P < 
0.001, n = 7) induced by zolpidem (30 nM). Aii) Representative oscillatory traces from a single 
experiment showing the concentration-dependent effect of zolpidem on beta oscillations in M1. Bi) Bar 
chart showing flumazenil (500 nM) block of both the suppressive and facilitatory effects of zolpdem (n 
= 6). Bii) Representative power spectrum showing the lack of effect of zolpidem (10 and 30 nM) in the 
presence of 500 nM flumazenil. Ci) Dose response effects of flumazenil, showing an increase in beta 
power ( P > 0.05, n = 6). Cii) Representative power spectrum showing the dose-dependent increase in 
beta power.  
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5.2.4  Low doses of zolpidem uncover a constitutively active tonic 
current in FS interneurones in LV M1 

 
The action of zolpidem in causing desynchronisation of beta activity at low dose (10 

nM) was of particular interest, since we have recently described a stroke patient in 

whom sub-sedative doses of zolpidem desynchronise a pathological theta/beta 

oscillation, restoring cognitive function (Hall et al., 2010) and similar actions may also 

be seen in Parkinson’s disease (Hall et al., 2011). Hence, I explored this effect 

further in the in vitro brain slice. It is clear that zolpidem might affect phasic and/or 

tonic inhibition (Nusser and Mody, 2002; Semyanov et al., 2003; Gao and Smith, 

2010) and so I investigated these aspects of GABAergic inhibition by recording 

directly from FS interneurones in deep layers of the motor cortex using whole-cell 

recording in current and voltage clamp. Betz cells in layer V of M1 were first identified 

by their characteristic size, orientation and morphology, and FS cells initially located 

through their own characteristic morphology and location. Fig. 5.4Ai shows a Betz 

cell with adjacent non-Pyramidal, presumably GABAergic interneurones. The 

stereotypical arrangement between Betz and GABAergic cells was readily 

observable in numerous experiments, and provided the basis for selection of cells 

from which to record. In current-clamp, FS cells showed relatively low input 

resistance (98.95 ± 5.97 MΩ) and a pronounced mAHP (-17.35 ± 1.56 mV) with no 

sAHP and upon depolarising current injection elicited non-adapting spikes at high 

frequency (Fig. 5.4Aii, n = 6). Following characterisation of FS cells, in a second 

series of experiments I applied zolpidem at 10 nM during recordings of spontaneous 

inhibitory postsynaptic currents made in voltage-clamp and using internal chloride 

loading to maximise currents through GABAARs. As zolpidem is active at α1 subunit 

containing GABAARs, which are located synaptically and extrasynaptically, I 

examined phasic responses as well as tonic responses to the drug.  As Fig.5.4.Bi & 

Bii show, application of 10 nM zolpidem had no effect on the distribution of inter-

event intervals (IEI) between sIPSCs (control IEI 221.9 ± 3.4 ms in control versus 

246.0 ± 2.9 ms in zolpidem; P > 0.05 Kolmogorov-Smirnov test, n = 6 recordings). 

Similarly, no significant effect on amplitude was found (control amplitude 58.00 ± 1.05 

pA in control versus 53.08 ± 1.1 pA in zolpidem; P > 0.05 Kolmogorov-Smirnov test, 

n=6 recordings).  
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Figure 5-4 Zolpidem (10nM) has no effect on phasic inhibitory activity in FS interneurones. Ai) 
Photo-micrograph showing recording electrode and putative FS cell close proximity to Betz cells in 
LV of M1.  Aii) Voltage traces of the FS cell identified in Ai), in response to -0.4 nA and + 0.1 nA 
current steps. Note the high frequency (>100 Hz) of short duration action potentials and large AHP. 
Aiii) Current (I) versus voltage (V) plot and calculated input resistance.  Bi) Cumulative probability 
plot showing change in the interevent interval (IEI) of sIPSCs with the addition of zolpidem (10 nM, 
mean IEI 221.9 ± 3.4 ms vs. 246.2 ± 2.9 ms, P > 0.05). Bii) Cumulative probability plot showing there 
was no siginificant difference to sIPSC amplitude with the addition of zolpidem (10 nM, mean 
amplitude 58.00 ± 1.05 pA vs. 53.08 ± 1.1 pA, P > 0.05). Ci) Representative traces from a single 
experiment showing sIPScs in control and Cii) zolpidem (10 nM).  
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Figure 5-5 Zolpidem (10nM) causes an increase in tonic inhibitory current in FS interneurones. 
A) Representative voltage clamp recording from a FS interneurone at a holding potential of -70mV (I = 
-57.4 pA). Inward deflections show numerous phasic sIPSCs. Addition of zolpidem (10 nM, at time 
point marked by black bar) induced an inward current (14.98 ± 3.4 pA), which stabilised after ~10 
minutes.  Subsequent addition of bicuculline (20µM) abolished both phasic IPSCs and zolpidem-
induced tonic current. However, the bicuculline-sensitive current is larger than the zolpidem-induced 
current, evidence for a constitutively active tonic current in FS interneurones. B) Bar chart showing 
change in holding current induced by zolpidem (mean amplitude of inward current 14.98 ± 3.4 pA, n = 
6, P < 0.001) and bicuculline (22.66 ± 3.55 pA, P < 0.001, n = 6). C) Addition of bicuculline alone (20 
μM) uncovered a constitutively active tonic current in FS interneurones. 
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Given that I could find no effect of 10 nM zolpidem on phasic inhibition impinging on 

GABAergic neurones in M1, I analysed the effects of zolpidem application on tonic 

inhibition. As Fig.5.5A shows application of 10 nM zolpidem generated a slow, inward 

current (mean amplitude 14.98 ± 3.4 pA, n = 6 recordings), suggesting augmentation 

of a tonic GABAAR mediated conductance. This was confirmed when I applied 

bicuculline (20 μM), which abolished both phasic and tonic components of inhibitory 

activity in FS cells (Fig. 5.5A & C). 

 

The effects of bicuculline on Itonic suggested that this form of inhibition was 

constitutively active in the sagittal M1 slice (Fig.5.5C). I investigated the effects of the 

BZD site antagonist flumazenil on both phasic and tonic inhibition in FS cells in deep 

M1. As Fig.5.6Bi & Bii show, flumazenil (500 nM) had no effect on phasic inhibition 

onto FS cells. In 6 recordings, control IEI was 416.5 ± 14.7 ms in control versus 

488.5 ± 19.6 ms in flumazenil (P > 0.05 Kolmogorov-Smirnov test). Similarly, sIPSC 

amplitude was 81.8 ± 1.4 pA under control conditions versus 80.01 ± 1.4 pA in 

flumazenil (P > 0.05 Kolmogorov-Smirnov test, n=6 recordings). When I investigated 

the effects of flumazenil alone (Fig. 5.7A), Itonic was decreased (mean change in 

holding current 31.3 ± 13.9 pA), suggesting that tonic inhibition is constitutively active 

in FS cells in deep M1.  
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Figure 5-6 Flumazenil (500nM) has no effect on phasic inhibitory activity in FS 
interneurones. Ai) Photo-micrograph showing recording electrode and putative FS interneurone 
in close proximity to Betz cells in LV of M1.  Aii) Voltage traces of the FS cell identified in Ai), in 
response to -0.4 nA and + 0.1 nA current steps. Aiii) Current (I) versus voltage (V) plot and 
calculated input resistance.  Bi) Cumulative probability plot showing there was no significant 
change to the frequency sIPSCs with the addition of flumazenil (500 nM, mean IEI 416.5 ± 14.7 
vs. 488.5 ± 19.6ms, P > 0.05). Bii) Cumulative probability plot showing there was no significant 
difference in sIPSC amplitude with the addition of flumazenil (500 nM, mean amplitude 81.8 ± 
1.4 vs. 80.01 ± 1.4 pA, P > 0.05). Ci) Representative traces from a single experiment showing 
sIPScs in control and Cii) flumazenil (500 nM).  

