
Original Articles

Clinical Decision Support System
for Point of Care Use
Ontology-driven Design and Software Implementation

K. Farion1; W. Michalowski2; S. Wilk2; D. O’Sullivan2; S. Rubin3; D. Weiss4
1Departments of Pediatrics and Emergency Medicine, University of Ottawa, Children’s Hospital of Eastern Ontario,
 Ottawa, Canada;
2MET Research Group, Telfer School of Management, University of Ottawa, Ottawa, Canada;
3Department of Surgery, University of Ottawa, Children’s Hospital of Eastern Ontario, Ottawa, Canada;
4Institute of Computing Science, Poznan University of Technology, Poznan, Poland

Keywords
Clinical decision support systems, point of
care systems, software design, ontology-
driven design

Summary
Objectives: The objective of this research
was to design a clinical decision support sys-
tem (CDSS) that supports heterogeneous
clinical decision problems and runs on
multiple computing platforms. Meeting this
objective required a novel design to create an
extendable and easy to maintain clinical CDSS
for point of care support. The proposed
 solution was evaluated in a proof of concept
implementation.
Methods: Based on our earlier research with
the design of a mobile CDSS for emergency
triage we used ontology-driven design to
 represent essential components of a CDSS.
Models of clinical decision problems were de-
rived from the ontology and they were pro-
cessed into executable applications during
runtime. This allowed scaling applications’
functionality to the capabilities of computing
platforms. A prototype of the system was im-

Methods Inf Med 2009: 48: 381–390
doi: 10.3414/ME0574
received: May 20, 2008
accepted: January 12, 2009
prepublished: May 15, 2009

Correspondence to:
Szymon Wilk
Telfer School of Management
University of Ottawa
55 Laurier Ave East
Ottawa, ON K1N 6N5
Canada
E-mail: wilk@telfer.uottawa.ca

plemented using the extended client-server
architecture and Web services to distribute
the functions of the system and to make it op-
erational in limited connectivity conditions.
Results: The proposed design provided a
common framework that facilitated devel-
opment of diversified clinical applications
running seamlessly on a variety of computing
platforms. It was prototyped for two clinical
decision problems and settings (triage of
acute pain in the emergency department and
postoperative management of radical pros-
tatectomy on the hospital ward) and imple-
mented on two computing platforms – desk-
top and handheld computers.
Conclusions: The requirement of the CDSS
heterogeneity was satisfied with ontology-
driven design. Processing of application mod-
els described with the help of ontological
models allowed having a complex system run-
ning on multiple computing platforms with
different capabilities. Finally, separation of
models and runtime components contributed
to improved extensibility and maintainability
of the system.

Methods Inf Med 4/2009

381 © Schattauer 2009

1. Introduction
Research described in this paper is concerned
with supporting decision making by phy -
sicians at the point of care in an acute and an

emergency care setting. It started several years
ago with development of a clinical decision
support system (CDSS) to support emergen-
cy triage of patients presenting to the emer -
gency department (ED) with acute pain con-

ditions. This system called MET1 (Mobile
Emergency Triage) [1] was designed to help
with management of pediatric patients using
information about their history, physical
examination and a limited number of labora-
tory tests. MET1 included two clinical appli-
cations (supporting triage of pediatric ab-
dominal pain [2] and pediatric scrotal pain
[3]) and it ran exclusively on handheld com-
puters. The MET1 abdominal pain appli-
cation (MET-AP) was prospectively evalu-
ated in the ED at the Children’s Hospital of
Eastern Ontario in 2003–2004 in order to
compare its triage accuracy with the accuracy
of emergency physicians. The detailed results
of this evaluation are reported in [4].

MET1 was designed to support a set of
homogeneous decision problems in a single
setting (ED) and to operate on a single com-
puting platform (a handheld computer). This
limited design was typical of early generation
mobile CDSSs [5], and it was sufficient for
supporting the basic functionality. However,
to allow wider implementation and adoption,
CDSSs need to support physicians evaluating
heterogeneous decision problems in different
settings, and to run seamlessly on various
platforms automatically scaling to their capa-
bilities [6]. In response to these demands for
versatile and flexible CDSSs we propose a new
CDSS design (referred to as MET2) that
 represents the next generation of CDSSs.

The requirements for CDSS expanded
functionality come from research (see se-
lected papers in [7]) and were also expressed
by physicians who participated in the MET1-
 AP trial. While decision support at the point
of care using handheld computers was a help-
ful and important aspect of the functionality,
ED physicians favored a system running on a
wider range of devices, thereby enabling a
wider range of functionality. For example,

K. Farion et al.: Clinical Decision Support System for Point of Care Use

Methods Inf Med 4/2009 © Schattauer 2009

382

In recent years, use of ontology as a mech-
anism for representing knowledge in CDSSs
has gained momentum [15] and has become
more common in supporting and solving
decision problems [16, 17]. This has co-
incided with the evolution of CDSS architec-
tures [18]. The first CDSSs were standalone
systems that were running separately from
other hospital systems (e.g., AAPHelp for
diagnosing abdominal pain [19]). They
evolved into integrated system where deci-
sion support was embedded into hospital in-
formation systems (e.g., HELP offering sup-
port in such clinical areas as laboratory, nurse
charting, radiology or pharmacy [20]). Then,
the integrated systems evolved into separated
systems with shareable information and deci-
sion support content (e.g., SEBASTIAN [21]
with multiple XML-based modules contain-
ing clinical knowledge in machine-executable
format).

