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Abstract

The problem of structured noise suppression is addressed by i)modelling the subspaces
hosting the components of the signal conveying the information and ii)applying a nonlin-
ear non-extensive technique for effecting the right separation. Although the approach is
applicable to all situations satisfying the hypothesis of the proposed framework, this work
is motivated by a particular scenario, namely, the cancellation of low frequency noise in
broadband seismic signals.

1 Introduction

The problem of structured noise suppression concerns the elimination of signal components
produced by phenomena interfering with the observations of interest. This problem can be
addressed by linear techniques provided that the subspaces hosting the signal components are
complementary and well separated [1–4]. More precisely, if a signal represented by the ket
|f〉 is produced as the superposition of two components |f1〉 ∈ S1 and |f2〉 ∈ S2, provided
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that S1 ∩ S2 = {0}, the components of the superposition |f〉 = |f1〉 + |f2〉 can be separated
by an oblique projection. Even when this condition is theoretically fulfilled, if the subspaces
S1 and S2 are not well separated, the concomitant linear problem for extracting one of the
signal components may be ill posed, which causes the failure to correctly split the signal by a
linear operation. Hence, nonlinear techniques for determining a subspace V ⊂ S1, such that
|f1〉 ∈ V, and the projection onto V along S2 is well posed, have been considered [3–5]. In those
publications the theoretically complementary subspaces S1 and S2 are assumed to be known.
Nevertheless, the condition S1 ∩ S2 = {0} is strong and the possibility of meeting it depends
on the ability to generate the right model for the subspaces. Unfortunately, the modelling of
the complementary subspaces by pure physical considerations is not always possible and one
needs to relay on more general mathematical modelling.

Although the technique for subspace modelling we introduce here is applicable to different
situations, the work is motivated by a particular problem relevant to the processing of seismic
signals. In the nearshore these signals may be affected by a population of low-frequency waves
called infragravity waves [6]. This type of noise may be also unavoidable in bottom broadband
seismic observations [7]. The interested reader is refereed to [8] for explanations on how in-
fragravity waves are generated. We restrict our consideration to the problem of reducing that
type of structured low frequency noise from broadband seismic signals.

Our purpose is twofold. We aim at i)mathematically modelling the subspaces to represent
the signal components ii)provide a sparse enough representation of the signals so as to make
sure that the correct splitting can be realized.

Under the hypothesis that one of the signals components lies in the subspace of low fre-
quency signals, we determine the subspace of the other component in an adaptive manner. We
assume that such a component belongs to an unknown spline space and determine the knots
characterising the space by taking into account the curvature points of the signal in hand. In
that sense, the space is ‘adapted’ to the particular signal being analysed. In line with [4] we
tackle the problem of finding the representation of this component through the minimisation
of the q-norm-like quantity, which is closely related to the non-extensive entropy introduced as
ingredient of a thermodynamic framework in the seminal paper by Tsallis [9] and ever since
broadly applied in physics [9–16] and other disciplines [17].

The paper is organised as follows: In Section 2 we address the problem of subspaces mod-
elling and discuss the nonlinear non-extensive technique yielding the right signal splitting. A
numerical simulation concerning the filtering of low frequency noise from a seismic signal is
presented in Section 3. The conclusions are drawn in Section 4.

2 Adaptive subspace modelling for structured noise fil-

tering

As already mentioned, we are concerned with the problem of separating from a signal those
components which are not relevant to the phenomenon of interest. For simplicity we consider
that a signal |f〉 is the superposition of only two components and the goal is to find a suitable
model for the subspaces hosting such component. Since our work is motivated by the specific
problem of filtering low frequency noise from a seismic signal, we further assume that the
subspace representing that type of structured noise is spanned by a few Fourier functions. In
accordance with previous works, we denote such a subspace as W⊥ and consider it to be fixed.
The composed signal is the superposition |f〉 = |fV〉 + |fW⊥〉 with |fV〉 ∈ V and |fW⊥〉 ∈ W⊥.
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The goal is to model the subspace V fulfilling the theoretical condition V∩W⊥ = {0}, regardless
of the fact that the two subspaces may be too close to each other for the signal separation to
be obtained via a linear approach. We allow for this difficulty by introducing the additional
hypothesis that |fV〉 is well represented in a subspace of V, which is tantamount to assuming
that |fV〉 has a ‘sparse enough’ representation in V. We further assume that |fV〉 is well
approximated in a dedicated spline space to be constructed as described in the next section.

