
A Bayesian Approach to OnlineLearningManfred OpperNeural Computing Research Group, Aston University, Birmingham B4 7ET, UK.AbstractOnline learning is discussed from the viewpoint of Bayesian sta-tistical inference. By replacing the true posterior distribution with asimpler parametric distribution, one can de�ne an online algorithmby a repetition of two steps: An update of the approximate posterior,when a new example arrives, and an optimal projection into the para-metric family. Choosing this family to be Gaussian, we show that thealgorithm achieves asymptotic e�ciency. An application to learning insingle layer neural networks is given.1 IntroductionNeural networks have the ability to learn from examples. For batch learning,a set of training examples is collected and subsequently an algorithm is runon the entire training set to adjust the parameters of the network. On theother hand, for many practical problems, examples arrive sequentially andan instantaneous action is required at each time. In order to save memoryand time this action should not depend on the entire set of data which havearrived sofar. This principle is realized in online algorithms, where usuallyonly the last example is used for an update of the network's parameters.Obviously, some amount of information about the past examples is discardedin this approach. Surprisingly, recent studies showed that online algorithmscan achieve a similar performance as batch algorithms, when the number ofdata grows large (Biehl & Riegler 1994; Barkai et al 1995; Kim & Sompolinsky1996).In order to understand the abilities and limitations of online algorithms,the question of optimal online learning has been raised. For algorithms whichare based on a weigthed Hebbian rule, one has sought for optimal weight func-tions which yield the highest local (i.e. instantaneous) or global reduction ofthe average generalization error. Within the thermodynamic limit frameworkof statistical mechanics, this goal has been achieved for highly symmetric dis-tributions of inputs by (Kinouchi & Caticha 1992; Copelli & Caticha 1995)for local optimization and by (Saad & Rattray 1997) for global optimization.1



2 OpperWithin this approach, the dynamics of online learning can be described by afew macroscopic order parameters. The results of these studies have shownthat in some cases online algorithms can even learn with the same asymptoticspeed (Biehl et al 1995; Van den Broeck & Reimann 1996) as optimized batchalgorithms. Unfortunately, it is not clear how to generalize such approaches togeneral learning problems outside the thermodynamic limit framework. Thereason is twofold. First, very speci�c assumptions about the probability distri-butions of network inputs have to made in order to allow for an introductionof order parameters. Second, the optimization also requires some knowledge(e.g. the generalization error) about the unknown teacher rule to be learnt.This information is usually not available in a concrete learning problem. Nev-ertheless, these statistical mechanics approaches are highly important. Theirresults can give an idea of what online algorithms can achieve in an idealizedscenario and have also motivated further studies (Amari 1996; Opper 1996)like the one presented in this chapter.In the following, we will discuss in more detail a Bayesian approach toonline learning which has been introduced in (Opper 1996) and generalizedin (Winther & Solla 1997). In this framework, it is possible to de�ne optimalonline learning as an approximation to batch learning, where in each stepthe loss of information from discarding previous examples is minimized. Suchan optimization can be carried out without making assumptions about thedistributions of inputs.The chapter is organized as follows. In section 2, learning from randomexamples is described within the framework of statistical inference. Section 3brie
y reviews di�erent statistical optimality criteria with a special emphasison e�cient estimation. In section 4, online learning is discussed as an approx-imation to maximum likelihood estimation and a recent approach to e�cientonline learning is introduced. Sections 5, 6 and 7 give an introduction intoBayesian inference, introduces Bayesian online learning and the explicit formof the algorithm within a Gaussian parametric ansatz. The asymptotic av-erage case performance of the algorithm is calculated in section 8. Section 9contains the explicit realization of the algorithm for the case of a single layerperceptron. The chapter concludes with an outlook in section 10.2 Learning and Statistical InferenceThe problem of learning in neural networks can be treated within the frame-work of statistical inference. One assumes that t data Dt = (y1; : : : ; yt) aregenerated independently at random according to a distributionP (Dtj�) = tYk=1P (ykj�): (2.1)



