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SUMMARY

Surface deposition of dense aerosol particles is of major concern in the nuclear industry for
the safety assessment. This study presents theoretical investigations and computer
simulations of single gas-born U;Og particles impacting with the in-reactor surface and the
fragmentation of small agglomerates.

A theoretical model for elasto-plastic spheres has been developed and used to analyse the
force-displacement and force-time relationships. The impulse equations, based on Newton's
second law, are applied to govern the tangential bouncing behaviour. The theoretical model
is then incorporated into the Distinct Element Method code TRUBAL in order to perform
computer simulated tests of particle collisions. A comparison of simulated results with both
theoretical predictions and experimental measurements is provided. For oblique impacts, the
results in terms of the force-displacement relationship, coefficients of restitution, trajectory
of the impacting particle, and distribution of kinetic energy and work done during the
process of impact are presented. The effects of Poisson's ratio, friction, plastic deformation
and initial particle rotation on the bouncing behaviour are also discussed.

In the presence of adhesion an elasto-plastic collision model, which is an extension to the
JKR theory. i1s developed. Based on an energy balance equation the critical sticking velocity
15 obtained. For oblique collisions computer simulated results are used to establish a set of
criteria determining whether or not the particle bounces off the target plate. For impact
velocities above the critical sticking value, computer simulated results for the coefficients of
restitution and rebound angles of the particle are presented.

Computer simulations of fracture / fragmentation resulting from agglomerate-wall impact
have also been performed, where two randomly generated agglomerates ( one monodisperse
, the other polydisperse ), each consisting of 50 primary particles are used. The effects of
impact angle, local structural arrangements close to the impact point, and plastic deformation
at the contacts on agglomerate damage are examined. The simulated results show a
significant difference in agglomerate strength between the two assemblies. The computer
data also shows that agglomerate damage resulting from an oblique impact is determined by
the normal velocity component rather than the impact speed.
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Chapter 1 Introduction

1.1 Background of the project

The understanding of the behaviour of particles upon impact with a surface arouses interests
in many fields of engineering and technology. The particle-surface impact behaviour is
determined by many factors. Variations of initial conditions and material properties lead to
different results. Factors involved in an impact process can be classified into three main
categories: impact parameters ( particle velocity, impact angle ); particle / target properties (
particle size, shape and density; surface friction, adhesion and roughness: the bulk
mechanical properties of the two colliding bodies ); environmental factors ( temperature.
properties and flow rate of the surrounding medium ). The diversity of these parameters

makes the impact process particularly complex.

The whole process of an impact can be regarded as an evolution of energy transfer.
During loading the initial kinetic energy is transformed into the elastic strain energy stored in
both contacting bodies and then released to furnish the movement of the particle upon
rebound. However, energy is also dissipated during a collision. The mechanisms of energy
loss involved in an impact are multiple and plastic deformation, energy required to overcome

attractive surface forces, interfacial and internal friction. and elastic wave propagation are

among them.

Numerous cxperimental observations of particle-particle or particle-wall collisions have

been rcported and. since the establishment of classical theory of elastic contact mechanics by

[§]
—



Hertz ( 1882 ), there have been many developments in the theoretical understanding of
contact interactions and impact mechanisms. However, none of the current theoretical
models can fully answer the questions of capture and rebound of single particles impacting «

target surface.

The main objective of the work reported in this thesis is to provide a comprehensive
theoretical examination of the impact behaviour of non-adhesive and adhesive elasto-plastic
spheres impacting a target. The approach adopted for the research is to perform computer
simulated experiments using the Distinct Element Method ( DEM ) in which the contact
interaction rules, used in the program, are based on theoretical contact mechanics. In order to

achieve this objective new theories have been developed to model elasto-plastic spheres.