2.1 Finding the appropriate spline space

Let us start by stating the few definitions on spline spaces which are needed for setting up our
mathematical framework. For a complete treatment of splines we refer to [18–20].

Definition 1. Given a finite closed interval [c, d] we define a partition of [c, d] as the finite set
of points

∆ := {xi}
N+1

i=0
, N ∈ N, such that c = x0 < x1 < · · · < xN < xN+1 = d. (1)

We further define N subintervals Ii, i = 0, . . . , N as: Ii = [xi, xi+1), i = 0, . . . , N − 1 and
IN = [xN , xN+1].

Definition 2. Let Πm be the space of polynomials of degree smaller or equal to m ∈ N0 =
N ∪ {0}. Let m be a positive integer and define

Sm(∆) = {f ∈ Cm−2[c, d] : f |Ii
∈ Πm−1, i = 0, . . . , N}, (2)

where f |Ii
indicates the restriction of the function f on the interval Ii.

An extended partition with single inner knots associated with Sm(∆) is a set ∆̃ = {yi}
2m+N
i=1

such that
ym+i = xi, i = 1, . . . , N, x1 < · · · < xN

and the first and last m points y1 ≤ · · · ≤ ym ≤ c, d ≤ ym+N+1 ≤ · · · ≤ y2m+N can be
arbitrarily chosen. With each fixed extended partition ∆̃ there is associated a unique B-spline
basis for Sm(∆), that we denote as {Bm,j}

m+N
j=1 . The B-spline Bm,j can be defined by the

recursive formulae [18]:

B1,j(x) =

{

1, tj ≤ x < tj+1,

0, otherwise,

Bm,j(x) =
x − yj

yj+m−1 − yj
Bm−1,j(x) +

yj+m − x

yj+m − yj+1

Bm−1,j+1(x).

For each order, m, the corresponding spline space is determined by the number and position
of the knots. In Fig 1 we show the B-spline basis for two different cubic spline spaces (m = 4)
having the same number of knots but located at different positions.

In order to find the appropriate partition ∆ giving rise to the appropriate spline space Sm(∆)
to represent a given signal f , we first determine the critical points of the signal’s curvature,
i.e., we find the set T defined as

T := {t :

(

f ′′

(1 + f ′2)3/2

)′

(t) = 0}. (3)
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Figure 1: Left graph: Cubic B-spline basis functions for an arbitrary partition. Right graph: Same
description as in the left graph but for a different partition with the same number of knots

The entries in T are chosen as the initial knots of ∆. Extra knots are obtained by subdivisions
between consecutive knots in T so as to generate a partition ∆ with the desired number of
knots. An algorithm for implementing this procedure on a signal given as a discrete piece of
data is outlined in [21]. We would like to be able to use this procedure on the signal we need
to represent, namely the component |fV〉, but, of course we do not have access to this signal;
our goal is to find it! Thus, in line with [3, 4] we proceed as explained below.

Since in our framework W⊥ is fixed and known, we can construct the orthogonal projector
onto W = (W⊥)⊥ that we denote P̂W . Assuming now that V = Sm(∆), for some order m and
some partition ∆, we can use B-splines to span the space so that for |fV〉 ∈ Sm(∆) we have

fV(x) = 〈x|fV〉 =

M
∑

i=1

ci〈x|Bi,m〉 =

M
∑

i=1

ciBi,m(x). (4)

Hence, by applying the projector P̂W on both sides of (4) we further have

|fW〉 =

M
∑

i=1

ci|ui〉, where |ui〉 = P̂W |Bi,m〉, and |fW〉 = P̂W |fV〉. (5)

Denoting by ÎS the identity operator in S = V + W⊥, the projector P̂W is obtainable from
the relation P̂W = ÎS − P̂W⊥. Therefore the component |fW〉 is available and can be used to
determine the knots of the spline space to represent it.

