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Abstract

Online learning is discussed from the viewpoint of Bayesian sta-
tistical inference. By replacing the true posterior distribution with a
simpler parametric distribution, one can define an online algorithm
by a repetition of two steps: An update of the approximate posterior,
when a new example arrives, and an optimal projection into the para-
metric family. Choosing this family to be Gaussian, we show that the
algorithm achieves asymptotic efficiency. An application to learning in
single layer neural networks is given.

1 Introduction

Neural networks have the ability to learn from examples. For batch learning,
a set of training examples is collected and subsequently an algorithm is run
on the entire training set to adjust the parameters of the network. On the
other hand, for many practical problems, examples arrive sequentially and
an instantaneous action is required at each time. In order to save memory
and time this action should not depend on the entire set of data which have
arrived sofar. This principle is realized in online algorithms, where usually
only the last example is used for an update of the network’s parameters.
Obviously, some amount of information about the past examples is discarded
in this approach. Surprisingly, recent studies showed that online algorithms
can achieve a similar performance as batch algorithms, when the number of
data grows large (Biehl & Riegler 1994; Barkai et al 1995; Kim & Sompolinsky
1996).

In order to understand the abilities and limitations of online algorithms,
the question of optimal online learning has been raised. For algorithms which
are based on a weigthed Hebbian rule, one has sought for optimal weight func-
tions which yield the highest local (i.e. instantaneous) or global reduction of
the average generalization error. Within the thermodynamic limit framework
of statistical mechanics, this goal has been achieved for highly symmetric dis-
tributions of inputs by (Kinouchi & Caticha 1992; Copelli & Caticha 1995)
for local optimization and by (Saad & Rattray 1997) for global optimization.
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Within this approach, the dynamics of online learning can be described by a
few macroscopic order parameters. The results of these studies have shown
that in some cases online algorithms can even learn with the same asymptotic
speed (Biehl et al 1995; Van den Broeck & Reimann 1996) as optimized batch
algorithms. Unfortunately, it is not clear how to generalize such approaches to
general learning problems outside the thermodynamic limit framework. The
reason is twofold. First, very specific assumptions about the probability distri-
butions of network inputs have to made in order to allow for an introduction
of order parameters. Second, the optimization also requires some knowledge
(e.g. the generalization error) about the unknown teacher rule to be learnt.
This information is usually not available in a concrete learning problem. Nev-
ertheless, these statistical mechanics approaches are highly important. Their
results can give an idea of what online algorithms can achieve in an idealized
scenario and have also motivated further studies (Amari 1996; Opper 1996)
like the one presented in this chapter.

In the following, we will discuss in more detail a Bayesian approach to
online learning which has been introduced in (Opper 1996) and generalized
in (Winther & Solla 1997). In this framework, it is possible to define optimal
online learning as an approximation to batch learning, where in each step
the loss of information from discarding previous examples is minimized. Such
an optimization can be carried out without making assumptions about the
distributions of inputs.

The chapter is organized as follows. In section 2, learning from random
examples is described within the framework of statistical inference. Section 3
briefly reviews different statistical optimality criteria with a special emphasis
on efficient estimation. In section 4, online learning is discussed as an approx-
imation to maximum likelihood estimation and a recent approach to efficient
online learning is introduced. Sections 5, 6 and 7 give an introduction into
Bayesian inference, introduces Bayesian online learning and the explicit form
of the algorithm within a Gaussian parametric ansatz. The asymptotic av-
erage case performance of the algorithm is calculated in section 8. Section 9
contains the explicit realization of the algorithm for the case of a single layer
perceptron. The chapter concludes with an outlook in section 10.