The motivation of the work presented is related to safety assessment in nuclear reactor
plants. In the nuclear industry, the gas-borne aerosol particles present many operational and
environmental problems which may affect the maintenance. safety, and efficiency of the
plant. It is of great importance to know the mechanisms which determine whether a particle
bounces off or sticks to the in-reactor surface. When radioactivity is released into the flow
route of a nuclear reactor in an accident, the oxidation of exposed nuclear fuel UO, creates
U;0g particles and agglomerates ( Payne & Butterworth 1986 ). Within the transport rigs of
the cooling system the gas-borne U;Og agglomerates may be broken up into fragments either
by turbulent shear or upon impact with a surface and this will result in a size distribution of
smaller particles or agglomerates. Experimental observations suggest that surface deposition
is a particle size dependent phenomenon. Agglomerate fragmentation and the resulting size
distribution of the clusters could lead to a significant increase of retention within the
containment. A set of criteria for whether an impacting particle bounces or adheres to a
surface needs to be established and a better understanding of fragmentation behaviour is also
required for the safety assessment. Therefore, a special goal of the research program is to
provide data on particle/wall interactions which may be incorporated into Computational

Fluid Dynamics ( CFD ) codes used to model the gas flow regime.

9
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Since the project was funded by Nuclear Electric plc, Berkeley Laboratories. the results

presented in this thesis include special data relating to U;Og particles impacting a stainless
steel target. For these impact simulations the particle/target properties were provided by

Nuclear Electric plc and are given in Table 1.1.

Table 1.1 Particle and target properties

Materials

Properties U;0g Stainless steel
Young's modulus ( GPa ) 215 215
Poisson's ratio 0.3 0.3
Density (kgm™ ) 8300 7830
Elastic yield limit ( GPa) >1.9 >1.9
Adhesive energy (J m?) 0.2 0.2
Coefficient of friction 0.35 0.35

1.2 Order of presentation

Chapter 2 presents a review of the previous research on theoretical impact models and
experimental observations. The factors involved in a particle-surface collision and their
effects on the impact behaviour, such as plastic deformation, surface adhesion and surface
roughness are discussed. This chapter also gives a brief introduction to recent developments
in computer simulated experiments, using the Distinct Element Method developed by

Cundall ( 1971 ). A more detailed discussion of the methodology is deferred until Chapter 7.

Normal and oblique impacts of non-adhesive elasto-plastic spheres are examined in



Chapters 3 and 4 respectively. In Chapter 3, a new theoretical model is presented to describe
the normal contact force-displacement relationships during plastic loading and elastic
unloading. Based on this model, computer simulated impact experiments are reported and
compared with an analytical solution for the coefficient of restitution. Using the computer
simulated data the effect of impact velocity on the contact duration is also examined.
Chapter 4 deals with oblique impacts, in which the normal contact interaction law is based
on the theory described in Chapter 3. The evolution of contact forces and various energy
components during a collision are examined. The rebound conditions obtained from oblique
impact simulations are presented in terms of the tangential coefficient of restitution. the
rebound angle, the particle centroid and the reflection angle of the contact patch. From the
results obtained, the effects of impact angle, friction, elastic properties and plastic

deformation are demonstrated. The effect of initial particle rotation is also considered.

Adhesive spheres are considered in Chapter 5 and Chapter 6. The theoretical basis of the
normal interaction behaviour is presented in Chapter 5. Based on an energy balance
equation, an analytical solution is obtained for the critical impact velocity below which elastic
spheres adhere to the target. For elasto-plastic spheres the theory is more complicated and
computer simulated tests are used to provide information on the stick/bounce behaviour. An
attempt is also made to simulate the impact of ammonium fluorescein particles. In order to
obtain agreement with experimental data reported by Wall et al ( 1989, 1990 ), it is necessary
to incorporate the concept of a dynamic yield stress. In Chapter 6 results of computer
simulated oblique impacts of adhesive spheres are presented. The effect of impact angle on
both the sticking criterion and the motion of rebounding particles is examined, for both

elastic and elasto-plastic spheres.