A Bayesian Approach to on-line Learning 3� is an unknown parameter which has to be estimated from Dt. For a noisyclassi�cation problem in a single layer neural net e.g., we set y = (S;x) =(label, inputs). Here x := (x1; : : : ; xn) is an N dimensional vector of inputfeatures and the parameter � := (�1; : : : ; �N ) is an N dimensional vector ofnetwork weights. In this case, a popular model isP (yj�) = �(S � � x)f(x); (2.2)where � �x := PNi=1 �ixi is the inner product of weights and inputs and f is thedensity of inputs. Usually �(h) is a smooth sigmoidal function which increasesfrom zero at h = �1 to 1 at h = 1. For a regression problem, we can sety = (z;x) = (function value, inputs). If a Gaussian noise model is assumed,we have P (yj�) = 1p2��2 e� 12�2 (z�r(�;x))2f(x); (2.3)where r(�;x) is the regression function. In the following, we will usually usethe symbol �� for the true value of the parameter (the one that stands forthe distribution which generates the examples) and �̂ for an estimate of thisparameter.3 Optimal LearningBefore discussing the problem of optimal online learning, we will brie
y re-view (Vapnik 1982; Schervish 1995) a few optimality criteria which can beused to assess the quality of an estimation procedure. Obviously, there isno uniformly optimal estimation strategy. An algorithm which always makesthe same prediction for the unknown probability independently of the data,is optimal for one single task (the one where the data come just from thedistribution which the algorithm predicts) but will usually perform badly ingeneral. Uniform optimality can be achieved only within special subclasses ofestimators. Well known cases are best unbiased density estimators for expo-nential families of probability densities. Unbiasedness of an estimator meansthat the estimate averaged over the distribution of the training set gives thetrue density which generated the data. However, it is not clear at all that oneshould restrict estimators to unbiased ones. One might prefer an estimatorwith a small bias and small variance over an unbiased one with a very largevariance.Various optimality criteria are known in statistics. In the minimax princi-ple one optimizes the prediction for the worst true density. In the Bayesianapproach, one can de�ne an average case optimality, where the average isover a prior distribution p(��) of true parameters ��. We will come back toan online approximation to a Bayesian approach later.For the case of parameter estimation, e�ciency is another important cri-terion for probabilistic models which depend smoothly on the parameters. If



4 Opperparameter estimation is restricted to unbiased estimators �̂ (i.e. if the esti-mate �̂ obeys EDt �̂ = ��), then the famous Rao-Cram�er inequality limits thespeed at which the estimate �̂ approaches the true parameter �� on average.For a single (scalar) parameter it simply readsEDt ��̂ � ���2 � 1t R dyP (yj��) h dd�� lnP (yj��)i2 : (3.1)EDt denotes the expectation over datasets. The generalization to an N di-mensional vector of parameters is possible. For any real vector (z1; : : : ; zN ),we have the inequalityEDt  Xi zi(�̂i � ��i )!2 =Xij zizjEDt �(�̂i � ��i )(�̂j � ��j )� � (3.2)1t Xij zizj(J�1(��))ij;where Jij(��) = Z dyP (yj��)@i lnP (yj��)@j lnP (yj��)is the Fisher Information matrix. Partial derivatives are with respect to thecomponents of ��. If we take nonnegative numbers for the zi, we can interpretethe left hand side of (3.2) as a squared weighted average of the individual errorcomponents �̂i � ��i . Estimators which ful�ll these relations with an equality,are called e�cient. Since the proof of the inequalities requires unbiasedness,it is not clear at all why e�ciency is important. Biased estimators may insome cases violate (3.2) and achieve a better performance. However, thisis not true asymptotically. It can be shown that when the number of datagrows large, then for almost all true parameters ��, no estimator can beatthe Rao-Cram�er inequality. As has been proved e.g. by (LeCam 1953) (undersmoothness assumptions), the Lebesgue measure of the set of all parameters�� for which we can have supere�ciency, i.e. a violation of (3.2), goes to zeroasymptotically. Hence, one reasonable requirement for a good algorithm isasymptotic e�ciency which by (3.2) meansEDt(�̂i � ��i )(�̂j � ��j ) = 1t (J�1(��))ij; (3.3)in the limit t!1.4 Online LearningOften, learning algorithms for estimating the unknown parameter �� are basedon the principle ofMaximum Likelihood (ML). It states that we should choose