-65.4mV 

-0.3 -0.2 -0.1
-100

-90

-80

-70

-60

I

V

25mV 
50ms 

0 200 400 600 800
0.0

0.2

0.4

0.6

0.8

1.0

control

flumazenil 500nM

amplitude (pA)

c
u

m
u

la
ti

v
e
 p

ro
b

a
b

il
it

y

0 2000 4000 6000 8000
0.0

0.2

0.4

0.6

0.8

1.0

control

flumazenil 500nM

IEI

c
u

m
u

la
ti

v
e
 p

ro
b

a
b

il
it

y

50pA 

500ms 

Rin = 79.8mΩ 

control 

flumazenil (500nM) 

Bi) 

ii) 

ii) 

Ci) 

iii) Ai) 

ii) 



137 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 5-7 Flumazenil (500nM) causes a decrease in tonic inhibitory activity in FS 
interneurones. A) Representative voltage-clamp recording from an FS interneurone at a holding 
potential of – 70 mV (I = -119.11 pA). Addition of flumazenil (500 nM) induced a slow outward current. 
B)  Bar chart showing the change in holding current upon addition of flumazenil (500 nM, 22.3 ± 13.9 
pA, P < 0.05). 
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If the desynchronising effect of zolpidem on beta oscillations was mediated via the 

tonic current in FS cells, then I may expect zolpidem induced augmentation of Itonic to 

be blocked by flumazenil. When I applied zolpidem (10 nM) in the presence of 

flumazenil, no significant change in Itonic was seen (Fig. 5.8A), indicating that 

alterations in Itonic were indeed due to activation of the BZD site (Itonic amplitude 

101.3% of the value in flumazenil (n = 3, P > 0.05 Student’s t-test) and suggesting 

strongly that Itonic modulation underlies the effects of zolpidem on network 

oscillations. These data indicate that at 10 nM, zolpidem acts to desynchronise beta-

gamma rhythms in M1, via the BZD binding site of GABAARs containing the α1 

subunit. 

 

If zolpidem (10 nM) increases Itonic, then perhaps higher doses of zolpidem (30 nM) 

decrease Itonic and thus reconciling the paradoxical effect seen in the dose response 

experiments.  Addition of zolpidem (30 nM) induced a slow outward current in FS 

interneurones. No significant change to the IEI (440.9 ± 19.98 ms vs. 437.7 ± 21.27 

ms, n = 6, P > 0.05) and amplitude (62.76 ± 2.26 pA vs. 58.88 ± 1.65 pA, n = 6, P > 

0.05) of sIPSCs was observed. Itonic was significantly decreased (-47.7 pA, n = 6, P < 

0.05). 
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Figure 5-8 Flumazenil blocks the zolpidem-induced tonic current in FS interneurones. A) 
Representative voltage-clamp recording from an FS interneurone at a holding potential of –70 mV (I= -
187.9 pA). Addition of flumazenil (500 nM) induced a slow outward current as previously described. 
Addition of zolpidem (10 nM) 20 minutes later showed no change to the tonic current. Cumulative 
probability plots showing no significant change to the IEI Bi) and amplitude Bii) sIPSCs (IEI 326.4 ± 
13.79 ms vs. 386.8 ± 17.06 ms, amplitude 93.01 ± 2.25 pA vs. 95.47 ± 2.81 pA, P > 0.05). Ci) Bar 
chart showing no significant effect of zolpidem in the presence of flumazenil. 
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Figure 5-9 Zolpidem (30 nM) decreases tonic current in FS interneurones. A) Representative 
voltage-clamp recording from an FS interneurone at a holding potential of –70 mV (I= -251.2 pA). 
Addition of zolpidem (30 nM) induced a slow outward current. Cumulative probability plots showing 
no significant change to the IEI Bi) and amplitude Bii) sIPSCs (IEI 440.9 ± 19.98 ms vs. 437.7 ± 
21.27 ms, amplitude 62.76 ± 2.26 pA vs. 58.88 ± 1.65 pA, P > 0.05). Ci) Bar chart showing 
decrease in Itonic with addition of zolpidem (30 nM). 
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5.3 Discussion 

 

5.3.1  Overview 

 

I have shown in this chapter that a tonic inhibitory current (Itonic), is increased by 

activation of α1-subunit containing GABAARs by low doses of zolpidem, on putative 

FS interneurones, consistent with a decrease in oscillatory network activity in the 

primary motor cortex (M1) in vitro.  The primary motor cortex (M1) plays an important 

role in the execution of voluntary movement and is associated with neuronal 

oscillatory activity at beta (15-30 Hz) frequencies. Here I have shown that these beta 

oscillations reflect GABA network activity and can be modulated by BZD site ligands. 

Low doses of zolpidem have been shown to decrease oscillatory power, and through 

further investigation using whole-cell recordings, I have shown that this 

desynchronisation may occur via an increase in Itonic. Application of bicuculline and 

the BZD site partial agonist flumazenil blocks this increase in Itonic and also reveals a 

constitutively active tonic current in FS interneurones.  

 

5.3.2  Role of Inhibitory Interneurones 

 

In the neocortex, inhibitory GABAergic interneurones make up a small percentage 

(~25 %) of the entire neuronal population (Benardo and Wong, 1995), yet their 

activity is crucial for cortical function. Interneurones provide the cortical feedforward 

and feedback inhibition that is necessary to shape the several types of cortical 

oscillation that underlie various brain functions (McBain and Fishan, 2001).  The 

interneurone cell types in neocortex have been described many times (Kawaguchi 

and Kubota, 1997; Cauli et al., 1997), as well as those of the hippocampus 

(Klausberger et al., 2003, 2004, Freund and Buzsaki, 1996, Somogyi and 

Klausberger, 2005) and can be differentiated on the basis of their 

electrophysiological characteristics, expression of calcium-binding proteins, and 

neuropeptides, as well as axonal and dendritic arborisation morphologies 

(Kawaguchi and Kubota, 1993, 1997, 1998; Cauli et al., 1997; Gupta et al., 2000, 

Karagiannis et al., 2009).  Different classes of interneurones have been shown to 

form synaptic contacts on different domains of Pyramidal cells in both the neocortex 

(Deuchars and Thomson, 1995; Thomson et al., 1996; Tamas et al., 1997) and 
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hippocampus (Halasy et al., 1996; Miles et al., 1996; Klausberger et al., 2003, 2005), 

suggesting that each interneurone type has a distinct inhibitory role.  

 

Work here has identified three cell types that appear to be in agreement with these 

studies. RSNP cells were identified most regularly; indeed, RSNP cells appear to be 

the most widespread interneurone within the frontal cortex (Kawaguchi, 1995; Cauli 

et al., 1997). Low threshold spiking (LTS) cells were also regularly encountered, and 

it has been postulated that this cell type could in fact be a subgroup of RSNP cells 

(Cauli et al., 1997). Other cells types, such as the late spiking (LS) cell (Kawaguchi, 

1995; Brecht et al., 2004) and the irregular spiking (IS) cell (Cauli et al., 1997) were 

not encountered, but this may be due to the low sample group compared to other 

studies, which focused on the identification of cells. Morphological identification and 

synaptic targeting were not studied in these experiments.  