Ontology can be used to construct knowl -
edge bases with instances of defined concepts
(these instances represent facts about specific
problems), thus, it has been employed to
 represent information and knowledge in the
systems with shareable information. Sub-
sequently to this line of research, medical in-
formatics has also explored ontology-driven
design, where ontology and derived knowl -
edge bases are separated from domain-
 independent processing algorithms (often
 referred to as solving algorithms or solvers)
[22, 23]. The idea of separating ontology and
derived knowledge bases from solvers enables
reusability and also improves the robustness
of the system design. One solver may be used
with different ontology and knowledge bases,
and vice versa. Moreover, new solvers may be
added without having to alter the ontology or
the knowledge base, and changes in the ontol-
ogy and the knowledge base do not require
modifying solvers.

The idea of separated ontology and solvers
was used in the EON system. EON provided a
set of middleware components to automate
various aspects of protocol-directed therapy
(checking whether a patient was eligible for a
particular therapy and planning the therapy)
[24]. It was developed for clinical trial proto-
cols for the treatment of cancer and HIV in-
fections, and later it was extended to cover the
management of chronic diseases and other
types of guidelines. Now EON is used in the
ATHENA CDSS for hypertension manage-

ment [25]. EON included the generic guide-
line ontology that defined concepts related to
clinical protocols and the medical specialty
ontology that defined concepts correspond-
ing to findings and interventions for a par-
ticular area of medicine. Adding support for
new problems required extending the medi-
cal specialty ontology and linking it to the
guideline ontology. Moreover, EON con-
tained two generic solvers – for checking
protocol eligibility and for planning therapy.

A similar ontology-driven design was ap-
plied in BioSTORM – a system for syndromic
surveillance (monitoring of prediagnostic
data for early detection of disease outbreaks)
[26]. The system uses the data-source ontol-
ogy and the problem-solving ontology. The
data-source ontology defines characteristics,
types and relationships of monitored data
coming from various sources (e.g., 911
emergency data). The problem-solving on-
tology organizes and characterizes solvers
available in the system in terms of data and
knowledge a given solving method uses. Bio -
STORM also includes the controller com-
ponent that identifies and deploys solvers to
analyze incoming data streams.

The ontology-driven design has not been
used only in CDSSs but also it has been ap-
plied in bioinformatics to design grid systems
[27]. For example, PROTEUS is a grid-based
problem solving environment for composing
and running applications aimed at analyzing
sequences of proteins [28]. It allows for mul -
tiple applications represented as distributed
workflows of software components. The sys-
tem includes the domain ontology and the
application ontology. The domain ontology
classifies and describes concepts in the do-
main of bioinformatics as well as available
 resources (e.g., solvers and external data-
bases). The application ontology classifies
and describes available application work-
flows (composed from concepts from the
 domain ontology). Workflows from the ap-
plication ontology are executed by the exe -
cution manager.

3. Design of the MET1
 System
MET1 followed the requirements to support
a set of homogeneous decision problems and
to operate on a single computing platform. Its

while categorical data was easily entered
through drop-down menus on the portable
device, the ability to enter comments was very
limited and would be facilitated by a device
with a keyboard and a larger display. Ammen-
werth et al. [8] describe the contradictions
 between requests for small and transportable
devices versus those with larger displays.
 Furthermore, they note the tasks being per -
formed as well as personal preference signifi-
cantly influence adoption of different devices.
In response, they propose a “multi-device
architecture” for electronic information pro-
cessing and communication in the clinical
 setting. A similar claim is put forward by
 activity-based computing – a new paradigm
for pervasive clini cal computing that con-
siders user activities (tasks) as first class
 objects in a computing environment [9]. Ac-
cording to this paradigm users should be able
to resume their activities on arbitrary com-
puting devices (available at the point of care
or suited for the task).

This paper is organized as follows. In the
next section we discuss related research on
using ontology in CDSS design. In Section 3 we
briefly describe the design of the MET1 system
and in Section 4 we outline how we responded
to a challenge of creating the new generation of
CDSSs with the design for MET2. In Section 5
we elaborate on the technical aspects of the
MET2 design and describe its implementation.
This description does not cover the issues of in-
tegration with existing hospital systems, as they
were reported earlier [1]. Finally, we conclude
with a discussion in Section 6.

2. Literature Review

Ontology represents both the explicit and im-
plied concepts used within a particular disci-
pline, and the relationships between these
concepts [10, 11]. Ontological engineering,
dealing with developing and using ontology
[12], has become an important research focus
in information science.

In the field of medicine ontology has been
extensively exploited in the form of con-
trolled terminologies and classifications for
knowledge representation, understanding
and exchange. This line of research is exem -
plified by attempts to define standardized
classifications and nomenclatures such as
SNOMED-CT® [13] or OpenGALEN [14].