A Bayesian Approach to on-line Learning 5a parameter � which maximizes the likelihood P (Dtj�) of the observed data.Under weak assumptions, ML estimators are asymptotically e�cient. As alearning algorithm, one can use e.g. a gradient descent algorithm and iterate�0i � �i = � @i tXk=1 lnP (ykj�) = �� @i tXk=1ET (ykj�) (4.1)until convergence is achieved. Here, ET (ykj�) de�nes the training energy ofthe examples to be minimzed by the algorithm. When a new example yt+1is received, the ML procedure requires that the learner has to update herestimate for � using all previous data. Hence Dt has to be stored in a memory.The goal of online learning is to calculate a new estimate �̂(t + 1) which isonly based on the new data point yt+1, the old estimate �̂(t) (and possiblya set of other auxiliary quantities which have to be updated at each timestep, but are much smaller in number than the entire set of previous trainingdata). A popular idea is to use a procedure similar to (4:1), but to replacethe training energy of all examples Ptk=1ET (ykj�) by the training energy ofthe most recent one. Hence, we get�̂i(t+ 1)� �̂i(t) = �(t) @i lnP (yt+1j�̂(t))= ��(t) @iET (yt+1j�̂(t)): (4.2)The choice of the learning rate �(t) is important. If the algorithm shouldconverge asymptotically, � must be decreased during learning. A schedule� / 1=t yields the fastest rate of convergence, but the prefactor must bechosen with care, in order to avoid that the algorithm gets stuck away fromthe optimal parameter. Another choice is an adaptive � (Barkai et al 1995),which depends on the performance of the algorithm and can be used in thecase of temporal changes of the distribution.A recent modi�cation of (4.2) has been introduced by Amari (Amari 1996;Amari 1997), who replaces the scalar learning rate �(t) by a tensor. This ideamay be derived from the fact that the online training energy contains onlyinformation about the last example, and the change of the estimate of thedistribution due to a change �� of the parameter should not be too large. Thenew idea is to de�ne a measure for distances jj��jj in the parameter spacewhich re
ects distances between probability distributions and is invariantagainst transformations of the parameters. A simple Euklidian distance willnot satisfy this condition. One can be guided by the principle that the distancebetween two distributions should re
ect how well they can be distinguishedby an estimation based on random data. This can be achieved by de�ning themetric in parameter space byjjd�jj2 /Xij d�iJij(�)d�j: (4.3)Assuming that the probability distribution of e�cient estimators is Gaussian(at large t) with a covariance given by (3.3), the probability density that a



6 Opperpoint close to the true value � will be the estimate for �, depends only onthe distance between the two points. Based on such ideas, S. Amari (Amari1985) has developped a beautiful di�erential geometric approach to statisticalinference. In the context of online learning, he proposed the so called naturalgradient algorithm (Amari 1996; Amari 1997), where the update is de�nedby a minimization of the training energy under the condition that jj��jj2 iskept �xed. Solving the constrained variational problem for small �� yields�i(t+ 1)� �i(t) = 
tXj (J�1(�(t))ij@j lnP (yt+1j�(t)): (4.4)The di�erential operatorPj(J�1(�(t))ij@j is termed natural gradient. For thechoice 
t = 1t , one can show that the online algorithm yields asymptoticallye�cient estimation (Amari 1996; Opper 1996).5 The Bayesian ApproachIn the Bayesian approach to statistical inference, the degrees of prior beliefor plausibility of parameters are expressed within probability distributions,the so called prior distributions (or priors) p(�). Once this idea is accepted,subsequent inferences can be based on Bayes rule of probability. Formally,we may think that data are generated by a two step process: First, the trueparameter � is drawn at random from the prior distribution p(�). Second, thedata are drawn at random from P (Dtj�). Bayes rule yields the conditionalprobability density (posterior) of the unknown parameter �, given the data:p(�jDt) = p(�)P (Dtj�)R d�0p(�0)P (Dtj�0) : (5.1)The posterior density (5.1) can be used to calculate an estimate for the un-known parameter. The simplest case is the so called MAP (maximum a pos-teriori) value �̂ = argmax ln p(�jDt), i.e. the most probable parameter value.Another choice is the posterior mean of the parameter. Using the full poste-rior, it is possible to go beyond a simple parameter estimation and to de�nea Bayes optimal prediction for the unknown probability distribution. Opti-mality is here understood in an average sense, both over random drawings ofthe data and random drawings of true parameters � according to p(�). It isnot hard to show that the optimal distribution P̂ (yjDt) which minimizes theexpected quadratic deviation (the symbol Eyj� stands for expectation withrespect to P (yj�)) Z d� p(�)EDtEyj� [P̂ (yjD)� P (yj�)]2:is given by a mixture of all possible distributions in the considered family,weighted by their posterior probabilitiesP̂ (yjD) = Z d� P (yj�) p(�jD): (5.2)