 

In sensorimotor cortex, FS cell terminals have been shown to preferentially target the 

perisomatic region of postsynaptic Pyramidal cells (Kawaguchi and Kubota, 1997; 

Cauli et al., 1997).  Perisomatic targeting interneurones are thought to be responsible 

for regulating the overall output of the Pyramidal cells (Freund and Katona, 2007), as 

they induce IPSPs with faster kinetics and greater amplitude than those induced by 

dendrite-targeting interneurones (Miles et al., 1996). Furthermore, perisomatic-

targeting interneurones were reported to have larger synaptic terminals more closely 

spaced around the soma and have the ability to generate simultaneous IPSPs at 

different postsynaptic cells in the absence of excitatory synaptic inputs (Miles, 1990; 

Freund and Katona, 2007), whilst dendritic targeting terminals were distant from the 

soma and often contacted different postsynaptic dendrites (Miles et al., 1996).  It has 

been suggested that FS, perisomatic-targeting cells are likely to be responsible for 

recruiting and pacing the activity of networks of neurones in deep M1 (Yamawaki et 

al., submitted). Indeed, rapidly decaying IPSCs, as are characteristic of FS cells, are 

thought to be crucial for network oscillation coherence and frequency control (Bartos 

et al., 2001, 2002). FS cells are characterised by a repetitive discharge of action 

potentials whose duration is significantly shorter compared to that of Pyramidal cells. 

The maximum “steady state” firing rate of a FS cell, as determined from the number 

of spikes at the highest current strength before depolarisation block, can reach 100 

Hz (Erisir et al., 1999; Tateno et al., 2004). Fast spiking behaviour can be achieved 
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because of the characteristic monophasic, short duration AHP. These cells 

preferentially form synaptic connections at perisomatic and proximal dendritic regions 

of neighbouring Pyramidal cells and are thought to exert powerful control over large 

assemblies of target cells (Cobb et al., 1995; Tamas et al., 1997) by precisely timed 

phasic synaptic inhibition.  FS cells also form electrically coupled pairs (Galarreta and 

Hestrin, 1999, Gibson et al., 1999).  A network of coupled FS interneurones, whose 

firing is synchronised by this electrical coupling, could co-ordinate activity across the 

cortex (Thomson, 2000, Traub et al., 2001) and over distance (Traub et al., 2001).  

FS cells are also known to preferentially express GABAAR α1 subunits over other 

interneurone types, such as the LTS cell (Bacci et al., 2003). 

 

The contribution of other interneurone types to network activity is relatively 

understudied compared to that of FS cells, however, it has been suggested that the 

large number of interneuronal subtypes in the cortex is due to their distinct roles in 

shaping network activity (Klausberger et al., 2003).  Klausberger et al., (2003, 2004) 

have shown that different types of interneurones in CA1 fired at different phases of 

the theta oscillation (4-8 Hz) and sharp wave ripples (120-200 Hz) in rats under 

urethane anaesthesia.  Indeed, recent evidence suggests that a balance of 

perisomatic and dendritic inhibition is essential in maintaining normal cortical 

rhythmogenesis (Cossart et al., 2001; Szabadics et al., 2001). 

 

5.3.3  Role of the GABAAR α - 1 subunit 

 

Sedative-hypnotic effects of BZDs in the brain are mediated through GABAAR, and 

all of the Z-drugs (i.e. zolpidem and zopiclone) are sedative-hypnotic in man through 

this mechanism.  Zolpidem was the first subtype-selective ligand to be used clinically, 

and when tested on recombinant receptors, zolpidem displayed a high potency at α1-

containing GABAARs (α1β2γ2, α1β3γ2: Ki=20 nM). Zolpidem had medium potency at 

α2 and α3 containing GABAARs (e.g. α121γ2, α3β1γ2: Ki=400 nM) and was 

ineffective at α5 subunit containing receptors (α5β3γ2, α5β2γ2: Ki 5000 nM) (Langer 

et al., 1992; Pritchett & Seeburg, 1990). In 2000, Crestani and colleagues showed 

unequivocally, using mutated α1 subunits, that zolpidem acted as a sedative 

exclusively through α1-subunit containing GABAARs. Direct functional effects of the 

α1-specific action of zolpidem have been described, for example Thomson et al., 
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(2000) have shown that IPSPs mediated by FS allocortical interneurones are greatly 

enhanced in comparison to those mediated by regular spiking (RS) basket cells. 

These data are confirmed and extended by recent observations that only specific 

subclasses of inhibitory interneurones make synapses that exhibit α2 subunits within 

their GABAARs (Nyiri et al., 2001). In addition to zolpidem action at α1 subunit 

containing GABAARs, it is now known that γ2 subunits are also critical for zolpidem 

activity (Cope et al., 2004) and this has been resolved down to the level of a single 

amino-acid point mutation (Cope et al., 2005). The effects of 10 nM zolpidem appear 

to be specific to FS cells. Spiking characteristics indicated that the interneurones 

targeted were indeed FS cells, whilst the α1 subunit has been shown to specifically 

mediate the effects of zolpidem on sIPSCs in FS cells (Bacci et al., 2003), but not 

LTS cells. However, the expression of the α1 subunit has been shown to be 

heterogenous in LTS cells, so an effect of zolpidem on a subgroup of LTS cells 

cannot be completely ruled out (Bacci et al., 2003, Thomson et al., 2000). 

 

FS cells were most commonly encountered in deep layer M1, in LVa where Betz cells 

are located, seemingly creating an FS cell – Betz cell pairing. However, this is not an 

exclusive arrangement and other interneurone subtypes were found in this layer and 

FS cells found in other layers. FS cells have been shown to specifically modulate 

oscillation at high frequencies (beta, gamma) (Gulyas et al., 2010), whereas the role 

of RSNP and LTS interneurones is less well understood, though they may play a role 

in lower frequency (alpha) oscillations (Gloveli et al., 2005; Vierling-Claassen et al., 

2010). This suggests that FS cells are modulating the output frequency of excitatory 

(Betz) cells in M1. 

 

5.3.4  Role of a tonic inhibitory current in putative fast spiking 
interneurones 

 

As early as 1997, Eghbali et al., postulated that the major effect of BZDs may not be 

on synaptic transmission but on tonic inhibition. The extracellular concentration of 

GABA in the central nervous system is much lower than at the synapse (Lerma et al., 

1986), but crucially it is also more stable and it has been proposed that this would 

produce a tonic background of extrasynaptic GABAAR activity that would oppose 

excitation.  
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Tonic inhibition is mediated by GABAARs localised outside the synapse with kinetics 

and pharmacological properties that make them distinct from synaptic receptors 

(Farrant and Nusser, 2005, Belelli et al., 2009). Extrasynaptic GABAARs are thought 

to most commonly consist of the ∂ and α5 subunits and, indeed, ∂ subunits are 

exclusively extrasynaptic, however, no GABAAR subunit has been found to have an 

exclusively synaptic location. One explanation for the presence of a tonic 

conductance is that GABA or another endogenous GABAAR agonist must be present 

in the extracellular space at a sufficiently high concentration to cause persistent 

GABAAR activation. 

 

Recently, CA1 and CA3 Pyramidal cells have shown a residual tonic current in the 

mice lacking the α5 subunit (Glykys and Mody, 2006; Glykys et al., 2008), suggesting 

that other subunits could mediate tonic inhibition in these neurones. This residual 

current may be mediated by GABAARs containing α and β subunits, as has been 

shown in cultured rat hippocampal neurones (Mortensen and Smart, 2006). It has 

also been shown in in vitro cultures and in vivo, that α1 subunits are located 

extrasynaptically in substantial quantities (Nusser et al., 1995; Brunig et al., 2002). 

