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Summary 
Objectives: The objective of this research 
was to design a clinical decision support sys-
tem (CDSS) that supports heterogeneous 
clinical decision problems and runs on 
multiple computing platforms. Meeting this 
objective required a novel design to create an 
extendable and easy to maintain clinical CDSS 
for point of care support. The proposed 
 solution was evaluated in a proof of concept 
implementation.  
Methods: Based on our earlier research with 
the design of a mobile CDSS for emergency 
triage we used ontology-driven design to 
 represent essential components of a CDSS. 
Models of clinical decision problems were de-
rived from the ontology and they were pro-
cessed into executable applications during 
runtime. This allowed scaling applications’ 
functionality to the capabilities of computing 
platforms. A prototype of the system was im-
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plemented using the extended client-server 
architecture and Web services to distribute 
the functions of the system and to make it op-
erational in limited connectivity conditions. 
Results: The proposed design provided a 
common framework that facilitated devel-
opment of diversified clinical applications 
running seamlessly on a variety of computing 
platforms. It was prototyped for two clinical 
decision problems and settings (triage of 
acute pain in the emergency department and 
postoperative management of radical pros-
tatectomy on the hospital ward) and imple-
mented on two computing platforms – desk-
top and handheld computers. 
Conclusions: The requirement of the CDSS 
heterogeneity was satisfied with ontology-
driven design. Processing of application mod-
els described with the help of ontological 
models allowed having a complex system run-
ning on multiple computing platforms with 
different capabilities. Finally, separation of 
models and runtime components contributed 
to improved extensibility and maintainability 
of the system.  
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1. Introduction  
Research described in this paper is concerned 
with supporting decision making by phy -
sicians at the point of care in an acute and an 

emergency care setting. It started several years 
ago with development of a clinical decision 
support system (CDSS) to support emergen-
cy triage of patients presenting to the emer -
gency department (ED) with acute pain con-

ditions. This system called MET1 (Mobile 
Emergency Triage) [1] was designed to help 
with management of pediatric patients using 
information about their history, physical 
examination and a limited number of labora-
tory tests. MET1 included two clinical appli-
cations (supporting triage of pediatric ab-
dominal pain [2] and pediatric scrotal pain 
[3]) and it ran exclusively on handheld com-
puters. The MET1 abdominal pain appli-
cation (MET-AP) was prospectively evalu-
ated in the ED at the Children’s Hospital of 
Eastern Ontario in 2003–2004 in order to 
compare its triage accuracy with the accuracy 
of emergency physicians. The detailed results 
of this evaluation are reported in [4].  

MET1 was designed to support a set of 
homogeneous decision problems in a single 
setting (ED) and to operate on a single com-
puting platform (a handheld computer). This 
limited design was typical of early generation 
mobile CDSSs [5], and it was sufficient for 
supporting the basic functionality. However, 
to allow wider implementation and adoption, 
CDSSs need to support physicians evaluating 
heterogeneous decision problems in different 
settings, and to run seamlessly on various 
platforms automatically scaling to their capa-
bilities [6]. In response to these demands for 
versatile and flexible CDSSs we propose a new 
CDSS design (referred to as MET2) that 
 represents the next generation of CDSSs. 

The requirements for CDSS expanded 
functionality come from research (see se-
lected papers in [7]) and were also expressed 
by physicians who participated in the MET1-
 AP trial. While decision support at the point 
of care using handheld computers was a help-
ful and important aspect of the functionality, 
ED physicians favored a system running on a 
wider range of devices, thereby enabling a 
wider range of functionality. For example, 
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In recent years, use of ontology as a mech-
anism for representing knowledge in CDSSs 
has gained momentum [15] and has become 
more common in supporting and solving 
decision problems [16, 17]. This has co-
incided with the evolution of CDSS architec-
tures [18]. The first CDSSs were standalone 
systems that were running separately from 
other hospital systems (e.g., AAPHelp for 
diagnosing abdominal pain [19]). They 
evolved into integrated system where deci-
sion support was embedded into hospital in-
formation systems (e.g., HELP offering sup-
port in such clinical areas as laboratory, nurse 
charting, radiology or pharmacy [20]). Then, 
the integrated systems evolved into separated 
systems with shareable information and deci-
sion support content (e.g., SEBASTIAN [21] 
with multiple XML-based modules contain-
ing clinical knowledge in machine-executable 
format).  