A Bayesian Approach to on-line Learning 7This so called predictive distribution also minimizes a second important func-tional, the averaged relative entropyZ d� p(�)EDEyj�[log P (yj�)P̂ (yjD)] (5.3)where Eyj� "log P (yj�)P̂ (yjDt)# = Z dyP (yj�) log P (yj�)P̂ (yjDt)is an important dissimilarity measure between distributions, the relative en-tropy or Kullback-Leibler divergence DKL(P (�j�)jjP̂ ).From the optimality on average, we see immediately that no estimator canbeat a Bayes procedure for all true parameters ��. An estimator that wouldbe uniformly better than a Bayes procedure would also be better on average.Moreover, it can be shown that for special choices of p(�), Bayes procedurescan also be minimax.A prior p(�) which is well adapted to a problem may act as a regularizer,which can prevent an algorithm from over�tting when the number of examplesis small. Some regularization methods for neural networks, e.g. weight decay,can be interpreted in a Bayesian way. On the other hand, when the number ofexamples is large, the in
uence of the prior distribution becomes weak. Theposterior is sharply peaked at its maximum �̂ and a Gaussian approximationfor its shape p(�jDt) ' exp[� t2Xij (�i � �̂i)Ĵij(�j � �̂j)] (5.4)becomes asymptotically exact. Here Ĵij = �@i@j 1t Pt�=1 lnP (y�j�̂): In niceparametric cases, consistency and asymptotic e�ciency of Bayes predictorscan be proved.6 Online Update of the PosteriorIn order to construct an online algorithm within the Bayesian frameweork, wehave to �nd out how the posterior distribution changes when a new datapointyt+1 is observed. It can be easily shown that the new posterior correspondingto the new datasetDt+1 is given in terms of the old posterior and the likelihoodof the new example byp(�jDt+1) = P (yt+1j�)p(�jDt)R d�P (yt+1j�)p(�jDt) : (6.1)(6.1) does not have the form of an online algorithm, because it requires theknowledge of the entire old dataset Dt. The basic idea to turn this into anonline algorithm is to replace the true posterior p(�jD) by a simpler para-metric distribution p(�jpar), where par is a small set of parameters, which is



8 Opperable to capture a major part of the information about the previous data andwhich has to be updated at each step. Hence, the Bayes online algorithm willbe based on a repetition of two basic steps:� Update: Use the old approximative posterior p(�jpar(t)) to perform anupdate of the form (6.1)p(�jyt+1; par(t)) = P (yt+1j�)p(�jpar(t))R d�P (yt+1j�)p(�jpar(t)) : (6.2)� Project: The new posterior p(�jyt+1; par(t)) will usually not belong tothe parametric family p(�jpar). Hence, in the next step, it need to beprojected into this family in order to obtain p(�jpar(t + 1)). The pa-rameter par(t+ 1) must be chosen such that p(�jpar(t+ 1)) is as closeas possible to p(�jyt+1; par(t)). It is a not clear a priori, which measureof dissimilarity between distributions should be used. Di�erent choicesmay lead to di�erent algorithms. I have chosen the KL-divergenceDKL (p(�jyt+1; par(t))jjp(�jpar)) = (6.3)Z d� p(�jyt+1; par(t)) ln p(�jyt+1; par(t))p(�jpar) ;which is nonsymmetric in its arguments. Minimizing (6.3) can be thoughtof as minimizing the loss of information in the projection step. For theimportant case, where the parametric family is an exponential family,i.e. if the densities are of the formp(�jpar) / exp[�Xk �kfk(�)]; (6.4)it is easy to see, that minimizing (6.3) is equivalent to adjusting theparameters �k such that the moments E�fk(�) match for both distri-butions p(�jpar) and p(�jyt+1; par(t)). This is also equivalent to �ndingthe distribution p(�jpar) which maximizes the entropy under the con-straints that these moments are given. Two cases of exponential familieshave sofar been studied for Bayes online learning: The case of a Gaus-sian family of distributions for learning of continuous parameters wasdiscussed in (Opper 1996). A family of product distributions for binaryrandom variables was chosen by (Winther & Solla 1997) for learningin the Ising perceptron. In the next section I will discuss the Gaussiancase.