Indeed, even the α1β2/3γ2 GABAAR, where zolpidem is known to exert its major 

effects, is highly enriched in synapses but more receptors overall are found outside 

than inside synaptic junctions (Nusser et al., 1995). This is notable as the γ2 subunit 

is known to be required for synaptic clustering (Farrant and Nusser, 2005).  

Diazepam can also modulate extrasynaptic currents, indicating the need for α and γ 

subunits (Eghbali et al., 1997; Linquist et al, 2003); however, this has always been 

attributed to α5 subunit containing GABAARs, which are known to be abundantly 

located extrasynaptically. 

 

Where previous experimental studies have shown an enhancement of oscillations by 

decreasing tonic inhibition, I have shown an increase in tonic inhibition produced by 

10 nM zolpidem on putative FS cells, which was not associated with changes in 

phasic inhibition. This increase in Itonic correlated well with the reduction in oscillatory 

activity seen in extracellular experiments, and thus providing evidence for the 

dampening role of tonic inhibition on network excitability. Tonic GABAAR activity is 

not generally seen in Pyramidal cells in acute brain slices from adult animals unless 
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GABA uptake or degradation are blocked (Stell et al., 2003; Stell and Mody, 2002), or 

GABA receptor affinity is increased (Wisden et al., 2002; Bieda and MacIver, 2004), 

but not in all cases (Bai et al., 2001; Yamada et al., 2007).  

 

Small but persistent increases in Cl- conductance can modulate synaptic efficacy and 

synaptic integration (Bai et al., 2001). Although the amplitude of the inhibitory tonic 

current is significantly less than synaptic currents, the persistence of the tonic current 

results in a substantial integrated charge transfer (Bai et al., 2001, Semyanov et al., 

2003). The desynchronising effect of zolpidem may also reflect the differential 

distribution of α1 subunit containing GABAAR between specific interneurone subtypes 

sub-serving oscillatory activity (Thomson et al., 2000). Partially blocking tonic 

GABAergic signaling results in increased excitability of interneurones and an 

enhancement of GABAergic drive to principal cells (Semyanov et al., 2003). 

Flumazenil blocked the changes to the tonic current induced by zolpidem, in 

agreement with Thomson et al., (2000); however, in contrast to this study flumazenil 

alone had no effect on phasic currents, which could be attributed to differences in 

concentration.  Flumazenil alone did, however, decrease the tonic current 

constitutively active in these interneurones and this could explain the increases in 

beta oscillatory power observed in extracellular field experiments. Zolpidem has also 

been shown previously to disrupt septo-hippocampal theta oscillations (Ujfalussy et 

al., 2007) and can affect a tonic inhibitory current in interneurones, but not Pyramidal 

cells in hippocampus (Semyanov et al., 2003). Flumazenil blocked the changes to 

the tonic current induced by zolpidem, in agreement with Thomson et al., (2000) and 

this could explain the block of desynchronisation observed in extracellular field 

experiments when applied with zolpidem.  However, in contrast to this study, 

flumazenil alone had no effect on phasic currents, which could be attributed to 

differences in concentration. Flumazenil did, however, increase beta oscillatory 

activity, which could be due to its agonist action at α4 subunit containing GABAARs 

(Whittemore et al, 1996) or its ability to decrease tonic currents, which as mentioned 

previously, can induce gamma oscillatory activity in hippocampus (Glykys et al., 

2008). 

 

The greatest increase in GABAAR activity by BZDs is shown to occur when low 

concentrations of GABA activate the receptors (Harris et al., 1995) and it has been 
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predicted that receptors mediating the tonic current would respond to BZDs 

differently from receptors activated during synaptic transmission (Bai et al., 2001), 

which could explain the differences of the dose response seen at varying 

concentrations of zolpidem.  Indeed, it has been shown that pharmacological 

modification of GABAARs is dependent upon the occupancy of the receptor by GABA 

(Bai et al., 2001) and the state of receptor activation, dissociation and desensitization 

(Mortensen et al., 2010).  

 

5.3.5  The effects of increasing tonic inhibition on beta oscillatory 
activity in LV M1 

 

Tonic inhibition has been postulated to have large effects on the firing and excitability 

of individual neurons (Farrant and Nusser, 2005) and it has been shown that in the 

CA3 region of the hippocampus from Gabra5/Gabrd _/_ KO mice displays 

spontaneous gamma oscillations in vitro, and that gamma oscillations can also be 

induced in slices from WT mice by low concentrations of L-605,788, an α5 

benzodiazepine site antagonist (Glykys et al., 2008).  However, a small residual tonic 

inhibition was detected in these KO mice, suggesting non - ∂ containing GABAARs 

do contribute to tonic inhibition. It is known that excitation of the hippocampal CA3, 

(by CCh and KA) leads to the generation of persistent gamma oscillations in mice 

and rats (Traub et al., 2004) and it has been shown here in M1, and previously in 

hippocampus (Glykys et al., 2008; Mann and Mody, 2010) and in modelling studies 

(Kochubey et al., 2011), that tonic inhibition can have an effect on oscillatory activity. 

Mann and Mody (2010) demonstrated that reducing tonic inhibition uncovers an 

NMDAR mediated excitation, whilst Kochubey et al., (2011) demonstrated that 

increasing tonic inhibition, in the presence of tonic excitation, causes network 

oscillations to become desynchronised and with further inhibition, network activity 

can cease altogether.  

 

 In most instances, under normal conditions, pharmacological blockade of tonic 

inhibition selectively enhances the excitability of interneurones, leading to an 

increase in the frequency of IPSCs in CA1 Pyramidal cells (Semyanov et al., 2003) 

and also increases power of gamma oscillations and spontaneously occurring 

oscillations (Glykys et al., 2008). It would thus appear logical that an increase in tonic 
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inhibition would disrupt oscillatory activity, as seen here.  A baseline level of tonic 

inhibition is observed in FS cells, as uncovered by bicuculline administration, 

suggesting that some tonic inhibition is required for normal physiological functioning, 

along with phasic inhibition, but alteration to this has effects on network activity.  At 

the other end of dose response experiments (see chapter 4), at doses of zolpidem 

above 30nM, a decrease in oscillatory power was seen.   

  

5.3.6 Conclusion 

 
Increasing concentrations of zolpidem have opposing effects on a tonic inhibitory 

current in FS interneurones in M1. Low doses of zolpidem (10 nM) increase Itonic and 

appearing to coincide with the desynchronisation of network activity at this 

concentration.  This concentration of zolpidem does not appear to have an affect on 

phasic sIPSCs, which are the most commonly considered variable when discussing 

oscillatory network activity. Work here has shown the possible importance of tonic 

inhibition on network activity in M1. However, due to the limitations of recording 

oscillatory activity in a submerged chamber, this has not been shown conclusively. 