2 Learning and Statistical Inference

The problem of learning in neural networks can be treated within the frame-
work of statistical inference. One assumes that ¢ data D; = (y1,...,y;) are
generated independently at random according to a distribution

t

P(D,|6) = k]_] P(yl6). (2.1)
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f is an unknown parameter which has to be estimated from D;. For a noisy
classification problem in a single layer neural net e.g., we set y = (S,x) =
(label, inputs). Here x = (z1,...,2,) is an N dimensional vector of input
features and the parameter § = (6;,...,0x) is an N dimensional vector of
network weights. In this case, a popular model is

P(yl0) = ¢(S 6 x)f(x), (2.2)

where 6-x = SN | 6,2, is the inner product of weights and inputs and f is the
density of inputs. Usually ¢(h) is a smooth sigmoidal function which increases
from zero at h = —oo to 1 at h = co. For a regression problem, we can set
y = (z,x) = (function value, inputs). If a Gaussian noise model is assumed,

we have
1

VvV 2mo?

where r(f,x) is the regression function. In the following, we will usually use
the symbol 6* for the true value of the parameter (the one that stands for
the distribution which generates the examples) and f for an estimate of this
parameter.

P(y|6) = e 30N £ (x), (2.3)

3 Optimal Learning

Before discussing the problem of optimal online learning, we will briefly re-
view (Vapnik 1982; Schervish 1995) a few optimality criteria which can be
used to assess the quality of an estimation procedure. Obviously, there is
no uniformly optimal estimation strategy. An algorithm which always makes
the same prediction for the unknown probability independently of the data,
is optimal for one single task (the one where the data come just from the
distribution which the algorithm predicts) but will usually perform badly in
general. Uniform optimality can be achieved only within special subclasses of
estimators. Well known cases are best unbiased density estimators for expo-
nential families of probability densities. Unbiasedness of an estimator means
that the estimate averaged over the distribution of the training set gives the
true density which generated the data. However, it is not clear at all that one
should restrict estimators to unbiased ones. One might prefer an estimator
with a small bias and small variance over an unbiased one with a very large
variance.

Various optimality criteria are known in statistics. In the minimax princi-
ple one optimizes the prediction for the worst true density. In the Bayesian
approach, one can define an average case optimality, where the average is
over a prior distribution p(6*) of true parameters 8*. We will come back to
an online approximation to a Bayesian approach later.

For the case of parameter estimation, efficiency is another important cri-
terion for probabilistic models which depend smoothly on the parameters. If
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parameter estimation is restricted to unbiased estimators @ (i.e. if the esti-
mate 6 obeys EDté = 0*), then the famous Rao-Cramér inequality limits the
speed at which the estimate 0 approaches the true parameter §* on average.
For a single (scalar) parameter it simply reads

Ep, (6-67)" > 1 . (3.1)

"t dyP(yl6*) [ n P(yl6v)]’

Ep, denotes the expectation over datasets. The generalization to an N di-
mensional vector of parameters is possible. For any real vector (zy,..., zy),
we have the inequality

Ep, (Z 2(6; — 9;)) =" z2Ep, ((6; — 07)(0; — 67)) > (3.2)

i ij

1 — *
=277 (0)i)
ij

where

J5(6") = [ dyP(y/6")0: n P(y]6")3; 1n P(y]6")

is the Fisher Information matrix. Partial derivatives are with respect to the
components of #*. If we take nonnegative numbers for the z;, we can interprete
the left hand side of (3.2) as a squared weighted average of the individual error
components 0; — 7. Estimators which fulfill these relations with an equality,
are called efficient. Since the proof of the inequalities requires unbiasedness,
it is not clear at all why efficiency is important. Biased estimators may in
some cases violate (3.2) and achieve a better performance. However, this
is not true asymptotically. It can be shown that when the number of data
grows large, then for almost all true parameters 6*, no estimator can beat
the Rao-Cramér inequality. As has been proved e.g. by (LeCam 1953) (under
smoothness assumptions), the Lebesgue measure of the set of all parameters
6* for which we can have superefficiency, i.e. a violation of (3.2), goes to zero
asymptotically. Hence, one reasonable requirement for a good algorithm is
asymptotic efficiency which by (3.2) means

Bp, (0~ 67)(6; — 05) = (7 (6 (33

in the limit ¢ — oo.