A Bayesian Approach to on-line Learning 97 Gaussian AnsatzIf we use a general multivariate Gaussian distribution for p(�jpar), thenpar = (mean; covariance) = (�̂i; Cij). Matching the moments results in�̂i(t + 1) = R d� �iP (yt+1j�)p(�jpar(t))R d�P (yt+1j�)p(�jpar(t))Cij(t + 1) = R d� �i �jP (yt+1j�)p(�jpar(t))R d�P (yt+1j�)p(�jpar(t)) � �̂i(t+ 1)�̂j(t+ 1):Using a simple property of centered Gaussian random variables z, namelythe fact that for well behaved functions f , we have E(zf(z)) = E(f 0(z))�E(z2), we can get the explicit update:�̂(t + 1) = �̂(t) +Xj Cij(t)� (7.1)�@j lnEu[P (yt+1j�̂(t) + u)]andCij(t + 1) = Cij(t) +Xkl Cik(t)Clj(t)� (7.2)�@k@l lnEu[P (yt+1j�̂(t) + u)]:Here the expectation R d�P (yt+1j�)p(�jpar(t)) is written asEu[P (yt+1j�̂(t) + u)] where u is a zero mean Gaussian random vectorwith covariance C(t).It is interesting that the Bayesian approach combined with the Gaussianapproximation to the posterior has led to an update for the posteriormean (which for this approximation equals the MAP value) which lookslike a gradient descent with a tensorial learning rate. This learning rateneed not to be determined from the outside by some given schedule. Inthe Bayes approach it is automatically adjusted by the data!For smooth models, the exact Gaussian asymptotics (5.4) of the pos-terior suggests that the approximation should not be bad when thenumber of examples grows large. In the next section, we will see thatthis is actually the case.8 Asymptotic PerformanceIn order to study the large time behaviour of the algorithm (7.1), (7.2),we �rst need the asmptotic form of the covariance matrix C. We de-�ne Vkl := @k@l lnEuP (yt+1j� + u) and assume that for large times, the



10 Oppertemporal changes of the matrix C are small, so that we can introducecontinuous times and replace (7.2) by the matrix di�erential equationdCdt = CV C (8.1)which is solved by dC�1dt = �V:Integrating yields C�1(t)� C�1(t0) = � Z tt0 V (t0) dt0: (8.2)To proceed, we will make the assumption that the data are generatedindependently at random from a distribution Q(y), which we allow tobe also outside of the family P (yj�), in order to treat the case of amisspeci�ed model. We now assume that the online dynamics is closeto an attractive �xed point ��, which corresponds to a local minimumof � R dy Q(y) lnP (yj�) and satis�esZ dy Q(y)@i lnP (yj��) = 0: (8.3)Dividing (8.2) by t and taking the limit t!1, we getlimt!1 (C�1(t))ijt = limt!1 � R tt0 @i@j lnP (yj��)t (8.4)= � Z dy Q(y)@i@j lnP (yj��):In the �rst equality, we have neglected the width the posterior for largetimes t. In the second equality, the time average has been replaced bythe average over Q(y). For this step, it is not necessary to assume thatthe data are generated independently, ergodicity is su�cient. It is easyto see that for the case Q(y) = P (yj��), we havelimt!1 C�1(t)t = J(��); (8.5)which is the Fisher Information matrix. This result should be comparedwith the natural gradient (4.4). It shows that asymptotically, the ten-sorial learning rate obtained from the Bayes online algorithm becomesproportional to the natural gradient if the probabilistic model is cor-rectly speci�ed and if the local �xpoint �� is the true parameter.In order to calculate the asymptotic scaling of the estimation error,de�ned as the deviation between �� and the MAP �̂(t), we again assumethat the MAP estimates are close to �� and the posterior is sharply