Let us suppose then that through the curvature function (3) we obtain a suitable partition
for the space to represent |fW〉. Now, in order to obtain the component |fV〉 from |f〉 in
the most usual case involving subspaces V and W⊥ close to each other, we need to find the
representation of |fW〉 in a subspace of W = span{|ui〉}

M
i=1. The approach for achieving such

an aim is discussed in the next section.

2.2 Determination of the signal representation through a nonlinear

non-extensive approach

At this point we can assume that we know the spanning set for W so that henceforth the
problem is reduced to finding the representation (5) with sparse coefficients. For this we could
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apply the approach proposed in [4], which entails to use the normal equations

〈un|fW〉 =
M

∑

i=1

ci〈un|ui〉, n = 1 . . . , M (6)

as constraints for the minimisation of the q-norm-like quantity
∑M

i=1
|ci|

q, 0 < q ≤ 1, but
incorporating the equations in a stepwise manner. However, in the case motivating this work the
number of necessary constraints is large enough to make the whole process slow. Hence rather
than using the approach proposed in [4] we take an alternative route and apply a regularised
version of the FOCUSS algorithm, which implies to minimise the functional

L =

M
∑

i=1

|ci|
q + λ‖|fW〉 −

M
∑

i=1

ci|ui〉‖
2,

where λ is a regularisation parameter. The algorithm for implementing the approach is based
on re-weighted least squares and is given in [22]. It comprises the following simple steps:

1) For each fixed q set a value for λ and a value for the initial vector |co〉 =
∑M

i=1
co
i |i〉.

2) At each iteration, say iteration k, define the operators

Û =
M

∑

i=1

P̂W |Bi,m〉〈i| =
M

∑

i=1

|ui〉〈i|, Π̂k =
M

∑

i=1

|i〉|ck−1

i |1−
q

2 〈i|, Ûk = ÛΠ̂k,

where the representation 〈x|Bi,m〉, i = 1 . . . , M of the kets |Bi,m〉, i = 1 . . . , M are B-
spline functions 〈x|Bi,m〉 = Bi,m(x) of order m.

3) Compute |ck〉 as
|ck〉 = Π̂k(Û

∗

k Ûk + λÎ)−1|fW〉,

where Û∗
k indicates the adjoint of Ûk and Î the identity operator.

4) Given a small δ, while ‖|ck〉 − |ck−1〉‖ > δ repeat 2) and 3).

When for the given δ the stopping condition in 4) has been reached, say at iteration K, set
ci = cK

i , i = 1, . . . , M and compute the required component |fV〉 as

|fV〉 =

M
∑

i=1

ci|Bi,m〉.

Remark 1. For q < 1 the optimisation of the functional L is a non convex problem yielding,
typically, a large number of local minima. However, it is shown in [22] that the above algorithm
reduces the cost function L at each step and the stable fixed points of the algorithm are sparse.
This is a desired feature for finding the solution of our problem.
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3 Application to filtering of structured low frequency

noise from a seismic signal

We apply here the proposed approach for filtering low frequency noise from a seismic signal. As
already mentioned, a common interference with broadband seismic signals is produced by long
waves, generated by known or unknown sources, called infragravity waves [6]. This interference
is referred to as low frequency noise as it falls in a frequency range of up to 0.05 Hz. Thus, the
model for the subspace of that type of structured noise, on a signal given by L = 403 samples,
is

W⊥ = span{eı 2πn(i−1)
L , i = 1, . . . , L}21

n=−21. (7)

The particular realization of the noise we have simulated is plotted in the top left graph of Fig 2
(signal fn

i , i = 1, . . . , L). However, it is appropriate to recall that the success of the approach
does not depend on the actual form of the noise (as long as it belongs to the subspace given in
(7)) because the approach guarantees the suppression of the whole subspace W⊥.