Ontology can be used to construct knowl -
edge bases with instances of defined concepts 
(these instances represent facts about specific 
problems), thus, it has been employed to 
 represent information and knowledge in the 
systems with shareable information. Sub-
sequently to this line of research, medical in-
formatics has also explored ontology-driven 
design, where ontology and derived knowl -
edge bases are separated from domain-
 independent processing algorithms (often 
 referred to as solving algorithms or solvers) 
[22, 23]. The idea of separating ontology and 
derived knowledge bases from solvers enables 
reusability and also improves the robustness 
of the system design. One solver may be used 
with different ontology and knowledge bases, 
and vice versa. Moreover, new solvers may be 
added without having to alter the ontology or 
the knowledge base, and changes in the ontol-
ogy and the knowledge base do not require 
modifying solvers. 

The idea of separated ontology and solvers 
was used in the EON system. EON provided a 
set of middleware components to automate 
various aspects of protocol-directed therapy 
(checking whether a patient was eligible for a 
particular therapy and planning the therapy) 
[24]. It was developed for clinical trial proto-
cols for the treatment of cancer and HIV in-
fections, and later it was extended to cover the 
management of chronic diseases and other 
types of guidelines. Now EON is used in the 
ATHENA CDSS for hypertension manage-

ment [25]. EON included the generic guide-
line ontology that defined concepts related to 
clinical protocols and the medical specialty 
ontology that defined concepts correspond-
ing to findings and interventions for a par-
ticular area of medicine. Adding support for 
new problems required extending the medi-
cal specialty ontology and linking it to the 
guideline ontology. Moreover, EON con-
tained two generic solvers – for checking 
protocol eligibility and for planning therapy. 

A similar ontology-driven design was ap-
plied in BioSTORM – a system for syndromic 
surveillance (monitoring of prediagnostic 
data for early detection of disease outbreaks) 
[26]. The system uses the data-source ontol-
ogy and the problem-solving ontology. The 
data-source ontology defines characteristics, 
types and relationships of monitored data 
coming from various sources (e.g., 911 
emergency data). The problem-solving on-
tology organizes and characterizes solvers 
available in the system in terms of data and 
knowledge a given solving method uses. Bio -
STORM also includes the controller com-
ponent that identifies and deploys solvers to 
analyze incoming data streams.  

The ontology-driven design has not been 
used only in CDSSs but also it has been ap-
plied in bioinformatics to design grid systems 
[27]. For example, PROTEUS is a grid-based 
problem solving environment for composing 
and running applications aimed at analyzing 
sequences of proteins [28]. It allows for mul -
tiple applications represented as distributed 
workflows of software components. The sys-
tem includes the domain ontology and the 
application ontology. The domain ontology 
classifies and describes concepts in the do-
main of bioinformatics as well as available 
 resources (e.g., solvers and external data-
bases). The application ontology classifies 
and describes available application work-
flows (composed from concepts from the 
 domain ontology). Workflows from the ap-
plication ontology are executed by the exe -
cution manager. 

3. Design of the MET1 
 System 
MET1 followed the requirements to support 
a set of homogeneous decision problems and 
to operate on a single computing platform. Its 

while categorical data was easily entered 
through drop-down menus on the portable 
device, the ability to enter comments was very 
limited and would be facilitated by a device 
with a keyboard and a larger display. Ammen-
werth et al. [8] describe the contradictions 
 between requests for small and transportable 
devices versus those with larger displays. 
 Furthermore, they note the tasks being per -
formed as well as personal preference signifi-
cantly influence adoption of different devices. 
In response, they propose a “multi-device 
architecture” for electronic information pro-
cessing and communication in the clinical 
 setting. A similar claim is put forward by 
 activity-based computing – a new paradigm 
for pervasive clini cal computing that con-
siders user activities (tasks) as first class 
 objects in a computing environment [9]. Ac-
cording to this paradigm users should be able 
to resume their activities on arbitrary com-
puting devices (available at the point of care 
or suited for the task). 

This paper is organized as follows. In the 
next section we discuss related research on 
using ontology in CDSS design. In Section 3 we 
briefly describe the design of the MET1 system 
and in Section 4 we outline how we  responded 
to a challenge of creating the new generation of 
CDSSs with the design for MET2. In Section 5 
we elaborate on the technical aspects of the 
MET2 design and describe its implementation. 
This description does not cover the issues of in-
tegration with existing hospital systems, as they 
were reported earlier [1]. Finally, we conclude 
with a discussion in Section 6. 