4 Online Learning

Often, learning algorithms for estimating the unknown parameter 8* are based
on the principle of Mazimum Likelihood (ML). It states that we should choose
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a parameter § which maximizes the likelihood P(D;|f) of the observed data.
Under weak assumptions, ML estimators are asymptotically efficient. As a
learning algorithm, one can use e.g. a gradient descent algorithm and iterate

¢ t
0; — 6 =1 0; ) InP(yl0) = —n 9; Y Er(yxl6) (4.1)
k=1 k=1
until convergence is achieved. Here, Er(y;|6) defines the training energy of
the examples to be minimzed by the algorithm. When a new example y; 4
is received, the ML procedure requires that the learner has to update her
estimate for 6 using all previous data. Hence D; has to be stored in a memory.
The goal of online learning is to calculate a new estimate é(t + 1) which is
only based on the new data point g, 1, the old estimate 6(t) (and possibly
a set of other auxiliary quantities which have to be updated at each time
step, but are much smaller in number than the entire set of previous training
data). A popular idea is to use a procedure similar to (4.1), but to replace
the training energy of all examples 3¢, Er(yx|6) by the training energy of
the most recent one. Hence, we get

Bi(t+1) = 6i(t) = n(t) diln P(yt+1|91(t))
= —n(t) 0 Er(yi4110(1)). (4.2)

The choice of the learning rate 7n(t¢) is important. If the algorithm should
converge asymptotically,  must be decreased during learning. A schedule
n o 1/t yields the fastest rate of convergence, but the prefactor must be
chosen with care, in order to avoid that the algorithm gets stuck away from
the optimal parameter. Another choice is an adaptive n (Barkai et al 1995),
which depends on the performance of the algorithm and can be used in the
case of temporal changes of the distribution.

A recent modification of (4.2) has been introduced by Amari (Amari 1996;
Amari 1997), who replaces the scalar learning rate 7(t) by a tensor. This idea
may be derived from the fact that the online training energy contains only
information about the last example, and the change of the estimate of the
distribution due to a change A# of the parameter should not be too large. The
new idea is to define a measure for distances ||Af|| in the parameter space
which reflects distances between probability distributions and is invariant
against transformations of the parameters. A simple Euklidian distance will
not satisfy this condition. One can be guided by the principle that the distance
between two distributions should reflect how well they can be distinguished
by an estimation based on random data. This can be achieved by defining the
metric in parameter space by

ij
Assuming that the probability distribution of efficient estimators is Gaussian
(at large t) with a covariance given by (3.3), the probability density that a
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point close to the true value # will be the estimate for #, depends only on
the distance between the two points. Based on such ideas, S. Amari (Amari
1985) has developped a beautiful differential geometric approach to statistical
inference. In the context of online learning, he proposed the so called natural
gradient algorithm (Amari 1996; Amari 1997), where the update is defined
by a minimization of the training energy under the condition that ||Af)||? is
kept fixed. Solving the constrained variational problem for small Af yields
Oi(t +1) = 0:(t) = 7¢ D _(J1(0(t))i;0; In P(ys1[6(t))- (4.4)

J

The differential operator 3°;(J~'(6(t));;0; is termed natural gradient. For the
choice v; = %, one can show that the online algorithm yields asymptotically

efficient estimation (Amari 1996; Opper 1996).

5 The Bayesian Approach

In the Bayesian approach to statistical inference, the degrees of prior belief
or plausibility of parameters are expressed within probability distributions,
the so called prior distributions (or priors) p(#). Once this idea is accepted,
subsequent inferences can be based on Bayes rule of probability. Formally,
we may think that data are generated by a two step process: First, the true
parameter € is drawn at random from the prior distribution p(6). Second, the
data are drawn at random from P(D,|f). Bayes rule yields the conditional
probability density (posterior) of the unknown parameter 6, given the data:
p(o|Dy) = D) (5.1
J d8'p(0") P (Dy[¢")
The posterior density (5.1) can be used to calculate an estimate for the un-
known parameter. The simplest case is the so called MAP (maximum a pos-
teriori) value § = argmaxIn p(#|D,), i.e. the most probable parameter value.
Another choice is the posterior mean of the parameter. Using the full poste-
rior, it is possible to go beyond a simple parameter estimation and to define
a Bayes optimal prediction for the unknown probability distribution. Opti-
mality is here understood in an average sense, both over random drawings of
the data and random drawings of true parameters 6 according to p(6). It is
not hard to show that the optimal distribution P(y|D;) which minimizes the
expected quadratic deviation (the symbol E,4 stands for expectation with
respect to P(y|6))