© Schattauer 2009 Methods Inf Med 4/2009

383 K. Farion et al.: Clinical Decision Support System for Point of Care Use

logical design involved ontology and derived
knowledge bases that were separated from a
solver. The MET1 ontology included the data
ontology and the support ontology, with the
data ontology specifying concepts related to
structure of information to be processed and
the support ontology defining concepts re-
lated to decision models (all models used by
MET1 were rule-based).

Both ontologies were used to derive data
models and support models respectively. The
data model encompassed a knowledge base
with instances of concepts from the data on-
tology that described the structure of clinical
information considered for a specific prob-
lem (i.e., a specific acute pain condition). Fol-
lowing the idea of automatic generation of
user interfaces for knowledge acquisition
tools [29], the data ontology and derived data
models were annotated with additional infor-
mation allowing the construction of custom-
ized user interfaces for collecting and pre -
senting clinical data [1]. The support model
encompassed a knowledge base composed of
the decision rules representing knowledge on
how to solve a specific decision problem (e.g.,
to make triage disposition for a patient with
an acute scrotal pain).

The data and support models had to be
created for every decision problem handled
by the system and each pair formed an appli-
cation model for this specific problem. Appli-
cation models were then transformed on re-
quest into executable applications. The gen-
eral design of the MET1 system is presented

in �Figure 1. The two major architectural
components of this design were the appli-
cation repository and the executor. The appli-
cation repository managed and stored the
available application models. The executor
created applications according to their appli-
cation models and executed them. MET1 in-
cluded also an interface repository with com-
ponents for building a user interface and one
solver that was used with all decision models.

Typically, upon the ED physician’s request,
the executor retrieved an appropriate appli-
cation model from the application repository
and created the user interface according to the
data ontology using components from the in-
terface repository. Then, it presented the in-

terface to the ED physician for recording and
viewing clinical data and for calling the triage
support function. When this function was in-
voked, the executor linked the solver with the
support model, solved it for collected data,
and presented the results. After the physician
had finished working with the application,
the executor purged the application model
and was ready to respond to the next request.

4. Design of the MET2
 System
Successful adoption of CDSSs in clinical prac-
tice depends on their broadly understood ver-

Fig. 1 General design of the MET1 system

Table 1 Main shortcomings in earlier generation of CDSSs as exemplified by MET1 system

Capability Level CDSS shortcoming MET1 shortcoming

Support for heterogeneous
decision problems

Design Limited set of similar decision
models

Single decision model
type

Architecture Limited set of similar solvers Single solver

Execution on multiple
computing platforms

Design No ability to create sophis-
ticated customized interfaces

 Interface embedded
in a data model

Architecture No ability to run multiple
support and platform
configurations

 Single platform

No ability to customize sup-
port to different computing
platforms

“Hard-wired” interface
and support specifica-
tions

No ability to re-use interface
components

Methods Inf Med 4/2009 © Schattauer 2009

384 K. Farion et al.: Clinical Decision Support System for Point of Care Use

satility. Specifically, a new-generation CDSS
should be able to support heterogeneous deci-
sion problems (in particular those that
require heterogeneous decision models and
solvers) at different settings and to execute
seamlessly on multiple computing platforms
[6]. The design of earlier CDSSs was too limit-
ing to satisfy these require ments – �Table 1
lists the major shortcomings. These short-
comings prompted us to propose the novel
design of MET2. Despite expanding the sys-
tem functionality beyond emergency triage
we decided to stay with MET acronym as a
label identifying our research.

The first step in addressing the design
shortcomings of earlier CDSSs was to revisit

the ontology. �Figure 2 presents the ontol-
ogy used in the MET2 design. To improve
readability only the most important classes
and “is-a” and “association” relationships are
presented (e.g., it shows that a rule solver is a
solver or that a user interface is associated
with forms). It expands the MET1 support
ontology and introduces two new com-
ponents – the interface ontology and the con-
figuration ontology. These two new ontol-
ogies are used to derive interface and con-
figuration models that enhance the appli-
cation model, so in MET2 it encompasses
data, support, interface and configuration
models. Moreover, we allow application
models to include several support and inter-

face models that are suited to capabilities
(e.g., memory, computational power, display
size, interaction modalities) of specific plat-
forms, thus dealing with possible platform
variability.

The support ontology has been extended
to handle decision problems requiring differ-
ent types of decision models and different
solvers. We have introduced concepts repre-
senting different types of decision models,
different types of solvers, and the associations
between them. When deriving specific sup-
port models from the support ontology, these
associations allow coupling decision models
with solvers, so the executor knows which
solver to invoke when running an application.

Fig. 2 MET2 ontology

385 K. Farion et al.: Clinical Decision Support System for Point of Care Use

© Schattauer 2009 Methods Inf Med 4/2009

An application model may include several
platform-specific support models, thus, a
MET2 application running on a powerful
platform can use a complex support model
(where a complex decision model is coupled
with a complex solver), while the same appli-
cation executed on a computationally weak
platform may switch to a simplified support
model. A drawback associated with such scal-
ing is that these two models may provide po-
tentially contradicting outcomes for the same
patient. This issue may be addressed by tun-
ing simplified support models so their sol-
ution strategy is more conservative than that
of complex models, following the percept
that if in doubt, the system should suggest a
more conservative course of action.