However, it is good to speculate that increasing Itonic may disrupt oscillations via a 

shunting inhibition i.e. by affecting feedback from interneurones and Pyramidal cells 

within the network and thus the main output of the LFP. In addition, higher doses of 

zolpidem (30 nM) decrease tonic inhibition and at this concentration oscillatory 

activity is augmented. Perhaps this is due to an increased ability to recruit more 

neurones to the network without the dampening effects of a tonic inhibitory current. 
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Chapter 6  General Discussion and 
Further Work 
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Work for this thesis commenced with alterations to the dissection and preparation of 

acute brain slices.  Viability of neuronal networks in primary motor cortex (M1) was 

enhanced by the addition of neuroprotectants to the sucrose based aCSF (chapter 

3), providing acute brain slices that lasted longer and also of which a greater 

proportion showed oscillatory activity. Previous work in M1 has been hindered by low 

viability figures. Not only did this new aCSF enhance viability, it is also more 

biologically relevant (Hajos and Mody, 2009), incorporating endogenous 

neuromodulators that would normally be washed away during the preparatory 

method.   Keeping these neuromodulators at levels found in vivo might be expected 

to maintain neuronal signalling patterns that would be seen in the intact brain. 

Indeed, with this new aCSF solution, the concentrations of exitants (Kainic acid, KA 

and carbachol, CCh) required to evoke oscillatory activity was significantly reduced. 

Whether this solution would enhance viability in other brain regions would require 

further testing, however, experiments here suggest it is also relevant for work in 

primary somatosensory cortex (S1), as oscillatory activity was also more readily 

observed when dual recordings were conducted. 

 

What mechanisms underlie modulation of beta oscillatory activity by benzodiazepine 

site ligands in M1? To address this question I first investigated the effects of 

numerous ligands on extracellular field potentials.  Application of KA and CCh 

generated persistent synchronous beta frequency network activity in M1, consistent 

with in vivo observations (Murthy and Fetz, 1992). GABAAR modulation was also 

shown to be essential for oscillatory activity in M1 by application of gabazine and 

tiagabine. The significance of subtype specific GABAAR modulation soon became 

apparent (chapter 4). Recording of LFPs uncovered a paradoxical effect of zolpidem 

on beta oscillatory activity. Low doses of zolpidem (10 nM) desynchronised 

oscillatory activity, whereas higher doses (30 nM and 100 nM) augmented oscillatory 

activity. These effects were not specific to zolpidem either.  Although different dose 

response profiles were obtained for zolpidem and zopiclone, and indeed, the 

desynchronising effect of zolpidem at very high doses (500 nM) does appear to be α1 

specific, 10 nM of both drugs caused a desynchronisation of beta oscillatory activity. 

A dose response obtained for CL 218,872, an α1-subunit specific drug, confirmed 

these observations. If the desynchronising effects at low doses are not specific to 
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zolpidem, what is causing these effects? Uncovering a tonic current that increased in 

response to 10 nM zolpidem appears to provide the answer (chapter 5).  

 

Tonic inhibition has recently been shown to affect oscillatory activity in vitro (Glykys 

et al., 2008; Mann and Mody, 2010).  However, historically, tonic inhibition has been 

associated with the δ subunit of the GABAAR (Farrant and Nusser, 2005). The effect 

of zolpidem on tonic currents here and in previous studies (Semyanov et al., 2003; 

Song et al., 2011) suggests that the α1 and γ subunits must also have a role in 

controlling tonic inhibition. Indeed, for zolpidem to exert its effects the γ subunit is 

required (Cope et al., 2004), and this cannot be co-expressed with the δ subunit. As 

early as 1997, Eghbali et al., postulated that the major effect of benzodiazepines may 

not be on synaptic transmission but on tonic inhibition and this does appear to be the 

mechanism, at least in M1, by which zolpidem desynchronises oscillatory activity.  

However, the role of phasic inhibition cannot be ruled out. It is well known that the 

frequency of oscillations within a mutually inhibiting interneurone network is 

dependent on three factors; the excitatory driving current to the network, the GABAA 

decay time constant (TGABA(A)) and the amplitude of unitary hyperpolarising GABAAR 

mediated conductance (gGABA(A)) (Traub et al., 1996; Jeffreys et al., 1996; Traub et 

al., 1999) and beta oscillations in M1 have been likened to an ING type mechanism 

(Yamawaki et al., 2008).  The persistence of these oscillations, sometimes seen for 

hours, also makes them mechanistically similar the persistant gamma oscillations 

described by Fisahn et al., (1998).  Here it appears likely that the increase in 

amplitude of oscillatory activity with high concentrations of zolpidem (30 nM and 100 

nM) is due to its action on phasic inhibition.  

 

The results presented in chapters 4 and 5 indicate how modulation of oscillatory 

activity in M1 by zolpidem may alleviate the symptoms of PD and other 

“oscillopathies”.   Desynchronisation of pathologically enhanced beta oscillations, as 

seen in stroke (Hall et al., 2010) has recently been shown in vivo to be correlated 

with an improvement in cognitive and motor functions.  However, in contrast to the in 

vitro experiments here, low doses of zopiclone did not result in desynchronisation of 

these oscillations. This could perhaps be due to discrepancies in drug concentrations 

or there could be further network mechanisms that are yet to be uncovered. Further 
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studies with zopiclone should be considered, particularly to see if its effect at low 

concentrations is also mediated by tonic inhibition.  

 

To mimic the pathologically enhanced beta oscillations PD more closely, recordings 

obtained from dopamine-depleted animals in vitro and in vivo should be considered. 

The beta oscillations observed here in control animals may be mechanistically 

different from pathological beta oscillations seen in PD.  

 

The tonic inhibition constitutively active in FS interneurones could also indicate how 

network activity is controlled. FS cells appear to fire in time with the network 

oscillation, while IPSCs are also occurring in these cells at a similar frequency. Their 

control is vital for a functioning network (McBain and Fisahn, 2001). Disruption of FS 

intereurones specifically via an enhancement of tonic inhibition could override, or 

shunt any excitatory input to the cell from Pyramidal cells during the oscillation thus 

disrupting the output of the FS cell.  In a wider context this could indicate how 

oscillatory frequencies shift in M1 from beta to gamma and allow motor function 

(Brown et al., 2001). Indeed, Mann and Mody (2010), have shown that altering the 

tonic current in hippocampus, alters the frequency of oscillations. In δ subunit 

knockout mice, the firing frequency of interneurones was increased. The abolition of 

a tonic current enhanced the interneuronal sensitivity to NMDAR mediated excitation, 

and thus resulting in the increased frequency observed. Altering the tonic inhibition 

does not necessarily cause any changes to phasic activity (Glykys and Mody, 2006) 

that is also seen in the results shown here. FS cells are also known to be potently 

self-inhibitory and can use autaptic transmission to desynchronise networks 

(Manseau et al., 2010). FS interneurones have been shown to filter network activity 

by switching between two modes of GABA release at their autaptic and synaptic 

nerve terminals, allowing them to break synchrony when necessary (ie to prevent 

epileptic discharges). This cannot be ruled out as a mechanism and should be 

considered with the results of tonic inhibitory activity in FS interneurones seen here.  

 

Anatomical studies indicate that sensory input to motor cortex originates from 

somatosensory cortex and thalamus (Miyachi et al., 2005).  Results here, in a 

sensorimotor slice (Rocco et al., 2007), indicate that zolpidem can also 

desynchronise activity in S1, and also, that this desynchronisation precedes that of 
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M1.  Does this mean that reciprocal activity been M1 and S1 results in coupled 

desynchronising abilities? Is this desynchronisation always coupled? Further work 

using disconnected areas may be appropriate, but studies using a stimulation 

paradigm may provide results as to whether S1 is causing the desynchronisation 

seen in M1. It seems unlikely, however, that the two cortices are always coupled.  
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A1.1 Introduction 

 
Prior to the discovery of kainate receptor (KAR), fast neurotransmission was thought 

to be mediated via NMDA, AMPA and GABAARs, however, KARs are found 

throughout the brain and KAR-mediated synaptic responses have been shown in 

interneurones (Cossart et al., 1998, Frerking et al., 1998, Semyanov and Kullman, 

2001, Fisahn et al,. 2004, Fisahn, 2005).  Network pathways terminate on 

glutamatergic pyramdidal cells and local inhibitory GABAergic interneurones.  