2. Literature Review 

Ontology represents both the explicit and im-
plied concepts used within a particular disci-
pline, and the relationships between these 
concepts [10, 11]. Ontological engineering, 
dealing with developing and using ontology 
[12], has become an important research focus 
in information science.  

In the field of medicine ontology has been 
extensively exploited in the form of con-
trolled terminologies and classifications for 
knowledge representation, understanding 
and exchange. This line of research is exem -
plified by attempts to define standardized 
classifications and nomenclatures such as 
SNOMED-CT® [13] or OpenGALEN [14].  
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logical design involved ontology and derived 
knowledge bases that were separated from a 
solver. The MET1 ontology included the data 
ontology and the support ontology, with the 
data ontology specifying concepts related to 
structure of information to be processed and 
the support ontology defining concepts re-
lated to decision models (all models used by 
MET1 were rule-based).  

Both ontologies were used to derive data 
models and support models respectively. The 
data model encompassed a knowledge base 
with instances of concepts from the data on-
tology that described the structure of clinical 
information considered for a specific prob-
lem (i.e., a specific acute pain condition). Fol-
lowing the idea of automatic generation of 
user interfaces for knowledge acquisition 
tools [29], the data ontology and derived data 
models were annotated with additional infor-
mation allowing the construction of custom-
ized user interfaces for collecting and pre -
senting clinical data [1]. The support model 
encompassed a knowledge base composed of 
the decision rules representing knowledge on 
how to solve a specific decision problem (e.g., 
to make triage disposition for a patient with 
an acute scrotal pain). 

The data and support models had to be 
created for every decision problem handled 
by the system and each pair formed an appli-
cation model for this specific problem. Appli-
cation models were then transformed on re-
quest into executable applications. The gen-
eral design of the MET1 system is presented 

in �Figure 1. The two major architectural 
components of this design were the appli-
cation repository and the executor. The appli-
cation repository managed and stored the 
available application models. The executor 
created applications according to their appli-
cation models and executed them. MET1 in-
cluded also an interface repository with com-
ponents for building a user interface and one 
solver that was used with all decision models. 

Typically, upon the ED physician’s request, 
the executor retrieved an appropriate appli-
cation model from the application repository 
and created the user interface according to the 
data ontology using components from the in-
terface repository. Then, it presented the in-

terface to the ED physician for recording and 
viewing clinical data and for calling the triage 
support function. When this function was in-
voked, the executor linked the solver with the 
support model, solved it for collected data, 
and presented the results. After the physician 
had finished working with the application, 
the executor purged the application model 
and was ready to respond to the next request. 

4. Design of the MET2 
 System 
Successful adoption of CDSSs in clinical prac-
tice depends on their broadly understood ver-

Fig. 1 General design of the MET1 system 

Table 1 Main shortcomings in earlier generation of CDSSs as exemplified by MET1 system

Capability Level CDSS shortcoming MET1 shortcoming 

Support for heterogeneous 
decision problems 

Design Limited set of similar decision 
models 

Single decision model 
type 

Architecture Limited set of similar solvers Single solver 

Execution on multiple  
computing platforms 

Design No ability to create sophis-
ticated customized interfaces 

 Interface embedded  
in a data model 

Architecture  No ability to run multiple  
support and platform  
configurations 

 Single platform 

No ability to customize sup-
port to different computing 
platforms 

“Hard-wired” interface 
and support specifica-
tions 

No ability to re-use interface 
components  
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satility. Specifically, a new-generation CDSS 
should be able to support heterogeneous deci-
sion problems (in particular those that 
require heterogeneous decision models and 
solvers) at different settings and to execute 
seamlessly on multiple computing platforms 
[6]. The design of earlier CDSSs was too limit-
ing to satisfy these require ments – �Table 1 
lists the major shortcomings. These short-
comings prompted us to propose the novel 
design of MET2. Despite expanding the sys-
tem functionality beyond emergency triage 
we decided to stay with MET acronym as a 
label identifying our  research. 