The interface ontology introduced in
MET2 defines concepts representing various
components of the user interface (e.g., forms
and attribute editors). It is used to derive in-
terface models included in specific appli-
cation models. Explicit representation of user
interface components allows us to define

sophisticated user interfaces and address one
of the shortcomings associated with the ear-
lier CDSS design where the user interface was
described by simply annotating data models.
With several platform-specific interface
models included in an application model, the
application executed on a handheld com-
puter may split collected and displayed infor-
mation across multiple screens and use hand-
writing recognition for data entry, while the
same application running on a desktop com-
puter displays all information on a single
screen and allows entering data with a key-
board and mouse.

The configuration ontology is introduced
in MET2 to handle increased complexity of
application models that may include multiple
platform-specific support and interface mod-
els. This ontology is used to derive configu -
ration models that link support and interface
models with target computing platforms –
such links are called “profiles” (one configu -
ration model may specify multiple profiles
for different platforms).

The MET1 data ontology allowed defining
data models for different decision problems
and it could be reused in MET2 design with-
out extensive changes (it only required strip-
ping annotations on the user interface as they
were made redundant by introducing the in-
terface ontology). However, in the MET2
 design, we introduced the Entity-Attribute-
Value (EAV) approach to structure clinical in-
formation as it allows for more flexible and
effective handling of heterogeneous data
[30]. In this approach the concept represent-
ing a patient-physician encounter becomes a
central entity that is characterized by a set of
clinical attributes, and its instances are de-
scribed by values of the attributes. The at-
tributes specify the historical information,
physical examination findings and test results
that should be collected during an encounter
and considered when making a decision
about a patient. A data model derived from
the data ontology contains definitions of
these attributes for a specific decision prob-
lem (e.g., triage of a scrotal pain).

Fig. 3 General design of the MET2 system

The data ontology is relatively simple and
represents data collected during an en-
counter, because such information (the most
recent medical history and a current patient
state) is required to provide early decision
support at the point of care. The data ontol-
ogy is also used to facilitate integration with
other hospital information systems because
data interoperability can be ensured at this
level. If past patient data recorded in the elec-
tronic patient record (EHR) is required, defi-
nitions of clinical attributes can be expanded
with information about how their values
should be retrieved from the EHR. With this
information explicitly available, MET2 will
not only be able to analyze values of attributes
entered by the physician, but also to use data
already stored in the EHR.

The general system design of MET2 is
presented in �Figure 3. In order to address
the CDSS design shortcomings associated
with the “single solver, single platform” ap-
proach, we have introduced two new archi-
tectural components: the adapter and the
solver repository that replaces a single solver.
The adapter is responsible for adapting a
multi-platform application model to a spe-
cific platform and the solver repository stores
all required solvers. The MET2 design as-
sumes that the interface and the solver reposi-
tories store solvers and interface components
for multiple computing platforms. In order to
simplify the description we will refer to
solvers and interface components as runtime

components, and to the interface and solver
repositories as runtime repositories.

Upon the ED physician’s request, the
executor manages the creation of a specific
application in MET2. The executor is aware of
the computing platform on which it runs, and
this information is appended to the request
sent to the application repository. The re-
trieved multi-platform application model is
passed to the adapter, which adapts it to the
requested platform by selecting the interface
and the support model referenced in the cor-
responding platform profile. The platform-
specific model is transferred back to the
executor that creates the application using
platform-specific runtime components re-
trieved from the runtime repositories and
executes it. When the physician finishes using
the application, the executor purges the ap-
plication model and the retrieved runtime
components to release computing resources.
Such a request-execute-purge cycle allows
running multiple complex applications on
computationally weak platforms.

Separation of runtime components from
application models and the request-execute-
purge cycle significantly improves extensibil-
ity of the MET2 system and the reusability of
its components. New application models are
added to the system by storing them in the ap-
plication repository. If the required runtime
components are not already available in the
runtime repositories, such components have
to be added, however no other changes to sys-

tem components are necessary. Also, changes
in specific application models require either
no changes to the system, or they are limited
to the runtime repositories. Finally, multiple-
application models may easily share runtime
components and thus any update of shared
components is immediately registered by all
applications.

5. Implementation
of the MET2 System

5.1 High-level Implementation

In implementing the MET2 design we fol-
lowed the client-server paradigm. The sim-
plest approach would be to install the exe -
cutor on the MET2 client and the remaining
architectural components on the MET2
server. This would require a permanent con-
nection between the client and the server.
However, interruptions to wireless connec-
tivity are typical in most hospital settings for
various reasons. Moreover, maintaining per-
manent connection on a mobile device may
be power-consuming, thus severely limiting
the usefulness of the system by forcing the
physician to charge the device frequently.
Thus, we assumed that the system should be
able to function off-line with occasional con-
nections between the client and the server
and implemented it using the extended
client-server architecture [31]. When dupli-

Fig. 4 High-level implementation of MET2 system design

Methods Inf Med 4/2009 © Schattauer 2009

386 K. Farion et al.: Clinical Decision Support System for Point of Care Use

cating the server functionality on the client
side, we assumed that the client had to store a
subset of available application models and
runtime components so it is able to respond
to physicians’ requests for applications with-
out connecting to the server. This required
hosting some of the architectural compo -
nents on the client and on the server. Specifi-
cally we duplicated the application repository
and the runtime repositories (the interface
repository and the solver repository).