Excitatory and inhibitory responses are elicited in Pyramidal cells by activation of 

these pathways.  The output of these Pyramidal cells is controlled by the interaction 

between excitatory and inhibitory synaptic inputs, both to the Pyramidal cells and to 

the local interneurones.  KAR mediated responses have been found to be vital for 

oscillation generation in various cortical areas (Fisahn et al., 1998; Buhl et al., 1998; 

Cunningham et al., 2003; Yamawaki et al., 2008) but their powerful effects on 

network activity mean they are also implicated in epileptiform activity (Ben-Ari, 1985; 

Ben - Ari and Cossart, 2000; Fisahn et al., 2004; Fisahn, 2005). 

 

The kainate receptor (KAR) family consists of five glutamate receptor subunits; 

GluR5, GluR6, GluR7 (also known as GluK1-3), which can form homomeric 

functional channels (Hollmann and Heinemann, 1994; Pinheiro and Mulle 2006), and 

KA1 and KA2 (also known as GluK4 and 5), which can combine with GluR5-7 to 

create a heteromeric very high affinity receptor (Chittajallu et al., 1999).  KAR are 

tetrameric structures, which span the lipid bilayer, forming three transmembrane 

domains, an extracellular N-terminal, a P–loop that forms part of the pore and an 

intracellular C–terminal.  GluR5 and GluR6 form the ligand-binding domain.  KARs 

have a variety of expression levels dependent upon brain region, which consist of 

different subunits with distinct pharmacological and electrophysiological properties.  

KARs are permeable to cations and show rapid activation and densensitisation 

properties.   

 

Activation of KARs with submicromolar concentrations of KA increases excitability of 

neurons and enhances release of glutamate or GABA. It has been shown that at 

inhibitory synapses KA depolarises interneurones leading to continuous neuronal 

firing, and thus increasing the frequency of spontaneous (s)IPSCs on Pyramidal 
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neurons (Cossart et al., 1998; Frerking et al., 1998) and frequency and amplitude on 

interneurones (Semyanov and Kullman, 2001). Cossart et al., (2001) have also 

shown a significant increase in AP-independent miniature (m)IPSC frequency by KA, 

indicating a direct pre-synaptic effect.  

 

At excitatory synapses, nanomolar concentrations of KA increased both sEPSC and 

mEPSC frequency in Pyramidal cells (Campbell et al., 2007). Campbell et al., (2007) 

attributed a role for presynaptic KARs in layer 2/3 Pyramidal cells as facilitators of 

glutamate release and modulators of synaptic transmission. These effects appear to 

involve GluR5 subunit-containing receptors. Postsynaptic KAR mediated EPSCs also 

appear to contribute to synaptic activation of Pyramidal cells and thus providing 

multiple roles for KARs in synaptic transmission in neocortex.  However, the 

contribution of KAR-mediated currents to evoked (e) EPSC amplitude was found to 

be negligible in layer 5 Pyramidal cells of M1 (Ali, 2003). The pharmacological 

blockade of glutamate uptake required to observe a KA-mediated current in M1 

suggested an extrasynaptic or perisynaptic location of KARs on Pyramidal cells but 

not FS interneurones. 

 

Acetylcholine (ACh) has many cognitive functions, including the cortical modulation 

of sensory information (Lucas-Meunier et al., 2003).  Muscarinic acetylcholine 

receptors (mAChRs) are found as two subtypes; M1 like, consisting of the subunits 

M1, 3 and 5, and M2 like, consisting of the subunits M2 and M4 (Caulfield and 

Birdsall., 1998).  Muscarinic agonists have been shown to facilitate EPSPs and 

enhance the post-synaptic response to NMDA (Markram and Segal, 1990). 

Carbachol (CCh) acts primarily via M1 like mAChRs, which cause a membrane 

depolarization in the postsynaptic cell by inhibiting K+ conductances; namely the 

rectifying outward current Im (McCormick and Prince, 1986), the slow post–

hyperpolarisation inducing IAHP (McCormick and Prince, 1986), the voltage dependent 

K+ current IK and the leakage current Ileak (Zhang et al., 1992), and an increase in 

non-specific cation currents; an increase in Icat (Ca2+ - dependent non-specific cation 

current) and Ih (the hyperpolarisation activated current) in Pyramidal cells (Fisahn et 

al., 2002), both, of which, have been shown vital for oscillation generation (Traub et 

al., 2000; Fisahn et al., 2002).  The mAchR M1 has been found to be important for 

oscillation generation in the hippocampus (Fisahn et al., 2002).  Addition of CCh, a 
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mAChR agonist, increases glutatmate release, first in GABAergic interneurones, via 

a fast hyperpolarisation, then in Pyramidal cells, via a slow depolarisation (Lucas–

Meunier et al., 2003).  

 

In order to induce network oscillations in M1, CCh was co-applied with KA.  The need 

for both KA and CCh to induce robust oscillatory activity could reflect a reduction in 

neuronal network excitability in the in vitro slice preparation as compared to in vivo.  

In contrast to a number of other brain regions, including the hippocampus (Fisahn et 

al., 1998), entorhinal cortex (Cunningham et al., 2003), and somatosensory cortex 

(Roopun et al., 2006), the application of KA or CCh alone does not generate 

oscillatory activity in M1 (Yamawaki et al., 2008). It is possible that the structural and 

functional resilience, or indeed the survival, of Pyramidal cells and interneurones in 

M1 during the acute brain slice preparation may be less compared to other cortical 

areas. However, Buhl et al., (1998) noted that somatosensory cortex required a 

similar need for KA and CCh in generating persistent gamma oscillations.  In a 

previous chapter (Chapter 3 – viability), it was noted that after changes to the 

solutions and rats, the amount of KA and CCh required to induce oscillatory activity 

had to be reduced significantly, due to the increased occurrence of epileptiform like 

events in M1 (and sometimes S1). The final concentrations required in the new 

preparation were 100 nM KA and 5μM CCh.  KA concentrations could be used up to 

150 nM, as required, but the best network activity was acquired when CCh 

concentrations were retained at 5 μM.  These are just a quarter and a tenth, 

respectively, of the original concentrations required to elicit oscillatory activity in 

these and previous studies (Buhl et al., 1998; Yamawaki et al., 2008).  Here, I 

present data and analysis of the epileptiform activity induced by the higher 

concentrations of KA and CCh in M1.   
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A1.2 Results 

 

Epileptiform events began to occur in M1 after the aCSF was modified (for further 

details see chapter 3). In short, slice viability was low in older preparations and in 

order to increase the number of slices that produced oscillatory activity, 

neuroprotectants were added to sucrose based aCSF. After these changes were 

made, a period of experiments was conducted using the original concentrations of 

KA and CCh: 400 nM and 50 µM respectively. Epileptiform events occurred regularly 

until changes were made.  The concentrations of KA and CCh, originally required to 

evoke oscillatory activity, now appeared to be causing these epileptiform events.  In 

order to use produce viable slices with no epileptiform events, concentrations of KA 

and CCh were reduced to 100 nM and 5 µM.  Epileptiform events were not evident in 

older preparations, possibly due to the fact that the interneuronal population was not 

surviving.  