The first step in addressing the design 
shortcomings of earlier CDSSs was to revisit 

the ontology. �Figure 2 presents the ontol-
ogy used in the MET2 design. To improve 
readability only the most important classes 
and “is-a” and “association” relationships are 
presented (e.g., it shows that a rule solver is a 
solver or that a user interface is associated 
with forms). It expands the MET1 support 
ontology and introduces two new com-
ponents – the interface ontology and the con-
figuration ontology. These two new ontol-
ogies are used to derive interface and con-
figuration models that enhance the appli-
cation model, so in MET2 it encompasses 
data, support, interface and configuration 
models. Moreover, we allow application 
models to include several support and inter-

face models that are suited to capabilities 
(e.g., memory, computational power, display 
size, interaction modalities) of specific plat-
forms, thus dealing with possible platform 
variability.  

The support ontology has been extended 
to handle decision problems requiring differ-
ent types of decision models and different 
solvers. We have introduced concepts repre-
senting different types of decision models, 
different types of solvers, and the associations 
between them. When deriving specific sup-
port models from the support ontology, these 
associations allow coupling decision models 
with solvers, so the executor knows which 
solver to invoke when running an application. 

Fig. 2 MET2 ontology 
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An application model may include several 
platform-specific support models, thus, a 
MET2 application running on a powerful 
platform can use a complex support model 
(where a complex decision model is coupled 
with a complex solver), while the same appli-
cation executed on a computationally weak 
platform may switch to a simplified support 
model. A drawback associated with such scal-
ing is that these two models may provide po-
tentially contradicting outcomes for the same 
patient. This issue may be addressed by tun-
ing simplified support models so their sol-
ution strategy is more conservative than that 
of complex models, following the percept 
that if in doubt, the system should suggest a 
more conservative course of action. 

The interface ontology introduced in 
MET2 defines concepts representing various 
components of the user interface (e.g., forms 
and attribute editors). It is used to derive in-
terface models included in specific appli-
cation models. Explicit representation of user 
interface components allows us to define 

sophisticated user interfaces and address one 
of the shortcomings associated with the ear-
lier CDSS design where the user interface was 
described by simply annotating data models. 
With several platform-specific interface 
models included in an application model, the 
application executed on a handheld com-
puter may split collected and displayed infor-
mation across multiple screens and use hand-
writing recognition for data entry, while the 
same application running on a desktop com-
puter displays all information on a single 
screen and allows entering data with a key-
board and mouse. 

The configuration ontology is introduced 
in MET2 to handle increased complexity of 
application models that may include multiple 
platform-specific support and interface mod-
els. This ontology is used to derive configu -
ration models that link support and interface 
models with target computing platforms – 
such links are called “profiles” (one configu -
ration model may specify multiple profiles 
for different platforms). 

The MET1 data ontology allowed defining 
data models for different decision problems 
and it could be reused in MET2 design with-
out extensive changes (it only required strip-
ping annotations on the user interface as they 
were made redundant by introducing the in-
terface ontology). However, in the MET2 
 design, we introduced the Entity-Attribute-
Value (EAV) approach to structure clinical in-
formation as it allows for more flexible and 
effective handling of heterogeneous data 
[30]. In this approach the concept represent-
ing a patient-physician encounter becomes a 
central entity that is characterized by a set of 
clinical attributes, and its instances are de-
scribed by values of the attributes. The at-
tributes specify the historical information, 
physical examination findings and test results 
that should be collected during an encounter 
and considered when making a decision 
about a patient. A data model derived from 
the data ontology contains definitions of 
these attributes for a specific decision prob-
lem (e.g., triage of a scrotal pain).  

Fig. 3 General design of the MET2 system 



The data ontology is relatively simple and 
represents data collected during an en-
counter, because such information (the most 
recent medical history and a current patient 
state) is required to provide early decision 
support at the point of care. The data ontol-
ogy is also used to facilitate integration with 
other hospital information systems because 
data interoperability can be ensured at this 
level. If past patient data recorded in the elec-
tronic patient record (EHR) is required, defi-
nitions of clinical attributes can be expanded 
with information about how their values 
should be retrieved from the EHR. With this 
information explicitly available, MET2 will 
not only be able to analyze values of attributes 
entered by the physician, but also to use data 
already stored in the EHR. 