The seismic signal f s
i , i = 1, . . . , L shown in the top right graph of Fig 2 is a segment of

the seismic signal which is provided by the WaveLab802 Toolbox (it is acknowledged there that
such a signal is distributed throughout the seismic industry as a test dataset). The left bottom
graph is the superposition of the signals in the top graphs, i.e. fi = fn

i + f s
i , i = 1, . . . , L. We

first subtract from f the component in W⊥ to obtain fW = f−P̂W⊥f and use this signal to find
the points in the set (3). Then we subdivide uniformly those points to obtain 341 nonuniform
knots defining the signal space. Using these knots we construct the nonuniform B-spline basis
for the space (MATLAB codes for the implementation of both steps are available from [23]).
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Figure 2: Top left graph: Simulated low frequency noise (fn). Top right graph: Piece of seismic
signal (f s). Left bottom graph: Signal plus noise (f = f s +fn). Right bottom graph: Approximation
f q recovered from the left graph by applying the proposed approach for q = 0.4 and λ = 5 × 10−8.
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The methodology discussed in the previous section requires to fix the values for q and λ.
To allow for good resolution the regularisation parameter λ should be given a small value.
The right bottom graph of Fig 2 depicts the filtered signal arising by applying the regularised
FOCUSS method for λ = 5 × 10−8 and q = 0.4. The left graph of Fig 3 plots, |f q − f s|, the
absolute value of the difference between the approximation f q (for q = 0.4, λ = 5 × 10−8) and
the true signal f s. For the sake of comparison, in the right graph we have plotted |f f − f s|,
where f f is the approximation arising by filtering with Fast Fourier Transform (FFT). For this
approximation we simply take the FFT of f , eliminate the frequencies components in (7), and
apply the inverse transform to obtain f f . The comparison shows that the proposed approach
may perform considerably better than standard FFT filtering.
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Figure 3: Left graph: Absolute value of the difference between the true seismic signal f s and the
approximation f q obtained by the proposed approach with q = 0.4 and λ = 5 × 10−8. Right graph:
Absolute value of the difference between the true seismic signal f s and the approximation f f obtained
by filtering frequencies in the FFT of f .

In order to analyse the dependence of the solution on the parameters q and λ we have
considered the range 5×10−9 ≤ λ ≤ 5×10−6 and let the parameter q vary in the interval (0, 1]
with step 0.001. For each λ we calculated the error’s norm ǫ(q) = ‖f q − f s‖. The plot of this
error, against q, is depicted by the three lines of Fig 4, each of which corresponds to a different
value of λ. The two close lines correspond to λ = 5× 10−9 and λ = 5× 10−8 whilst the broken
line corresponds to λ = 5 × 10−6. For producing these graphs we have varied the parameter
λ with step 10−9 and use the solution for each λ to initialise the recursive procedure yielding
the solution for the next value of λ. By this process we have ensured to fall in equivalent local
minima and that is the reason why the curves of Fig 4 for the smallest and largest value of λ
are still similar. By initialising the regularised FOCUSS algorithm in a different way different
curves were obtained. However, for small λ values all the solutions were more satisfactory than
those obtained by filtering with FFT. As a final remark it may be worth stressing that, as
opposed to the non-extensive q-entropy [9, 10], the q-norm-like quantity for q = 1 (yet leading
to a convex optimisation problem) is non-extensive.
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Figure 4: Norm of the approximation error ǫ(q) = ||f s − f q|| as a function of the parameter q for
λ = 5 × 10−9, λ = 5 × 10−8 (close lines) and λ = 5 × 10−6 (broken line).

4 Conclusions

The problem of structured noise suppression has been considered by modelling the subspaces of
the signal components and applying a nonlinear non-extensive technique for separating them.
The work was motivated by the problem of filtering infragravity waves from broadband seismic
signals. For this, the noise subspace was modelled using low frequency Fourier functions and
that of the other component by a dedicated spline space (adapted to the signal in hand). A
simulation involving a piece of seismic signal distributed by the seismic industry and noise up to
0.05Hz has produced encouraging results in comparison with those arising by standard Fourier
Transform filtering.
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