 

A1.2.1 Characteristics of Epileptiform events 

 

The most common characteristic of the events observed was a large burst followed 

by an inward deflection of the baseline potential (Fig. 1A&B).  However, these bursts 

were regularly preceded by a train of single spikes and then a quiescent period 

before the burst itself.  Events were relatively short (Fig. 3A, mean 6.5 s, median 6.0 

s, range 2–16s, n = 41) and rarely occurred more than once in a recording.  This is 

likely due to the fact that after such an event, any preceding activity in the acute brain 

slice, whether it was oscillatory or not, was abolished.  The bursts themselves were 

approximately ten times the amplitude of the existing baseline activity.  In 2 out of 43 

events, activity was not one single burst event but reoccurring bursts throughout the 

whole recording (Fig. 2A & B).  One recording consisted of evenly spaced bursts for 

over two hours (Fig. 2A) whilst another consisted of a larger burst followed by a 

series of shorter bursts (Fig. 2B).  During these situations, inter-burst activity was 

particularly silent and the epileptiform events were of similar amplitude to baseline 

activity.        
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Figure A1.0-1. Epileptiform events in M1. Typical epileptiform events encountered in M1 after 
changing solutions, but not adjusting KA and CCh concentrations. Note the burst followed by an 
inward deflection of the baseline. 
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 The frequency of the epileptiform events occurring in M1 generally consisted of high 

gamma (Fig. 3C; 70-100 Hz) with smaller peaks seen at very high frequency ranges.  

Perhaps due to online low pass filtering, no peaks were detected over 400 Hz. Peaks 

were extremely powerful in comparison to normal oscillatory events, reaching nearly 

15 mV2 (Fig. 3C), and no activity was detected in the beta/low gamma frequency 

ranges.  No two events were the same, even though similar in appearance.  Within 

the same event a variety of peaks was encountered. 
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Figure A1.0-2. Other forms of epileptiform activity encountered in M1. Whilst most 
epileptiform events resembled a burst, followed by an inward deflection of the baseline, bursting 
events were encountered twice. A) Shows one type of bursting event that was encountered 
throughout the whole recording, while B) shows bursting events after one large preceding burst. 



202 
 

length of event
0

5

10

15

20

ti
m

e
 (

s
)

time to onset of second event
0

50

100

150

ti
m

e
 (

s
)

0 100 200 300 400
0

5000

10000

15000

frequency (Hz)

p
o

w
e

r 
(

V
2
)

 

Figure A1.0-3. Epileptiform events in sensorimotor slices.  (A) Length of the epileptiform 
events observed in M1. (B) Time to onset of second event when conducting dual recordings in M1 
and S1. (C) Power spectrum showing the variety and high frequency of the epileptiform events in 
four different slices. Notice the variety of peaks and the differences from slice to slice. 
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A1.2.2 M1 – S1 Dual Recordings 

 

When activity in one acute brain slice was recorded from both M1 and S1, 

epileptiform events were found to occur in both areas, with S1 events consistently 

leading that of M1 (Fig. 4).  In 7 out of 10 recordings S1 would show an epileptiform 

event 34.9 seconds on average before M1 (Fig. 3B; mean 34.9 s, median 25.5 s, 

range 8–132 s).  As stated previously, events were relatively short and rarely 

occurred more than once in a recording.  There were no significant differences 

between the events seen in M1 and S1 (Fig. 4).  This is likely due to the fact that 

after such an event, any preceding activity in the acute brain slice, whether it was 

oscillatory or not, was abolished.    

 

 

 

 
 
Figure A1.0-4.  Epileptiform events in S1 followed by M1. (A) S1 and (B) M1 dual recordings show 
an epileptiform event in S1 followed by M1 ~20s later.   
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A1.3 Discussion 

 

Here, it has been shown that in sensorimotor slices with increased interneurone and 

Pyramidal cell viability, concentrations of KA and CCh required in the past to elicit 

oscillatory activity now caused epileptiform discharges. It is well known that sub-

micromolar concentrations of KA generate epileptiform activity in slice preparations in 

CA3.  Pyramidal cells in CA3 have many high affinity binding sites for KA (Monaghan 

and Cotman, 1982; Bureau et al., 1999) and it has been shown that 100-500 nM KA 

causes a powerful postsynaptic depolarisation and readily generates spontaneous 

action potential discharges and bursts (Vincent and Mulle, 2008). A dense network of 

recurrent glutamatergic collaterals means that Pyramidal cell firing is able to generate 

synchronous activity that can propagate (Wong et al., 1984; Miles and Wong, 1987).  

Regulation of inhibition appears to play a strong part in KA induced epileptiform 

activity, whilst balance of excitation and inhibition has been attributed to KARs (Ali et 

al., 2001).  Also, oscillation generation relies on intact inhibitory neurotransmission 

(Fisahn et al., 2005; Traub et al., 2000).    

 

KA decreases evoked IPSCs and in parallel markedly increases sIPSCS through 

somatodendritic KARs in interneurones (Ali et al., 2001). The GluR6 subunit appears 

to be required for KA induced epileptiform activity and gamma oscillation generation 

(Fisahn, 2005).  Receptor knock out (KO) studies in mice have revealed the 

differential function of GluR5 and GluR6. GluR6 appears to be vital for normal 

oscillation generation (Fisahn et al., 2004); while a GluR6 deficient mouse will have 

less susceptibility to seizures (Ben–Ari and Cossart 2000; Khalilov et al., 2002; 

Fisahn et al., 2004).  A GluR5 KO mouse requires less KA for a comparable 

oscillation to that seen in a wild type mouse and a further increase in concentration 

induces epileptiform discharges (Fisahn et al., 2004). GluR6 has also been 

postulated to preferentially be found on Pyramidal cells, whilst GluR5 is thought to be 

specific to interneurones (Cossart et al., 1998; Ali et al., 2001).  It therefore appears 

likely that GluR6 is involved in mediating KA induced excitation, whilst GluR5 is 

involved in setting the level of inhibition within a network.  Indeed, Cossart et al., 

(1998) have shown that GluR6 containing synapses on Pyramidal cells mediate 

epileptogenic effects, whilst activation of GluR5 containing KAR on interneurones 
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enhances tonic inhibition, thus providing a regulatory mechanism to prevent 

epileptogensis.  GluR5 has also been shown to promote spontaneous GABA release 

from interneurons (Semyanov and Kullman, 2001; Fisahn et al., 2004).   

 

Frerking et al., (1998) have associated the generation of epilepsy to an excitotoxic 

loss of interneurones due to their high affinity expression of KARs.  The balance of 

inhibition and excitation would be disrupted causing disinhibition of Pyramidal cells.  

This would be caused by the loss of tonic inhibition produced by GluR5 containing 

KAR on interneurons that are thought to prevent epileptogenesis (Cossart et al., 

1998).  Buhl et al., (1998) have also shown that a decrease in oscillatory power 

caused by bicucculline, resulted in epileptiform activity, further showing the need for 

an inhibitory input to provide stable network activity.  In this study, an increase in the 

viability of slices, along with, relatively, high concentrations of KA and CCh, induce 

epileptiform activity in M1 and S1.  This could be attributed to over-excitation, or 

indeed, excitotoxicity, due to an imbalance of excitation and inhibition.  When the 

concentrations were reduced significantly, normal network activity resumed.  The 

increase in susceptibility to seizures in the new preparatory method could indicate a 

greater involvement of KARs located on Pyramidal cells, and thus increased 

excitation (Fisahn et al., 2004), but without further studies into the mechanisms of 

this epileptiform activity, for example, the contribution of interneurone and Pyramidal 

cell generated I/EPSCs, it is impossible to know the full extent of the mechanism.    