The general system design of MET2 is 
presented in �Figure 3. In order to address 
the CDSS design shortcomings associated 
with the “single solver, single platform” ap-
proach, we have introduced two new archi-
tectural components: the adapter and the 
solver repository that replaces a single solver. 
The adapter is responsible for adapting a 
multi-platform application model to a spe-
cific platform and the solver repository stores 
all required solvers. The MET2 design as-
sumes that the interface and the solver reposi-
tories store solvers and interface components 
for multiple computing platforms. In order to 
simplify the description we will refer to 
solvers and interface components as runtime 

components, and to the interface and solver 
repositories as runtime repositories. 

Upon the ED physician’s request, the 
executor manages the creation of a specific 
application in MET2. The executor is aware of 
the computing platform on which it runs, and 
this information is appended to the request 
sent to the application repository. The re-
trieved multi-platform application model is 
passed to the adapter, which adapts it to the 
requested platform by selecting the interface 
and the support model referenced in the cor-
responding platform profile. The platform-
specific model is transferred back to the 
executor that creates the application using 
platform-specific runtime components re-
trieved from the runtime repositories and 
executes it. When the physician finishes using 
the application, the executor purges the ap-
plication model and the retrieved runtime 
components to release computing resources. 
Such a request-execute-purge cycle allows 
running multiple complex applications on 
computationally weak platforms. 

Separation of runtime components from 
application models and the request-execute-
purge cycle significantly improves extensibil-
ity of the MET2 system and the reusability of 
its components. New application models are 
added to the system by storing them in the ap-
plication repository. If the required runtime 
components are not already available in the 
runtime repositories, such components have 
to be added, however no other changes to sys-

tem components are necessary. Also, changes 
in specific application models require either 
no changes to the system, or they are limited 
to the runtime repositories. Finally, multiple-
application models may easily share runtime 
components and thus any update of shared 
components is immediately registered by all 
applications. 

5. Implementation  
of the MET2 System 

5.1 High-level Implementation 

In implementing the MET2 design we fol-
lowed the client-server paradigm. The sim-
plest approach would be to install the exe -
cutor on the MET2 client and the remaining 
architectural components on the MET2 
server. This would require a permanent con-
nection between the client and the server. 
However, interruptions to wireless connec-
tivity are typical in most hospital settings for 
various reasons. Moreover, maintaining per-
manent connection on a mobile device may 
be power-consuming, thus severely limiting 
the usefulness of the system by forcing the 
physician to charge the device frequently. 
Thus, we assumed that the system should be 
able to function off-line with occasional con-
nections between the client and the server 
and implemented it using the extended 
client-server architecture [31]. When dupli-

Fig. 4 High-level implementation of MET2 system design 
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cating the server functionality on the client 
side, we assumed that the client had to store a 
subset of available application models and 
runtime components so it is able to respond 
to physicians’ requests for applications with-
out connecting to the server. This required 
hosting some of the architectural compo -
nents on the client and on the server. Specifi-
cally we duplicated the application repository 
and the runtime repositories (the interface 
repository and the solver repository).  

The high-level implementation of MET2 
design is presented in �Figure 4. For clarity 
the duplicated components located on the 
server side are labeled as central and those lo-
cated on the client side are labeled as local. 
This implementation introduces two new 
architectural components that were not pres-
ent in the general design (see Fig. 3) – the re-
triever and the packager. The retriever, upon 
request from the executor, retrieves the re -
quired application model from the central 
 repository and passes it to the adapter. The 
 retriever is necessary on the server side to 
allow the executor to reach the remote central 
repository. On the client side, the executor 
 retrieves application models directly from the 
local repository. The packager facilitates the 

process of transferring required runtime 
components from the server to the client. It 
captures a platform-specific application 
model processed by the adapter and exam -
ines the interface and the support models to 
identify which runtime components are re -
quired for executing the application. Then, it 
retrieves the components from the central 
runtime repositories, packages them with the 
application model and passes the whole 
“package” to the executor. The executor stores 
the application model in the local application 
repository and the runtime components in 
the local runtime repositories (as all applica -
tion models stored locally on the client side 
are single-platform, there is no need for the 
local adapter). After storing the contents of a 
package, the executor creates and runs the ap-
plication according to its model. When the 
application is no longer necessary, the execu-
tor may purge the received application model 
and the runtime components or cache them 
for future use. 