The high-level implementation of MET2
design is presented in �Figure 4. For clarity
the duplicated components located on the
server side are labeled as central and those lo-
cated on the client side are labeled as local.
This implementation introduces two new
architectural components that were not pres-
ent in the general design (see Fig. 3) – the re-
triever and the packager. The retriever, upon
request from the executor, retrieves the re -
quired application model from the central
 repository and passes it to the adapter. The
 retriever is necessary on the server side to
allow the executor to reach the remote central
repository. On the client side, the executor
 retrieves application models directly from the
local repository. The packager facilitates the

process of transferring required runtime
components from the server to the client. It
captures a platform-specific application
model processed by the adapter and exam -
ines the interface and the support models to
identify which runtime components are re -
quired for executing the application. Then, it
retrieves the components from the central
runtime repositories, packages them with the
application model and passes the whole
“package” to the executor. The executor stores
the application model in the local application
repository and the runtime components in
the local runtime repositories (as all applica -
tion models stored locally on the client side
are single-platform, there is no need for the
local adapter). After storing the contents of a
package, the executor creates and runs the ap-
plication according to its model. When the
application is no longer necessary, the execu-
tor may purge the received application model
and the runtime components or cache them
for future use.

Following our earlier experience [1], we
decided to introduce the patient repository
that stores information about currently pro-
cessed patients (it stores instances of classes
defined in the data ontology) and acts as a

buffer between the MET2 system and hospital
systems [1]. We use the central patient reposi-
tory located on the MET2 server with all
 currently processed patients, and the local
 patient repository with patients processed
locally on the MET2 client. When connection
between the client and the server is available,
the central and the local patient repositories
are synchronized.

5.2 Low-level Implementation

The low-level implementation of the MET2
system design is presented in �Figure 5. The
figure also identifies specific technologies and
tools used to develop a working prototype of
the system. We used Java as an implemen-
tation language because it is available for
 mobile and desktop computing platforms.
Moreover, a system written in Java allows
transferring runtime components over a net-
work – this was critical for sending runtime
components from the MET2 server to the
MET2 clients. In the implemented version of
the MET2, technology constraints forced us
to look for some non-standard solutions de-
scribed below. To simplify the implemen-

Fig. 5 Low-level implementation of MET2 system design

387 K. Farion et al.: Clinical Decision Support System for Point of Care Use

© Schattauer 2009 Methods Inf Med 4/2009

tation we used the same solutions on both
mobile and desktop platforms.

The MET2 server was implemented on a
Java application server to provide Web service
communication between the server and
clients. The central application repository
was realized as a repository managed by Pro-
tégé [32]. Protégé handles multiple ontologi-
cal languages (e.g., frames or OWL Web On-
tology Language [33]) and offers dedicated
editor for easy creation and modification of
ontology and derived models. It also provides
an advanced programming interface in Java,
so repositories can be programmatically ac-
cessed and modified. We decided to use the
simpler frame-based representation, because
the extensive capabilities of OWL (e.g., rea-
soning about ontology) were not required for
this implementation.

The Protégé repository is also used to store
patient data – this simplifies implementation
as we use a single storage mechanism. Al-
though this solution offers limited efficiency
(e.g., Protégé repository lacks indexing of its
content), it is sufficient for the central patient
repository if the number of currently man-
aged patients is limited.

Protégé does not offer any mechanism to
synchronize the content of its repositories,
therefore we had to develop a synchronizer to
keep patient data consistent and to solve po-
tential conflicts with update timestamps. The
synchronizer is implemented as the patient
manager Web service. The same solution is

used for the adapter and the packager. They
are combined into the application manager
Web service. Both Web services are accessed
via SOAP (a standard protocol for invoking
Web services) [34].

Central and local runtime repositories are
realized as collections of Java archives (JAR
files) with compiled Java code. The local pa-
tient and application repositories are imple-
mented as XML repositories. To manage
these repositories we developed our own pro-
gramming interface that mimics and ab-
stracts the one offered by Protégé. This was
not the most efficient solution because better
capabilities are provided by XML-based data-
bases. Unfortunately, at the time of MET2
 development, XML-based databases were not
available for mobile platforms.

5.3 Executor

The executor, implemented as a Java pro-
gram, allows physicians to work with a spe-
cific clinical application. It is the only compo-
nent of the MET2 system that has to be pre-
installed on the client side – the other ones are
downloaded by the executor from the server.
To limit communication between the client
and the server, the executor first checks if the
application model is stored locally and re-
quests it from the server using the application
manager Web service if it is not available. In
response it receives a package with an appli-

cation model and the necessary runtime
components, and then stores the package in
the local repositories. During execution the
executor checks what Java classes are refer-
enced in the interface and support models,
 retrieves them from the local runtime reposi-
tories and uses them accordingly.