The Distinct Element Method is discussed in Chapter 7. The methodology and muin
structure of the program TRUBAL is described. The necessary modifications to the code in

order to incorporate plastic deformation at the interparticle contacts are explained and
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Chapter 2 Literature review

2.1 Introduction

Since Hertz (1882 ) pioneered the classical theory of impact between two trictionless elastic
bodies considerable advances in the theoretical understanding of the impact mechanisms and
the experimental obscrvations of the behaviour of particle-particle or particle -wall collistons
have been made by many researchers. The interaction laws of two contacting bodies have
been extended to include aspects such as the influence of friction at the intertace ( Mckwen
1949, Smith and Liu 1953 ). tangential loading and sliding contact ( Mindlin 1949, Mindhn
and Deresiewics 1953 ), the Kinetic energy loss due to clastic wave propagation ( Hunter
1957, Reed 19854, 1985b ), the cffect ol surface energy ( Johnson et al 1971, Johnson
1976, Savkoor and Briggs 1977 ), clasto-plastic deformation ¢ Batter 1953, Rogers and
Reed 1984 ), surtace roughness ( Greenwood and Williamson 1966, Fuller and Tabor 1975,
Cheng et at 1987 ), and the effect of dynamic yield stress ( Wall etal T989 ). Also, a number
of experimental investigations have been reported to test the theoretical models ( Zener 1941,
Tillett 1954, Maw et al 1976, 1981, Sundararajan and Shewmon 1987, Borzone et al 1990,
and Sondergaard et al 1990, ete. ). For an account of the carlier development of impact
theory and cxperiments the reader i~ directed to the book by Goldsmith ( 1960 ) and tor
recent developments in contact mechanics theory reference should be mude to the book by

Johnson ( 1985 ).

The literature review presented in this Chapter is concerned manly with impact models
under different situations, experimental observations, and the intluence of tactors involvedd
in particle-wall collisions. A review ol elastic impacts on smooth surtaces with and without

adhesion will be presented hirst. Following an introduction to the interactions of non-

adhesive spheres under clasto-plastic detormation, Section 2.4 then bricfly discusses some



previously published elasto-plastic adhesion models. Although the study reported in the
following chapters will not consider the effect of surface roughness on the impact behaviour,
a brief introduction in Section 2.5 may benefit future studies. Finally previous computer

simulations of particle impact are discussed, in Section 2.6.

2.2 Elastic impact without adhesion

2.2.1 Normal impact

Hertz ( 1882 ) first used his static theory of elastic contact to analyse the impact between
frictionless elastic bodies. The assumption made in this quasi-static theory is that the
deformation is restricted to the vicinity of the contact area. The theory also assumes that the
energy loss due to elastic wave propagation can be ignored and the total mass of each body
moves at any instant with the velocity of its centre of mass. A particular consequence of the
quasi-static nature of the Hertzian approximation is that the elastic energy of the two bodies
acquired during the collision process is entirely reversible, the impact and rebound velocities

are identical and the coefficient of restitution is therefore unity.

Consider two elastic spheres of radii R; (i = 1,2 ), with masses m; and elastic properties

E; and v;, moving at velocity V; along their line of centres when there is no particle spin. The

relative velocity V is

do (2.1)

where o is the relative approach of the two centroids. The force between the two spheres

once contact has been established is

P=miq = ™

If we let I/m* = 1/m; + I/m,  then we havc



dv _ m*d(x

P=_m*'ﬁ_' 5 (23)

For a static elastic contact the Hertzian relationship between the normal force and the relative
approach is
4 17z 342
P=-3—E*R* o (24)

where

)

2 2
1/R*=1/R, + 1/R,, VE*=(1-v)/E;+(1-Vv,)/E, (2.5

For a single particle with mass m and radius R impacting a half-space. m* = m and R* = R.
In this study we are mainly concerned with the case of particle-wall collisions and. therefore
m and R will normally be used in the equations rather than m* and R*. From ( 2. 3 ) and (
2.4 ) we have

2 3/2
md—(;:-;iE*R*”za (2.6)
dt

Integrating with respect to o gives

o2 A0 2. 8 o e 27
i[vi*(a) ]ngER o (

where the impact velocity V; is the velocity of approach at t = 0. When the displacement

reaches the maximum value there is no relative motion between the two bodies and then

o, =(15mvi/16E=R")*” (28)

Further integration of ( 2. 6 ) provides the time evolution of the displacement given by

© $I2.112
t= m“[d(a!amax)f[l—((x!(xmn) ] (2.9)

V.