| 48 p(6)Bn, By [Py D) = P(yl6)]

is given by a mixture of all possible distributions in the considered family,
weighted by their posterior probabilities

Py|D) = [ 49 P(yl6) p(6|D) (5.2)



A Bayesian Approach to on-line Learning 7

This so called predictive distribution also minimizes a second important func-
tional, the averaged relative entropy

P(y|0)

Py |D)] (5.3)

/ 49 p(8) Ep B, gllog

where

(y] P(y|0)
B [IOg (Dt] [ avptw)ion 5 oS

is an important dissimilarity measure between distributions, the relative en-
tropy or Kullback-Leibler divergence Dy (P(-|0)||P).

From the optimality on average, we see immediately that no estimator can
beat a Bayes procedure for all true parameters #*. An estimator that would
be uniformly better than a Bayes procedure would also be better on average.
Moreover, it can be shown that for special choices of p(6), Bayes procedures
can also be minimax.

A prior p(f) which is well adapted to a problem may act as a regularizer,
which can prevent an algorithm from overfitting when the number of examples
is small. Some regularization methods for neural networks, e.g. weight decay,
can be interpreted in a Bayesian way. On the other hand, when the number of
examples is large, the influence of the prior distribution becomes weak. The
posterior is sharply peaked at its maximum f and a Gaussian approximation
for its shape

t <. R
p(6]Dy) = expl—5 >_(0: = 0:)Ji;(6; — ;)] (5.4)
ij
becomes asymptotically exact. Here J;; = —9;0;1 Y- In P(y,|6). In nice

parametric cases, consistency and asymptotic efficiency of Bayes predictors
can be proved.

6 Online Update of the Posterior

In order to construct an online algorithm within the Bayesian frameweork, we
have to find out how the posterior distribution changes when a new datapoint
Yi11 18 observed. It can be easily shown that the new posterior corresponding
to the new dataset D, is given in terms of the old posterior and the likelihood
of the new example by

P(y:41/0)p(0]Dy)
J dOP(yi1110)p (9|Dt)'

p(0]|Dyt) = (6.1)
(6.1) does not have the form of an online algorithm, because it requires the
knowledge of the entire old dataset D;. The basic idea to turn this into an
online algorithm is to replace the true posterior p(f|D) by a simpler para-
metric distribution p(f|par), where par is a small set of parameters, which is
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able to capture a major part of the information about the previous data and
which has to be updated at each step. Hence, the Bayes online algorithm will
be based on a repetition of two basic steps:

e Update: Use the old approximative posterior p(f|par(t)) to perform an
update of the form (6.1)

P(y;1110)p(0|par(t))
J dOP (y:4110)p(0lpar(t))

P(0|ys11, par(t)) = (6.2)

Project: The new posterior p(6|ysy1, par(t)) will usually not belong to
the parametric family p(f|par). Hence, in the next step, it need to be
projected into this family in order to obtain p(@|par(t + 1)). The pa-
rameter par(t + 1) must be chosen such that p(f|par(t + 1)) is as close
as possible to p(0|ysy1, par(t)). It is a not clear a priori, which measure
of dissimilarity between distributions should be used. Different choices
may lead to different algorithms. I have chosen the KL-divergence