A Bayesian Approach to on-line Learning 11peaked around �̂. We can then neglect the average over the posterior in(7.1) and linearize. Setting �̂i(t) = ��i + �i(t), we get the linear system��i(t) =Xl Cil@l lnP +Xkl Cil�k(t)@k@l lnP; (8.6)where P � P (yt+1j��). We will introduce the matricesBij = Z dy Q(y)@i lnP (yj��)@j lnP (yj��) (8.7)Aij = � Z dy Q(y)@i@j lnP (yj��):Taking the expectation (denoted by an overbar) over the distributionof the most recent example yt+1 and using (8.4) and (8.7), yields anequation of motion for the expected linear error ei = �ideidt + eit =Xj (A�1)ijt @j lnP (8.8)valid for t ! 1. Because of the �xed point condition (8.3), the righthand side vanishes and we conclude that the linear error (the bias)decays like ei / (1=t). More interesting is the dynamics of the ma-trix of quadratic errors Eij := ED[�i(t)�j(t)]. We multiply equation(8.6) by �j(t) and average over the last example. Neglecting terms like�iCjk@k lnP , which decay faster than the others, we obtaindEdt = CBC � CAE � EAC (8.9)= 1t2 A�1BA�1 � 2Et ;which is solved byED[�i(t)�j(t)] = 1t (A�1BA�1)ij; t!1: (8.10)This is the same rate as the one which was obtained for batch algorithms(Max. Likelihood or Bayes) by (Amari & Murata 1993). For local min-ima �� of � R dyQ(y) lnP (yj�), the matrix A (and trivially also B) ispositive de�nite and we should always have the optimal / 1=t decayof the error! This is in contrast to �xed learning rate schedules, wherethe prefactor of the learning rate � / 1=t must be adjusted in order toallow for convergence.The result (8.10) simpli�es further for a wellspeci�ed model. In thiscase, we can use that B = A = J(��) such thatED[�i(t)�j(t)] = 1t (J�1(��))ij; t!1:



12 OpperBy comparing with (3.3), we see that the Bayes online algorithm be-comes asymptotically e�cient.The quadratic estimation error has in general no direct interpretationfor the ability of a learning device to predict novel data. One can studya more natural measure for the learning performance which is given bythe expected relative entropy distance between the predictive distribu-tion constructed from the approximative posterior and the true datagenerating distribution."entro = EDtEy "log Q(y)P̂ (yjDt)# : (8.11)Using an asymptotic expansion as before, we get"entro = Ey "log Q(y)P (yj��)# + Tr (BA�1)2t (8.12)for t ! 1. This result gives the same performance as the one derivedfor the batch maximum likelihood estimate (Seung et al 1992; Amari &Murata 1993). For the well speci�ed case this reduces to the universalasymptotics (Seung et al 1992; Amari & Murata 1993; Opper & Haussler1995) for Bayes- and maximum likelihood estimators"entro = N2tfor t!1, which depends only on the number of degrees of freedom.9 ApplicationFor most models, it will not be easy to perform the Gaussian averagesin (7.1) and (7.2) exactly in order to implement the algorithm. Hence,further approximations may be necessary. However, there are a few non-trivial and relevant probabilistic models, where these averages can beperformed analytically. The simplest choice is linear models, where fora Gaussian prior also the posterior distribution is a Gaussian and theonline approximation becomes exact. A further family of models wherewe can expect that some of the averages can be performed by hand isthe class of mixtures of Gaussians. In the following, we will look at athird case in more detail. This is a model for binary classi�cation whichis de�ned by P (Sj�;x) = � S � � x�0 ! ; (9.1)