1

The numerical solution of this integral has been obtained by Deresicwicz ( 1968 ) and the
compression-time curve has been converted into a force-time curve using ( 2.4 ). Further
studics can be found in the papers presented by Tsai ( 1968 ) and Graham ( 1973 ). In this
analysis the spheres are assumed to be perfectly clastic and frictionless at the interface. The

28



energy absorbed in the wave motion is neglected so that the deformation is perfectly

reversible. The total impact time is then given as

max SI2 12

20 :
b v, fd(a!amax)f[l-(afamax) ]

1 0

=2.940_ /V,=287(m /RE**V,)"" (2.10)

The assumption of the static theory is valid if the distance travelled by the elastic waves
during impact is very long compared with the dimension of the contact area ( Love 1944, sec
Johnson 1985 ). In this case there is no energy loss in an impact between two perfectly
elastic bodies. However, in an impact between a sphere and a thin plane body in which the
elastic wave will travel more times from the top to the bottom of the plate, and some energy
will be converted into the form of flexural vibration, the mechanism of energy loss due to

elastic wave propagation must be considered.

The effect of elastic waves within solid bodies was first mentioned by Saint-Venant (
1867 ) for the impact of long rods, who argued that even perfectly elastic materials would
have a coefficient of restitution less than unity. Sears ( 1908 ) and Wagstaff ( 1924 ) took
into account the kinetic energy loss due to elastic waves within the bars and their results
showed a good agreement with the experiments. Some other experimental investigations of
impacting elastic spheres on plates were reported by Raman ( 1920 ), Zener ( 1941 ), Tillett (
1954 ), and Sondergaard et al ( 1990 ) etc. A theoretical evaluation of energy dissipated due
to elastic motion in an impact of a sphere with a massive plane body was given by Hunter (
1957 ). The same problem was analysed by Reed ( 1985a, 1985b ) who also compared his

prediction with that of Hunter and the experimental results of Tillett ( 1954 ).

According to Hunter ( 1957 ) the total energy loss in the form of elastic wave motion is

-

8QUI+V,) , 1-v, 12 2
W= — = o | f(w) do € 2.117)

.‘ "
p.Co L=2vs



where Q is the imaginary part of

][&(az-u”zwo@nd&

0

and
2 2, 2 2 2 2
Fo®=(28 -y )*-48 [(& -1)(& -y)1"
172
Y=12(1=v,)/(1-2v,)]
1/2
Co=(Ey/p,)
P, Py = density of the sphere and the target wall respectively:

f (® ) = the Fourier transform of the force-time history.

The fraction of initial energy lost given by Hunter ( 1957 ) is

2

W 2255Q(1+vy) 1 -Vy 12 S cis 35
?LH:" 5. 3 ) p E* 5Vi (2.12)
mV; /2 p.Co I-2v,
where V; is the impact velocity, and the fraction given by Reed ( 1985a ) is
10.263 Q (1 ) :
: +V L~¥y 172 =15
2 2 6/5,,315
Ag= 3 p Ex {2:13 )
prO |- 2V2

which is larger than Hunter’s estimation.

As discussed by Reed ( 1985a ) neither of the two theoretical values of restitution
coefficient agrees well with the experimental measured value given by Tillett ( 1954 )
because the energy loss is underestimated. Some other energy loss mechanisms. such as
strain rate effect and plastic deformation of surface asperities, may have been involved in the

impact process.

Experimental investigations in the field of impact have been performed for a variety of



purposes. A number of tests have been conducted with the object of assessing the validity of
a proposed theory or the accuracy of an assumed model of material behaviour. For normal
impact, experiments are specially designed to minimise the fraction of energy removed from
the contact region by stress wave propagation relative to the initial kinetic energy of the
system. The results of these experiments, therefore, are mainly concerned with the observed
values of coefficient of restitution, impact velocity, duration of collision, and the diameter of

the impinging indentations.

A definite value for the coefficient of restitution cannot be assigned to the impact of
spheres unless their size, material, and impact velocity are specified initially. Raman ( 1920 )
measured the coefficient of restitution for different materials of the same particle size ( Fig.
2. 1) while for different sizes experiments were reported by Zener ( 1941 ), Tillett ( 1954)
and Sondergaard et al ( 1990 ). Using the premise of Hertz, Zener ( 1941 ) measured the

amount of energy transferred from the ball to the plate. Tillett ( 1954 ) examined the factors

Aston University

Hustration removed for copyright restrictions

Fig. 2. | Coefficient of restitution as a function of impact velocity for spheres

of the same size and different materials ( Raman 1920 ).
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which affected the coefficient of restitution while Andrews ( 1930 ) and Lifshitz and Kolsky
( 1964 ) measured the contact time with variations in impact velocities. Recently
Sondergaard et al ( 1990 ) reported the influence of the ratio of the particle diameter to the
plate thickness on the particle rebound resulting from a normal impact. The major

observations of the above researchers are summarised below.