Dicr, (p(-[y141, par () ||p(-|par)) = (6.3)

p(0|ys+1, par(t)
|
/d9 p(9|yt+1,par(t)) n p(g‘par)

which is nonsymmetric in its arguments. Minimizing (6.3) can be thought
of as minimizing the loss of information in the projection step. For the
important case, where the parametric family is an exponential family,
i.e. if the densities are of the form

p(f|par) o< exp[— Zakfk (6.4)

it is easy to see, that minimizing (6.3) is equivalent to adjusting the
parameters aj such that the moments Fyf;(f) match for both distri-
butions p(f|par) and p(8|ys+1, par(t)). This is also equivalent to finding
the distribution p(f|par) which maximizes the entropy under the con-
straints that these moments are given. Two cases of exponential families
have sofar been studied for Bayes online learning: The case of a Gaus-
sian family of distributions for learning of continuous parameters was
discussed in (Opper 1996). A family of product distributions for binary
random variables was chosen by (Winther & Solla 1997) for learning
in the Ising perceptron. In the next section I will discuss the Gaussian
case.
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7 Gaussian Ansatz

If we use a general multivariate Gaussian distribution for p(f|par), then
par = (mean, covariance) = (6;, C;;). Matching the moments results in

5 ~Jde 0P (ye+110)p(0|par(t))

WD) = D lyer 0)p(6lpar (1)

[ d0 6; 0;P(y;41]0)p(6|par(t))
fdGP(yt+1|9)p(9\par(t))

Using a simple property of centered (Gaussian random variables z, namely
the fact that for well behaved functions f, we have E(zf(2)) = E(f'(2))-
E(2?%), we can get the explicit update:

Cij(t+1) —0i(t+1)0,(t +1).

A~

At+1) = B(t)+ > Cijlt) x (7.1)
x0; In Ey[P(y41|0(t) + u)]
and

X 0,0y In By [P(y41|0(t) + u)].

Here the expectation [ d0P(y:11/0)p(6|par(t)) is written as
Ey.[P(ys+1|0(t) + u)] where u is a zero mean Gaussian random vector
with covariance C(t).

It is interesting that the Bayesian approach combined with the Gaussian
approximation to the posterior has led to an update for the posterior
mean (which for this approximation equals the MAP value) which looks
like a gradient descent with a tensorial learning rate. This learning rate
need not to be determined from the outside by some given schedule. In
the Bayes approach it is automatically adjusted by the data!

For smooth models, the exact Gaussian asymptotics (5.4) of the pos-
terior suggests that the approximation should not be bad when the
number of examples grows large. In the next section, we will see that
this is actually the case.

8 Asymptotic Performance

In order to study the large time behaviour of the algorithm (7.1), (7.2),
we first need the asmptotic form of the covariance matrix C. We de-
fine Vi = 0x0;In Ey P(y;11|0 + u) and assume that for large times, the
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temporal changes of the matrix C are small, so that we can introduce
continuous times and replace (7.2) by the matrix differential equation

dcC
— =CVC 8.1
o (8.1)
which is solved by
dC—1!
=-V
dt
Integrating yields
t
O () — O\ (ty) = — / V(') dt'. (8.2)
to

To proceed, we will make the assumption that the data are generated
independently at random from a distribution Q(y), which we allow to
be also outside of the family P(y|f), in order to treat the case of a
misspecified model. We now assume that the online dynamics is close
to an attractive fixed point #*, which corresponds to a local minimum

of — [dy Q(y) In P(y|f) and satisfies

[ dy Q)i P(yl6") = 0. (8.3)
Dividing (8.2) by ¢ and taking the limit ¢ — oo, we get

po (CTH )i = Ji 05 In P(y|6Y)

t—00 t t—o00 t

_ /dy Q(y)0:0; In P(y6").

(8.4)

In the first equality, we have neglected the width the posterior for large
times ¢. In the second equality, the time average has been replaced by
the average over Q(y). For this step, it is not necessary to assume that
the data are generated independently, ergodicity is sufficient. It is easy
to see that for the case Q(y) = P(y|6*), we have

C7'(t)

Jim = = 5(6"), (55
which is the Fisher Information matrix. This result should be compared
with the natural gradient (4.4). It shows that asymptotically, the ten-
sorial learning rate obtained from the Bayes online algorithm becomes
proportional to the natural gradient if the probabilistic model is cor-

rectly specified and if the local fixpoint 6* is the true parameter.