The executor has indirect and direct
modes of selecting clinical applications. In
the indirect mode the executor presents the
physician with a list of patients stored in the
local patient repository. When the physician
selects a patient, the executor identifies the
presenting complaint for this patient and re-
quests a corresponding application model. In
the direct mode the physician first selects ap-
plications from the list of all applications
available on the server. This allows the phy -
sician to preload the client with a set of ap -
plications (for example the most frequently
required) and to limit subsequent communi-
cation between the client and the server to pa-
tient data synchronization using the patient
manager Web service.

5.4 Application Models

Currently, the MET2 system contains models
for three clinical applications – triage of pedi-
atric abdominal pain (MET2-AP) [2], triage
of pediatric scrotal pain (MET2-SP) [3] and
postoperative management of radical pros-
tatectomy (MET2-RP) [35]. The first two

Fig. 6 MET2-RP user interface

Methods Inf Med 4/2009 © Schattauer 2009

388 K. Farion et al.: Clinical Decision Support System for Point of Care Use

models are revised and extended versions of
the respective MET1 applications (they in-
volve the expanded ontology and include
multiple interface models). Inclusion of the
last application model was made possible be-
cause of the new MET2 design.

Construction of the application models
started with corresponding data models.
With the help of clinical experts and medical
literature we defined clinical attributes that
should have been considered in each decision
problem. Then we used retrospective chart
data to build decision models considering
those that are frequently used in clinical deci-
sion making [36]. These models were coupled
with corresponding solvers to form support
models. The choice of decision models and
solvers was verified in a series of computa-
tional experiments [37, 38]. We also checked
the performance of the selected support
models on both computing platforms and
concluded that scaling was not required, thus
the same models were used on desktop and
mobile computers.

Finally, we created interface models fol-
lowing user-centered and task-centered de-
sign principles [39, 40]. For each application
model we prepared two interface models –
one for a handheld computer and one for a
desktop computer. We also created platform-
specific interface components that were re -
quired to construct these interfaces. Sample
user interface screens created from the inter-
face models for the MET2-RP application are
presented in �Figure 6 – when executed on a
desktop computer, interface displays all data
fields on a single screen for easy viewing and
navigation (�Fig. 6a), while on a handheld
computer these fields are split into several
tabs to fit a small screen (�Fig. 6b).

6. Discussion

According to [41] it is important that the
CDSS design shifts from a narrowly focused
“single solver, single platform” paradigm to a
much broader one. Many CDSSs (e.g. [19,
42–44]) were designed as stand-alone appli-
cations suitable for a given clinical condition
only. Such design does not meet requirements
of system’s versatility and capability to be
executed on multiple computing platforms.
With the MET2 design we meet these require-
ments by providing a unifying environment

that can handle multiple clinical applications
executed on multiple computing platforms.

The new design of MET2 uses the ontol-
ogy and derived models to represent key com-
ponents of a CDSS. However, unlike the
 majority of other design frameworks, it ex-
tends the ontology to allow construction of
multiple models of specific clinical applica -
tions not only in terms of data and support
functionality, but also in terms of their user
interface and computing platform configura -
tion. The MET2 design separates application
models from runtime components and intro-
duces the request-execute-purge cycle of an
application. Such a solution ensures exten-
sibility of the MET2 system and reusability of
runtime components. The system may be ex-
panded by adding new application models
and existing models may be updated without
the need to change runtime components.
Similarly, runtime components may be up-
dated without changing application models.
Finally, runtime components may be shared
by multiple application models.

We tested the MET2 system design by im-
plementing the system according to the ex-
tended client-server paradigm and by creat-
ing models of three applications supporting
different clinical decision problems. The ap-
plication models scale to the capabilities of
specific computing platforms (we needed to
scale the user interface model only). As a part
of future research we plan to work on intelli-
gent scaling of application models to the ca-
pabilities of specific platforms. Rather than
providing several platform-specific models,
an application model would include a single
generic (platform-independent) support and
interface model that would be processed by
an intelligent adapter and transformed ac-
cordingly. This approach has been already ap-
plied with limited success in creating model-
based user interfaces [45]. We will also work
on extending the capabilities of a patient data
repository by moving to effective database
solutions (e.g., XML-based database) and
leaving ontology editors (e.g., Protégé) for
ontological engineering only.

Following results of the clinical trial of the
MET1 system that revealed the differences
between decision making process of physi -
cians and medical residents [46], we plan to
make the MET2 a user-aware system. This
new feature should allow the system to act
differently in relation to user’s skills level

(physician, resident, medical student). We
discovered that expert physicians tend to use
more information than residents [46], which
suggests the support model (the decision
model in particular) for an expert may
require more inputs than the support model
for a novice. Moreover, novice physicians
have problems with accurate collection of
some clinical findings (especially those re-
lated to physical examination of the patient).
If these findings are to be used as input infor-
mation, the user interface should provide ad-
ditional support through explanations or
feedback to facilitate the data gathering task.

Acknowledgments
This research was supported by grants from
NSERC-CIHR Collaborative Health Re-
search Program.
The authors would like to thank anonymous
reviewers for helpful comments and sugges-
tions.