Following our earlier experience [1], we 
decided to introduce the patient repository 
that stores information about currently pro-
cessed patients (it stores instances of classes 
defined in the data ontology) and acts as a 

buffer between the MET2 system and hospital 
systems [1]. We use the central patient reposi-
tory located on the MET2 server with all 
 currently processed patients, and the local 
 patient repository with patients processed 
locally on the MET2 client. When connection 
between the client and the server is available, 
the central and the local patient repositories 
are synchronized. 

5.2 Low-level Implementation 

The low-level implementation of the MET2 
system design is presented in �Figure 5. The 
figure also identifies specific technologies and 
tools used to develop a working prototype of 
the system. We used Java as an implemen-
tation language because it is available for 
 mobile and desktop computing platforms. 
Moreover, a system written in Java allows 
transferring runtime components over a net-
work – this was critical for sending runtime 
components from the MET2 server to the 
MET2 clients. In the implemented version of 
the MET2, technology constraints forced us 
to look for some non-standard solutions de-
scribed below. To simplify the implemen-

Fig. 5 Low-level implementation of MET2 system design 
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tation we used the same solutions on both 
mobile and desktop platforms.  

The MET2 server was implemented on a 
Java application server to provide Web service 
communication between the server and 
clients. The central application repository 
was realized as a repository managed by Pro-
tégé [32]. Protégé handles multiple ontologi-
cal languages (e.g., frames or OWL Web On-
tology Language [33]) and offers dedicated 
editor for easy creation and modification of 
ontology and derived models. It also provides 
an advanced programming interface in Java, 
so repositories can be programmatically ac-
cessed and modified. We decided to use the 
simpler frame-based representation, because 
the extensive capabilities of OWL (e.g., rea-
soning about ontology) were not required for 
this implementation. 

The Protégé repository is also used to store 
patient data – this simplifies implementation 
as we use a single storage mechanism. Al-
though this solution offers limited efficiency 
(e.g., Protégé repository lacks indexing of its 
content), it is sufficient for the central patient 
repository if the number of currently man-
aged patients is limited.  

Protégé does not offer any mechanism to 
synchronize the content of its repositories, 
therefore we had to develop a synchronizer to 
keep patient data consistent and to solve po-
tential conflicts with update timestamps. The 
synchronizer is implemented as the patient 
manager Web service. The same solution is 

used for the adapter and the packager. They 
are combined into the application manager 
Web service. Both Web services are accessed 
via SOAP (a standard protocol for invoking 
Web services) [34].  

Central and local runtime repositories are 
realized as collections of Java archives (JAR 
files) with compiled Java code. The local pa-
tient and application repositories are imple-
mented as XML repositories. To manage 
these repositories we developed our own pro-
gramming interface that mimics and ab-
stracts the one offered by Protégé. This was 
not the most efficient solution because better 
capabilities are provided by XML-based data-
bases. Unfortunately, at the time of MET2 
 development, XML-based databases were not 
available for mobile platforms.  

5.3 Executor 

The executor, implemented as a Java pro-
gram, allows physicians to work with a spe-
cific clinical application. It is the only compo-
nent of the MET2 system that has to be pre-
installed on the client side – the other ones are 
downloaded by the executor from the server. 
To limit communication between the client 
and the server, the executor first checks if the 
application model is stored locally and re-
quests it from the server using the application 
manager Web service if it is not available. In 
response it receives a package with an appli-

cation model and the necessary runtime 
components, and then stores the package in 
the local repositories. During execution the 
executor checks what Java classes are refer-
enced in the interface and support models, 
 retrieves them from the local runtime reposi-
tories and uses them accordingly. 

The executor has indirect and direct 
modes of selecting clinical applications. In 
the indirect mode the executor presents the 
physician with a list of patients stored in the 
local patient repository. When the physician 
selects a patient, the executor identifies the 
presenting complaint for this patient and re-
quests a corresponding application model. In 
the direct mode the physician first selects ap-
plications from the list of all applications 
available on the server. This allows the phy -
sician to preload the client with a set of ap -
plications (for example the most frequently 
required) and to limit subsequent communi-
cation between the client and the server to pa-
tient data synchronization using the patient 
manager Web service.  