A Bayesian Approach to on-line Learning 13where S = �1 is a binary class label, � and x are N dimensional vectorswith inner (dot) product � � x and�(z) = Z z�1 dz e�t2=2=p2�is a sigmoidal function. (9.1) may also be related to a perceptron rulewith weight noise (Opper & Kinzel 1996). For this case, the Gaussianaverages (7.1,7.2) can be carried out explicitely and we obtainEuP = � S � � x�(t) ! (9.2)with �2(t) = �20 +Xij xiCij(t)xj:Explicit updates (7.1,7.2) for the algorithm can be constructed from@j lnEuP = �0� Sxj=�(t)@i@j lnEuP = 8<:�00� �  �0� !29=; xixj�2(t) :To illustrate the performance of the algorithm, we have studied a onedimensional toy model �rst. In this model, we assume that scalar inputsx with �1 � x � +1 are classi�ed as S = �1 according to whether x isgreater or less than ��. In addition, Gaussian noise is added to ��, hence(9.1) is replaced by P (Sj�;x) = �(S(x��)=�0). The expected quadraticestimation error ED(�t � ��)2 as a function of t is shown in Fig.1 fora true parameter �� = 0:1 and �0 = 0:5. The asymptotic approach toe�ciency (straight line) can be seen.Next, we consider the full model (9.1). The simulations (dashed line inFig.2) are performed with N = 50 and the vectors �� and x have in-dependent normally distributed components. The results were averagedover 50 samples. As the initial conditions, we have chosen � = 0 and thetrue spherical Gaussian prior. The curves show the (0�1) generalizationerror " = 1� arccos �� � �̂jj��jj jj�̂jj! ; (9.3)as a function of � = tN . This quantity measures the probability of dis-agreement between the classi�cations of a perceptron de�ned by theweight vector �̂ and the noise free perceptron (setting �0 = 0 for in-dependent test data) de�ned by ��. The data were generated with�0 = 6:24. For comparison, we have shown the error for the true (batch)



14 Opper

Fig. 1 - Quadratic Error ED(� � ��)2 for a one dimensional noisy per-ceptron. The straight line gives the bound (3.1).

Fig. 2 - Generalization error (9.3) for the classi�cation model (9.1). Thedashed line is obtained from the Bayes algorithm. The solid line is ananalytical result for the batch error in the thermodynamic limit.Bayes prediction (solid line) analytically calculated for the thermody-namic limit N !1.The number of parameters to be updated in the online algorithm canbe reduced drastically, if the general covariance matrix C is replacedby a diagonal matrix or even simpler, by a single number c. This isequivalent to approximating the posterior by a spherical Gaussian. (7.2)



A Bayesian Approach to on-line Learning 15will simplify toc(t+ 1) = c(t) + c2(t) 1N Xi @2i lnEu[P (yt+1j�̂(t) + u)]: (9.4)For the model (9.1) it can be shown that this approximation actuallyleads to the same update as de�ned by the locally optimal weightedHebbian scheme derived for the thermodynamic limit framework (Biehlet al 1995), provided that the model is well speci�ed. This agreementwill be lost for misspeci�ed cases.10 OutlookOne of the greatest challenges for the Bayesian online approach will bethe practical realizability for more complicated models like multilayerneural networks. Here, one has to �nd additional useful approximationsin order to perform the Gaussian averages. For example, one may trya stochastic version of the algorithm based on Monte Carlo sampling.Mean �eld methods may also be helpful. Another possibility is to studydistance measures di�erent from (6.3) in the projection step. This maylead to a di�erent algorithm for which averages maybe obtained easier.From a theoretical viewpoint, better, nonasymptotic estimates of theperformance of the Bayes online algorithm are highly desirable. Suchresults are necessary to understand the global convergence properties.A further interesting question is the performance of the algorithm fornonsmooth models, like the noisefree perceptron. For this case even theasymptotics is unknown.ReferencesAmari S Di�erential-Geometrical Methods in Statistics Lecture Notesin Statistics, Springer Verlag New YorkAmari S 1993 Neural Networks 6 161Amari S and Murata N 1993 Neural Computation 5 140Amari S Neural learning in structured parameter spaces | Natural Rie-mannian gradient in NIPS'96, vol. 9, MIT Press.Amari S 1997 (preprint)Barkai N Seung H S and Sompolinsky H 1995 Phys. Rev. Lett. 75 1415Berger J O 1985 Statistical Decision theory and Bayesian AnalysisSpringer-Verlag New York
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