389 K. Farion et al.: Clinical Decision Support System for Point of Care Use

© Schattauer 2009 Methods Inf Med 4/2009

References
1. Michalowski W, Slowinski R, Wilk S, Farion K, Pike

J, Rubin S. Design and development of a mobile sys-
tem for supporting emergency triage. Methods Inf
Med 2005; 44 (1): 14–24.

2. Michalowski W, Slowinski R, Wilk S. MET system: a
new approach to m-health in emergency triage. J Inf
Technol Healthc 2004; 2 (4): 237–249.

3. Michalowski W, Wilk S, Farion K, Pike J, Rubin S,
Slowinski R. Development of a decision algorithm
to support emergency triage of scrotal pain and its
implementation in the MET system. INFOR 2005;
43 (4): 287–301.

4. Farion K, Michalowski W, Rubin S, Wilk S, Correl R,
Gaboury I. Prospective evaluation of the MET-AP
system providing triage plans for acute pediatric ab-
dominal pain. Int J Med Inf 2008; 77 (3): 208–218.

5. Fischer S, Stewart TE, Mehta S, Wax R, Lapinsky SE.
Handheld computing in medicine. J Am Med In-
form Assoc 2003; 10 (2): 139–149.

6. Ball MJ, Silva JS, Bierstock S, Douglas JV, Norcio AF,
Chakraborty J, et al. Failure to provide clinicians
useful IT systems: opportunities to leapfrog current
technologies. Methods Inf Med 2008; 47 (1): 4–7.

7. Berner ES, editor. Clinical Decision Support Sys-
tems. Theory and Practice. 2nd ed. New York:
Springer Science + Business Media; 2007.

8. Ammenwerth E, Buchauer A, Bludau B, Haux R.
Mobile information and communication tools in
the hospital. Int J Med Inf 2000; 57 (1): 21–40.

9. Bardram JE, Christensen HB. Pervasive computing
support for hospitals: an overview of the activity-
based computing project. IEEE Pervas Comput
2007; 6 (1): 44–51.

10. Rogers JE. Quality assurance of medical ontologies.
Methods Inf Med 2006; 45 (3): 267–274.

11. Gruber TR. A translation approach to portable on-
tology specifications. Knowl Acquis 1993; 5 (2):
199–220.

12. Kishore R, Zhang H, Ramesh R. A helix-spindle
model for ontological engineering. Commun ACM
2004; 47 (2): 69–75.

13. SNOMED Clinical Terms® User Guide. July 2008
International Release: The International Health
Terminology Standards Development Organisa -
tion; 2008.

14. Rogers JE, Roberts A, Solomon D, van der Haring E,
Wroe CJ, Zanstra PE, et al. GALEN ten years on:
tasks and supporting tools. In: Patel V, Rogers R,
Haux R, editors. Medinfo 2001: Proceedings of the
10th World Congress on Medical Informatics.
 Amsterdam: IOS Press; 2001. pp 256–260.

15. Noy NF, Rubin DL, Musen MA. Making biomedical
ontologies and ontology repositories work. IEEE
Intell Syst 2004; 19 (6): 78–81.

16. Tu S, Eriksson H, Gennari JH, Shahar Y, Musen MA.
Ontology-based configuration of problem-solving
methods and generation of knowledge-acquisition
tools: application of PROTÉGÉ-II to protocol-
based decision support. Artif Intell Med 1995; 7 (3):
257–289.

17. Crubézy M, Musen MA. Ontologies in support of
problem solving. In: Staab S, Studer R, editors.
Handbook on Ontologies. Berlin, Heidelberg:
Springer-Verlag; 2004. pp 321–342.

18. Wright A, Sittig DF. A four-phase model of the
 evolution of clinical decision support architectures.
Int J Med Inf 2008; 77 (10): 641–649.

19. de Dombal FT, Leaper DJ, Staniland JR, McCann
AP, Horrocks JC. Computer-aided diagnosis of
acute abdominal pain. Br Med J 1972; 2 (5804):
9–13.

20. Gardner RM, Pryor TA, Warner HR. The HELP
hospital information system: update 1998. Int J
Med Inf 1999; 54 (3): 169–182.

21. Kawamoto K, Lobach DF. Design, implementation,
use and preliminary evaluation of SEBASTIAN, a
standards-based Web service for clinical decision
support. In: Proceedings of the AMIA 2005 Annual
Symposium; 2005. pp 380–384.

22. Musen MA, Schreiber AT. Architectures for intelli-
gent systems based on reusable components. Artif
Intell Med 1995; 7 (3): 189–199.

23. Musen MA. Scalable software architectures for
decision support. Methods Inf Med 1999; 38 (4–5):
229–238.

24. Musen MA. Domain ontologies in software engi -
neering: Use of Protégé with the EON architecture.
Methods Inf Med 1998; 37 (4–5): 540–550.

25. Martins SB, Lai S, Tu S, Shankar R, Hastings SN,
Hoffman BB, et al. Offline testing of the ATHENA
Hypertension decision support system knowledge
base to improve the accuracy of recommendations.
In: Proceedings of the AMIA 2006 Annual Sym-
posium; 2006. pp 539–543.