In order to calculate the asymptotic scaling of the estimation error,
defined as the deviation between 6* and the MAP 6(¢), we again assume
that the MAP estimates are close to 6* and the posterior is sharply
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peaked around f. We can then neglect the average over the posterior in
(7.1) and linearize. Setting 6;(t) = 6} + €;(t), we get the linear system

AEZ ZC’zl@l InP + ZC’zlek 0kal In P, (86)
kil

where P = P(y;11/0*). We will introduce the matrices

By = [ dyQ(y)oiin P(y6")d;n P(yl6") (8.7)
Ay = = [ dy Qw)oid;m P(yl6).

Taking the expectation (denoted by an overbar) over the distribution
of the most recent example y;;; and using (8.4) and (8.7), yields an
equation of motion for the expected linear error e; = €

d G _ Z A i gp (8.9)

valid for ¢ — oo. Because of the fixed point condition (8.3), the right
hand side vanishes and we conclude that the linear error (the bias)
decays like e; o (1/t). More interesting is the dynamics of the ma-
trix of quadratic errors E;; = Eple;(t)e;(t)]. We multiply equation
(8.6) by €;(t) and average over the last example. Neglecting terms like
€;C;10k In P, which decay faster than the others, we obtain

dE

— = CBC—CAE - EAC (8.9)

1 2F
= —A'BAT' -
2 t

)

which is solved by

LaBa Y, t— oo (8.10)

Eples(t)e;(0] = |

This is the same rate as the one which was obtained for batch algorithms
(Max. Likelihood or Bayes) by (Amari & Murata 1993). For local min-
ima 6* of — [dyQ(y)In P(y|#), the matrix A (and trivially also B) is
positive definite and we should always have the optimal o 1/t decay
of the error! This is in contrast to fixed learning rate schedules, where
the prefactor of the learning rate n oc 1/¢ must be adjusted in order to
allow for convergence.

The result (8.10) simplifies further for a wellspecified model. In this
case, we can use that B = A = J(#*) such that

Bpla(t)e; ()] = 5 (T8, t = oo.
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By comparing with (3.3), we see that the Bayes online algorithm be-
comes asymptotically efficient.

The quadratic estimation error has in general no direct interpretation
for the ability of a learning device to predict novel data. One can study
a more natural measure for the learning performance which is given by
the expected relative entropy distance between the predictive distribu-
tion constructed from the approximative posterior and the true data
generating distribution.

Eentro = Ep, By [log %] ) (8.11)

Using an asymptotic expansion as before, we get

Q(y) Tr(BA™)
P(ylﬂ*)] T

Eentro = By [log (8.12)

for t — oo. This result gives the same performance as the one derived
for the batch maximum likelihood estimate (Seung et al 1992; Amari &
Murata 1993). For the well specified case this reduces to the universal
asymptotics (Seung et al 1992; Amari & Murata 1993; Opper & Haussler
1995) for Bayes- and maximum likelihood estimators

N
Eentro — %

for t — oo, which depends only on the number of degrees of freedom.

9 Application

For most models, it will not be easy to perform the Gaussian averages
in (7.1) and (7.2) exactly in order to implement the algorithm. Hence,
further approximations may be necessary. However, there are a few non-
trivial and relevant probabilistic models, where these averages can be
performed analytically. The simplest choice is linear models, where for
a Gaussian prior also the posterior distribution is a Gaussian and the
online approximation becomes exact. A further family of models where
we can expect that some of the averages can be performed by hand is
the class of mixtures of Gaussians. In the following, we will look at a
third case in more detail. This is a model for binary classification which
is defined by

pisin - (522). o

0o
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where S = +1 is a binary class label, § and x are IV dimensional vectors
with inner (dot) product 6 - x and

ey = [t

is a sigmoidal function. (9.1) may also be related to a perceptron rule
with weight noise (Opper & Kinzel 1996). For this case, the Gaussian
averages (7.1,7.2) can be carried out explicitely and we obtain