In all instances the magnitude of the coefficient of restitution decreases monotonically
from unity with increasing impact velocity. The dependence of the coefficient on impact
velocity is weak at low velocities while for impacts with significantly higher velocities in
which fully plastic deformation occurs the coefficient of restitution decreases like V,* with
increasing impact velocity ( Brenner et al 1981 and Sondergaard et al 1990 ). It has also been
reported that, when the target plates are thick relative to the diameter of the ball, there is only
a small variation in the restitution coefficient with velocity of the impact, which is of the
order of 0.5% over a velocity range of 0.2 - 3.0 m/s ( Tillett 1954 ); with thin plates the

variation is much greater.

Plate thickness is one of the significant factors involved in affecting the kinetic energy
loss in the process of impact. As the thickness of the plate is decreased a longitudinal wave
will travel more times from the top to the bottom of the plate before contact is terminated and
a significant proportion of energy will be converted into flexural vibration of the plate. As a
consequence, the magnitude of the coefficient of restitution should be reduced relative to that

for a thick target, a conclusion which has been substantiated by all the experimental results.

It was reported by Sondergaard et al ( 1990 ) that by dropping the sphere to impact the
plate at various distances from either of the clamped edges. the coefficient of restitution
decreased with an increase in the distance of the impact point from the clamped edges until,
at a certain critical distance, it then became independent of the distance from the support. The
dependence of the critical distance on the ball diameter was also examined in their

experiments and was found to be independent of the plate thickness.

e
rJ



The dependence of contact time on impact velocity was reported by Sears ( 1908 ) and
Lifshitz and Kolsky ( 1964 ). With an increase in impact velocity the contact time decreased
not only when the mode of impact would be expected to be elastic, but also in cases when
plastic deformation of the specimens was clearly seen to have taken place. Experimental
results measured by Andrews ( 1930 ), shown in Fig. 2.2, indicate that there probably exists
a power law relationship between the contact duration and impact velocity when plastic

deformation dominates the impact process.

Variation of temperature leads to changes in material properties. The experimental data

indicated that the coefficient of restitution would decrease with an increase of temperature.

The effect of surface roughness on the behaviour of particle bounce for normal impacts
has been examined by Lifshitz and Kolsky ( 1964 ). It was experimentally revealed that both
the magnitude and repeatability of the coefficient of restitution were affected by surface
roughness. When the target had a finely ground surface the magnitudes obtained for the
coefficient of restitution for elastic rebound were very scattered and never exceeded 0.82. If
the surface was polished and the measurements were repeated, the values were very much
less scattered and a maximum value of 0.87 was obtained. When the surface was then highly
polished for a considerable time the measurements of the coefficient of restitution were
found to be quite consistent at a value of 0.95. The effect of surface roughness on impact

involves very complicated mechanisms; a more detailed discussion will be given in Section

i

In general, it can be concluded that the analysis based on a combination of the elastic
wave propagation theory and the static contact law provides an excellent description of the
phenomenon in the velocity range considered and is well supported by the experimental
results. The Hertzian theory by itself. whilst not rigourously correct, still yields an
acceptable approximation of the impact process. At higher impact velocities. the theory needs

to be modified to account for the effects of local plastic deformation.
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Fig. 2.2 Variations of contact duration with impact velocity when plastic

deformation dominates the process of impact ( Andrews, 1930 ).