 

The activity of CCh cannot be disregarded in terms of epileptiform activity generation.  

Pilocarpine, a non-selective muscarinic receptor agonist, injection is widely used as a 

model for temporal lobe epilepsy (Cavalheiro, 1995) and its effects are thought to be 

mediated through M1 mAChRs. CCh application to hippocampal and other 

neocortical acute brain slices also induces epileptiform events (Dickson and Alonso, 

1997; Williams and Kauer, 1997; Gloveli et al., 1999).  Higher concentrations of CCh 

seem to preferentially produce epileptiform events (Gloveli et al., 1999, Alonso and 

Dickson, 1997).  In previous experiments, 50 µM CCh was required to induce 

oscillatory activity (Buhl et al., 1998; Fisahn et al., 1998; Yamawaki et al., 2008) 

along with the dual application of 400nM KA (Buhl et al., 1999, Yamawaki et al., 

2008) and this was also the case here. However, when viability of the slices was 

increased the requirement of CCh dropped to a tenth of what was previously required 
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(from 50 to 5 µM).  Indeed, it appeared that the induction of epileptiform activity was 

more sensitive to increased CCh concentrations than increased KA concentrations. 

KA could be increased to 150 nM (from the new concentration of 100 nM) as and 

when required, but any alteration to CCh concentrations would swiftly cause an 

epileptiorm event. During GABAAR blockade, epileptiform discharges increase with 

exogenous (25 µM CCh) and endogenous (eserine) acetylcholine agonists 

(Psarropoulou et al., 1998; Gruslin et al., 1999). Perhaps disinhibition, caused by KA, 

followed by an increase in excitability, caused by CCh, elicits the epileptiform 

discharges seen in M1.   

 

A1.3.2 Conclusion 

 

Changes to the preparation of sensorimotor slices have improved slice viability, as 

evidenced by the increase in occurrence of oscillatory activity and the survival of the 

interneuronal network and Pyramidal cell-interneurone pairing (chapter 3). This 

increase in viability has improved network activity within the motor cortex, but this 

has also increased its susceptibility when high doses of KA and CCh are used to 

evoke this oscillatory activity.  The fact that low doses of these excitatory agents, 

even lower than those used to evoke network activity in hippocampus (Fisahn et al., 

1999) and entorhinal cortex; (Morgan et al., 2008) is evidence of this improved 

viability, although neither one alone can generate network activity suggesting a 

functionally distinct network to that seen in hippocampus.   
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Appendix 2. Fast spiking (FS) interneurons as found in deep (L5) M1. Putative FS cells as 
recorded in L5 M1 (n = 6). Traces show current injection at -0.4 nA and +0.1 nA. Input resistance of 
putative FS cells as calculated from hyperpolarising current steps (-0.4 nA to 0 nA).  
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Table A2.1 Properties of fast spiking interneurones located in the deep (LV) 
M1 in vitro. 
AHP = After hyperpolarisation. Rin = Input Resistance. 

Amp  
(mV) 

Rise 
(ms) 

Decay 
(ms) 

Area 
(mVms) 

Spike 
Thresh-

old 
Rise  
10-90 

Half-
width 

AHP 
(mV) 

BL 
(mV) Rin 

102.3 4.1 0.6 116.9 -57.1 2.1 0.7 -17.7 -82.3 93.5 

90.9 2.3 0.6 79.4 -53.3 0.8 0.7 -22.2 -69.2 109.2 

86.5 2.2 0.6 84.0 -48.4 1.2 0.8 -21.4 -71.0 110.5 

97.5 3.7 0.6 113.9 -36.4 2.5 0.7 -15.0 -62.1 88.3 

67.6 2.5 0.7 68.9 -56.2 0.8 0.9 -15.2 -68.2 114.5 

106.9 5.8 0.6 173.5 -41.8 4.4 0.7 -12.6 -76.3 77.7 

91.95 3.42 0.59 106.11 -48.86 1.97 0.75 -17.4 -71.55 98.95 
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Appendix 3. Regular spiking non-Pyramidal (RSNP) interneurons as found in deep (L5) M1. 
Putative RSNP cells as recorded in L5 M1 (n = 7). Traces show current injection at -0.4 nA and +0.1 
nA. Input resistance of putative RSNP cells as calculated from hyperpolarising current steps (-0.4 nA 
to 0 nA).  
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Amp 
 (mV) 

Rise 
(ms) 

Decay 
(ms) 

Area 
(mVms) 

Spike 
Thresh

old 

Rise 
10-
90 

Half-
widt

h 

AHP 
(mV) 

BL 
 (mV) 

R
i
n 

71.9 7.2 1.8 198.2 -41.2 3.5 2.0 -8.5 -63.8 101.2 

109.9 6.4 1.6 255.3 -35.7 3.7 1.6 -4.5 -64.6 149.5 

97.3 3.3 0.6 116.6 -30.5 2.2 0.8 -12.8 -52.6 124.5 

92.6 2.3 0.6 87.1 -39.7 1.0 0.8 -14.1 -56.9 126 

71.4 4.1 1.8 164.3 -42.7 3.1 1.6 -15.2 -66.6 116.1 

104.2 4.2 0.7 128.9 -59.8 1.1 0.9 -12.5 -74.6 108.8 

99.9 5.2 1.0 193.9 -44.9 3.7 1.2 -9.8 -72.6 112.4 

92.50 4.69 1.22 163.50 -42.07 2.66 1.30 -11.07 -64.55 119.79 

 
Table A3.1 Properties of Regular Spiking Non-Pyramidal Interneurones 
found in deep (LV) M1 in vitro. 
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Appendix 4. Low-threshold spiking (LTS) interneurons as found in deep (L5) M1. Putative LTS 
cells as recorded in L5 M1 (n = 10). Traces show current injection at -0.4 nA and +0.1 nA. Input 
resistance of putative LTS cells as calculated from hyperpolarising current steps (-0.4 nA to 0 nA). 
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Table A4.1 Properties of Low Threshold Spiking Cells found in deep (LV) M1 in vitro.  
 

Amp 
(mV) 

Rise 
(ms) 

Decay 
(ms) 

Area 
(mVms) 

Spike 
Thres-
hold 

Rise 
10-90 

Half-
width 

AHP 
(mV) 

BL 
(mV) 

Rin 

89.59 2.414 0.6 85.70 -54.60 1.05 0.77 -14.3 -66.8 146.5 

74.06 1.73 1.4 111.50 -34.50 0.562 1.54 -3.7 -68.2 91.53 

64.66 1.044 1.18 91.86 -47.60 0.6 1.51 -7.4 -53.9 196.3 

73.42 4.537 0.57 83.54 -45.93 2.372 0.74 -20.1 -60.1 137.3 

71.01 5.067 0.73 85.32 -45.84 1.408 0.90 -14.5 -57.5 111.7 

73.94 3.55 1.23 120.88 -33.87 1.594 1.43 -12.3 -47.1 109.2 

76.00 4.067 2.15 172.96 -45.42 1.58 2.16 -5.1 -46.8 91.43 

88.84 1.817 0.77 96.94 -41.50 0.731 1.05 -17.7 -57.3 256.5 

70.97 1.329 1.58 114.57 -45.20 0.654 1.68 -9.5 -50.9 170.9 

75.84 2.84 1.15 107.04 -43.83 1.17 1.31 -11.6 -56.5 145.7 