5.4 Application Models 

Currently, the MET2 system contains models 
for three clinical applications – triage of pedi-
atric abdominal pain (MET2-AP) [2], triage 
of pediatric scrotal pain (MET2-SP) [3] and 
postoperative management of radical pros-
tatectomy (MET2-RP) [35]. The first two 

Fig. 6 MET2-RP user interface 
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models are revised and extended versions of 
the respective MET1 applications (they in-
volve the expanded ontology and include 
multiple interface models). Inclusion of the 
last application model was made possible be-
cause of the new MET2 design. 

Construction of the application models 
started with corresponding data models. 
With the help of clinical experts and medical 
literature we defined clinical attributes that 
should have been considered in each decision 
problem. Then we used retrospective chart 
data to build decision models considering 
those that are frequently used in clinical deci-
sion making [36]. These models were coupled 
with corresponding solvers to form support 
models. The choice of decision models and 
solvers was verified in a series of computa-
tional experiments [37, 38]. We also checked 
the performance of the selected support 
models on both computing platforms and 
concluded that scaling was not required, thus 
the same models were used on desktop and 
mobile computers. 

Finally, we created interface models fol-
lowing user-centered and task-centered de-
sign principles [39, 40]. For each application 
model we prepared two interface models – 
one for a handheld computer and one for a 
desktop computer. We also created platform-
specific interface components that were re -
quired to construct these interfaces. Sample 
user interface screens created from the inter-
face models for the MET2-RP application are 
presented in �Figure 6 – when executed on a 
desktop computer, interface displays all data 
fields on a single screen for easy viewing and 
navigation (�Fig. 6a), while on a handheld 
computer these fields are split into several 
tabs to fit a small screen (�Fig. 6b). 

6. Discussion 

According to [41] it is important that the 
CDSS design shifts from a narrowly focused 
“single solver, single platform” paradigm to a 
much broader one. Many CDSSs (e.g. [19, 
42–44]) were designed as stand-alone appli-
cations suitable for a given clinical condition 
only. Such design does not meet requirements 
of system’s versatility and capability to be 
executed on multiple computing platforms. 
With the MET2 design we meet these require-
ments by providing a unifying environment 

that can handle multiple clinical applications 
executed on multiple computing platforms. 

The new design of MET2 uses the ontol-
ogy and derived models to represent key com-
ponents of a CDSS. However, unlike the 
 majority of other design frameworks, it ex-
tends the ontology to allow construction of 
multiple models of specific clinical applica -
tions not only in terms of data and support 
functionality, but also in terms of their user 
interface and computing platform configura -
tion. The MET2 design separates application 
models from runtime components and intro-
duces the request-execute-purge cycle of an 
application. Such a solution ensures exten-
sibility of the MET2 system and reusability of 
runtime components. The system may be ex-
panded by adding new application models 
and existing models may be updated without 
the need to change runtime components. 
Similarly, runtime components may be up-
dated without changing application models. 
Finally, runtime components may be shared 
by multiple application models. 

We tested the MET2 system design by im-
plementing the system according to the ex-
tended client-server paradigm and by creat-
ing models of three applications supporting 
different clinical decision problems. The ap-
plication models scale to the capabilities of 
specific computing platforms (we needed to 
scale the user interface model only). As a part 
of future research we plan to work on intelli-
gent scaling of application models to the ca-
pabilities of specific platforms. Rather than 
providing several platform-specific models, 
an application model would include a single 
generic (platform-independent) support and 
interface model that would be processed by 
an intelligent adapter and transformed ac-
cordingly. This approach has been already ap-
plied with limited success in creating model-
based user interfaces [45]. We will also work 
on extending the capabilities of a patient data 
repository by moving to effective database 
solutions (e.g., XML-based database) and 
leaving ontology editors (e.g., Protégé) for 
ontological engineering only.  

Following results of the clinical trial of the 
MET1 system that revealed the differences 
between decision making process of physi -
cians and medical residents [46], we plan to 
make the MET2 a user-aware system. This 
new feature should allow the system to act 
differently in relation to user’s skills level 

(physician, resident, medical student). We 
discovered that expert physicians tend to use 
more information than residents [46], which 
suggests the support model (the decision 
model in particular) for an expert may 
require more inputs than the support model 
for a novice. Moreover, novice physicians 
have problems with accurate collection of 
some clinical findings (especially those re-
lated to physical examination of the patient). 
If these findings are to be used as input infor-
mation, the user interface should provide ad-
ditional support through explanations or 
feedback to facilitate the data gathering task. 
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