2.2.2 Oblique impact

Oblique impact with the possibility of micro-slip and sliding at the contacting surfaces
involves complicated mechanics at the microscale. This also makes the prediction of
appropriate macroscopic collision characteristics quite difficult. The tangential traction and
micro-slip behaviour arising from simultaneous variations in tangential and normal forces
have been analysed by Mindlin and Deresiewicz ( 1953 ) while the no-slip solution was
given by Mindlin ( 1949 ). The traction at any time during the collision depends not only
upon the current forces, but also upon the history of loading. The relationship between
tangential traction and normal motion has also been investigated and it has been shown that
even for dissimilar material the effect of tangential traction on the normal motion is very
small and may reasonably be neglected ( Johnson 1985 ). This means that the tangential load

/ displacement and normal load / displacement relationships can be treated scparately.



Therefore, the variation of contact radius and contact pressure throughout the impact are

given by the Hertzian theory, independent of the friction forces.

For the interactions between an elastic sphere and a wall with elastic properties of E;. G;.
Vv; (i=1,2), the normal force P, the relative normal approach a. and the contact radius a.

are provided by the classical theory of Hertz

3

o =9P?/ 16RE*> (2189
a’ = 3PR / 4E* (2.15)
and
2
a=a’/R (2.16)

From ( 2.14 ) and ( 2.15 ) the normal contact stiffness is given as

dP _ 2E* (Rot)'2= 2E*a (2.17)

do

As Mindlin and Deresiewicz ( 1953 ) showed, the deformation under the action of
tangential forces is related to micro-slip and the history of the loading forces. The tangential
contact stiffness depends on whether the system is loading, unloading or reloading. Slip is
initiated at the circumference of the circular contact area and when the tangential force
increases, an annular area of slip develops spreading radially inwards until the adhered area
of contact is zero and rigid body sliding occurs. At this moment the tangential force reaches
its limiting value of T = pP. If the maximum tangential force T is then reduced, slip in the
opposite direction spreads radially inwards from the perimeter of the contact area. Because
the tangential reversal load does not result in a recession of the existing slip annulus the
tangential stiffness is dependent upon the loading history. According to Thornton and
Randall ( 1988 ) the tangential incremental force under the circumstance of loading.

unloading, and reloading can be expressed as

AT = 8G*a@Ad + HAP (1 - O) (2.18)

where



Ad = incremental tangential displacement;
a = contact radius;

AP = incremental normal force;

l/G*=(2-v1)IG]+(2—v2)/Gz (2.19)
and
3
© =1-(T+uAP)/puP (loading ) (2.20a)
3
© =1-(T*-T+2uAP)/2uP ( unloading ) (2.20b)
3
© =1-(T-T**+2uAP)/2uP ( reloading ) (2.20c)

Only for unloading is the negative sign in ( 2.18 ) used. The parameters T* and T** define

the load reversal points.

Maw et al ( 1976, 1981 ) examined, both numerically and experimentally, the oblique
impact of an elastic sphere on a half space. Hertzian impact theory was used for the normal
force and normal component of impact velocity while numerical procedures provided by
Mindlin and Deresiewicz ( 1953 ) were used to investigate the tangential traction and slip
behaviour. The area of contact was assumed to be divided into areas of stick and slip.
Another assumption made was that the coefficient of friction was constant over an area of

slip and friction was the only source of energy dissipation.

In order to study the relationship between reflection velocity and impact velocity of the

contact patch, Maw et al ( 1976 ) proposed two non-dimensional parameters. One is related
to the radius of gyration of the sphere

2 ( I "!l )
x=(1=v)(1+mR7/I)/(2-V) 2.2
where I is the moment of inertia of the sphere about its centre. The other parameter is related

to the impact velocity

,_.
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where V; is the initial normal velocity of the contact point, V,; is the corresponding

tangential velocity and
V/V,;=tan 8 (2.23)

where 6 is the angle of incidence.

Figure 2.3 illustrates the variations in tangential force throughout the impact process for
different incident conditions. For angles of incidence which are small compared with the
angle of friction (y < 1) there is no sliding at the start of the impact. For larger angles of
impact ( 1 <y <4y - 1) the impact starts and finishes with sliding, with partial slip
occurring in between. Finally, if the impact angle is sufficiently high (y > 4y -1 ) sliding
occurs throughout the impact process and the tangential displacement does not reverse. It can
also be clearly seen from Fig. 2.3 that if the angle of incidence is not too large the tangential
force T undergoes a reversal during the impact, whereas the normal force completes a half
cycle only. Figure 2.4 shows the variations of the reflection angle of the contact patch under
different incident situations. The tangential reflection velocity V. of the contact patch is
found to be mainly negative except when Wy > 4y. This phenomenon has been substantiated
by experiment, Maw et al ( 1981 ). The investigations of Maw et al were concentrated on the
vicinity of the impact point, and the normal and tangential behaviour of the local contact area
was then presented. However, some characteristics of the particle itself, such as the
trajectory of the particle centre and particle spin around its centre, were neglected. Although
the particle rotation upon departure can be clearly seen in the photograph presented by Maw

etal ( 1981 ), both of Maw et al ’s papers did not mention it.