E,P=¢ (Sae(t')x) (9.2)

with
0'2(t) == O'g + vazCz](t)xJ
ij
Explicit updates (7.1,7.2) for the algorithm can be constructed from

djlnE,P = Eij/a(t)

e (N wy
620] lIlEuP = {E - <E> }0_2(;)

To illustrate the performance of the algorithm, we have studied a one
dimensional toy model first. In this model, we assume that scalar inputs
x with —1 <z < +1 are classified as S = +1 according to whether z is
greater or less than 6*. In addition, Gaussian noise is added to 6*, hence
(9.1) is replaced by P(S|0,x) = ¢(S(z—80)/0o). The expected quadratic
estimation error Ep(f; — 6*)? as a function of ¢ is shown in Fig.1 for
a true parameter 8* = 0.1 and oq = 0.5. The asymptotic approach to
efficiency (straight line) can be seen.

Next, we consider the full model (9.1). The simulations (dashed line in
Fig.2) are performed with N = 50 and the vectors §* and x have in-
dependent normally distributed components. The results were averaged
over 50 samples. As the initial conditions, we have chosen # = 0 and the
true spherical Gaussian prior. The curves show the (0—1) generalization

error R
1 6* -6
£ = — arccos (7A> : (9.3)
i 16=1] 116l

as a function of a = % This quantity measures the probability of dis-
agreement between the classifications of a perceptron defined by the
weight vector f and the noise free perceptron (setting o9 = 0 for in-
dependent test data) defined by 6*. The data were generated with
09 = 6.24. For comparison, we have shown the error for the true (batch)
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0.12
0.104 noisy 1—d perceptron, 500 simul.
0.08+

0.064

err2

0.04+

0.024

c.ootf—4—7—1+—+—r——7——7—7—1—+1—
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

1/t

Fig. 1 - Quadratic Error Ep(f — 6*)? for a one dimensional noisy per-
ceptron. The straight line gives the bound (3.1).

0.5

0.4+

0.34 \

0.2+

0.1+ -

0.0 T T T

Fig. 2 - Generalization error (9.3) for the classification model (9.1). The
dashed line is obtained from the Bayes algorithm. The solid line is an
analytical result for the batch error in the thermodynamic limit.

Bayes prediction (solid line) analytically calculated for the thermody-
namic limit N — oo.

The number of parameters to be updated in the online algorithm can
be reduced drastically, if the general covariance matrix C' is replaced
by a diagonal matrix or even simpler, by a single number c. This is
equivalent to approximating the posterior by a spherical Gaussian. (7.2)
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will simplify to
1 R
c(t+1)=c(t)+c (t)N > 87 In B[P (ye11|0(t) + u)]. (9.4)

For the model (9.1) it can be shown that this approximation actually
leads to the same update as defined by the locally optimal weighted
Hebbian scheme derived for the thermodynamic limit framework (Biehl
et al 1995), provided that the model is well specified. This agreement
will be lost for misspecified cases.

10 Outlook

One of the greatest challenges for the Bayesian online approach will be
the practical realizability for more complicated models like multilayer
neural networks. Here, one has to find additional useful approximations
in order to perform the Gaussian averages. For example, one may try
a stochastic version of the algorithm based on Monte Carlo sampling.
Mean field methods may also be helpful. Another possibility is to study
distance measures different from (6.3) in the projection step. This may
lead to a different algorithm for which averages maybe obtained easier.

From a theoretical viewpoint, better, nonasymptotic estimates of the
performance of the Bayes online algorithm are highly desirable. Such
results are necessary to understand the global convergence properties.
A further interesting question is the performance of the algorithm for
nonsmooth models, like the noisefree perceptron. For this case even the
asymptotics is unknown.
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