26. Crubézy M, O’Connor M, Buckeridge DL, Pincus Z,
Musen MA. Ontology-centered syndromic surveil-
lance for bioterrorism. IEEE Intell Syst 2005; 20 (5):
26–35.

27. Joutchkov A, Tverdokhlebov N, Yanovsky A, Golit-
sin S, Arnautov S, Strizh I. Libraries of strategies and
ontology-driven subject area models as “corner
stones” in Grid development. Methods Inf Med
2005; 44 (2): 249–252.

28. Cannataro M, Cuda G, Veltri P. Modeling and de-
signing a proteomics application on PROTEUS.
Methods Inf Med 2005; 44 (2): 221–226.

29. Eriksson H, Puerta AR, Musen MA. Generation of
knowledge-acquisition tools from domain ontol-
ogies. Int J Hum Comput Stud 1994; 41 (3):
425–453.

30. Nadkarni PM, Marenco L, Chen R, Skoufos E, Shep-
herd G, Miller P. Organization of heterogeneous
scientific data using the EAV/CR representation. J
Am Med Inform Assoc 1999; 6 (6): 478–493.

31. Jing J, Helal AS, Elmagarmid A. Client-server com-
puting in mobile environments. ACM Comput
Surv 1999; 31 (2): 117–157.

32. Gennari JH, Musen MA, Fergerson RW, Grosso WE,
Crubézy M, Eriksson H, et al. The evolution of Pro-
tégé: an environment for knowledge-based systems
development. Int J Hum Comput Stud 2003; 58 (1):
89–123.

33. OWL Web Ontology Language Guide. W3C; cited
August 29, 2008. Available from: http://www.
w3.org/TR/owl-guide/.

34. Simple Object Access Protocol. W3C; cited August
29, 2008. Available from: http://www.w3.org/TR/
soap/.

35. Michalowski W, Wilk S, Thijssen A, Li M. Using a
Bayesian belief network model to categorize length
of stay for radical prostatectomy patients. Health
Care Manag Sci 2006; 9 (4): 341–348.

36. Hanson CW, 3rd, Marshall BE. Artificial intelli-
gence applications in the intensive care unit. Crit
Care Med 2001; 29 (2): 427–435.

37. Blaszczynski J, Farion K, Michalowski W, Wilk S,
Rubin S, Weiss D. Mining clinical data: selecting
decision support algorithm for the MET-AP sys-
tem. In: Miksch S, Hunter J, Keravnou ET, editors.
Artificial Intelligence in Medicine. 10th Conference
on Artificial Intelligence in Medicine, AIME 2005,
Aberdeen, UK, July 23–27, 2005, Proceedings. Ber-
lin, Heidelberg: Springer-Verlag; 2005. pp 429–433.

38. Wilk S, Slowinski R, Michalowski W, Greco S. Sup-
porting triage of children with abdominal pain in
the emergency room. Eur J Oper Res 2005; 160 (3):
696–709.

39. Wilk S, Michalowski W, Farion K, Kersten M. Inter-
action design for mobile clinical decision support
systems: the MET system solutions. Found Comput
Decis Sci 2007; 32 (1): 47–61.

40. Michalowski W, Kersten M, Wilk S, Slowinski R. De-
signing man-machine interactions for mobile clini-
cal systems: MET triage support using Palm hand-
helds. Eur J Oper Res 2007; 177 (3): 1409–1417.

41. Carter JH. Design and implementation issues. In:
Berner ES, editor. Clinical Decision Support Sys-
tems. Theory and Practice. 2nd ed. New York:
Springer Science + Business Media; 2007. pp 64–98.

42. Sadeghi S, Barzi A, Sadeghi N, King B. A Bayesian
model for triage decision support. Int J Med Inf
2006; 75 (5): 403–411.

43. Samore MH, Bateman K, Alder SC, Hannah E, Don-
nelly S, Stoddard GJ, et al. Clinical decision support
and appropriateness of antimicrobial prescribing: a
randomized trial. JAMA 2005; 294 (18): 2305–2314.

44. Berner ES, Houston TK, Ray MN, Allison JJ, Heude-
bert GR, Chatham WW, et al. Improving ambula-
tory prescribing safety with a handheld decision
support system: a randomized controlled trial. J Am
Med Inform Assoc 2006; 13 (2): 171–179.

45. Eisenstein J, Vanderdonckt J, Puerta AR. Applying
model-based techniques to the development of UIs
for mobile computers. In: IUI 2001: Proceedings of
the 6th International Conference on Intelligent
User Interfaces, Santa Fe, New Mexico, USA, Janu-
ary 14–17, 2001. New York: ACM; 2001. pp 69–76.

46. Hine MJ, Farion K, W. Michalowski, Wilk S. Deci-
sion making by emergency room physicians and
residents: implications for the design of clinical
decision support systems. Int J Healthc Inf Syst
 Inform 2008; 4 (2): 17–35.

Methods Inf Med 4/2009 © Schattauer 2009

390 K. Farion et al.: Clinical Decision Support System for Point of Care Use