An experimental investigation of solid spheres bouncing off flat plates was reported by
Sondergaard et al ( 1990 ). The particle-wall system was designed to take the form that the
particle diameter was greater than the plate thickness. Glass and steel balls of different sizes
were dropped from various heights to impact an aluminium target plate obliquely. The entire

trajectory was photographed, and both the components of the impact and departure velocities

)
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Fig. 2.3 Nondimensional tangential force plotted against nondimensional time

for different angles of incidence for a sphere ( Maw et al. 1976).

Aston University

Hlustration removed for copyright restrictions

Fig. 2.4 Nondimensional local angle of reflection against that of incidence

for a sphere ( Maw et al. 1976).



of the particle centre were ascertained from these trajectories. These velocities then were
used to calculate normal and tangential coefficients of restitution. Also a non-dimensional

parameter, the impulse ratio f, was proposed:
f=(1-e)tanB/(1+e,) (2.24)

where e is the tangential coefficient of restitution; e, is the normal coefficient of restitution:
0 is the angle of incidence. The experiments revealed that the data for e, were quitc
consistent and repeatable while the data for e, exhibited a significant scatter which could not
be eliminated by carefully cleaning all the surfaces for every test. It was also reported that the
impulse ratio f increased systematically with the incident angle until a critical angle was
reached. The critical angle, which was about 45° for Pyrex glass and 35° for steel spheres,
was found roughly consistent with the critical angle for complete sliding estimated by Maw
etal ( 1976, 1981 ) as being in the range of 45° - 55°. The impulse ratio data for angles less
than the critical values were quite consistent. However, above the critical angles, the data
were found to be very scattered and inconsistent. It was suggested that collisions at impact
angles above the critical value may be very sensitive to variations in the effective friction of

the surfaces in the vicinity of the contact point.

Thornton and Randall ( 1988 ) and Thornton and Yin ( 1991 ) reported computer
simulated experiments of oblique impact for two elastic spheres. The effect of impact angle
on both the angle of reflection of the contact patch and the rebound angle of the particle
centre was investigated and the results, illustrated in Fig. 2.6, were in good agreement with
the work of Maw et al ( 1981 ). The effect of impact angle on the reduction in linear kinetic
energy, gain in rotational kinetic energy and the proportion of the initial Kinetic energy which
was dissipated was also examined, see Fig. 2.5. It was observed that the Kinetic energy
never reduced to zero because the normal and tangential velocities reversed direction at
different times. For small angles there was a recovery of linear kinetic energy during the
rebound stage. This did not occur at large impact angles due to rigid body sliding occurring

throughout the impact duration.
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Fig. 2.5 Effect of impact angle on linear and rotational kinetic energies and dissipated
energy ( impact of two elastic spheres with parameters: R = 100 um: p =
2.65 mga‘m3; E =70 GPa; v =0.3; u = 0.35 and the normal component of

the approaching velocity is 0.05 m/s for each particle, Thornton and Yin 1991 ).

2.3 Interactions of adhesive spheres

2.3.1 Adhesion between elastic bodies

Two ideally flat clean surfaces, when pressed into intimate contact, should adhere due to the
action of van der Waals intermolecular forces of attraction. There is ample evidence to
suggest that the adhesion at the contact area is responsible for the resistance offered to the
separation of bodies under the action of normal or tangential forces. The surface forces were
first explained by London and soon after they were applied by Bradley ( 1932 ), Derjaguin
1934 ). de Boer ( 1936 ) and Hamaker ( 1937 ) to the problems of the forces between
macroscopic bodies. Johnson et al (1971 ) ( the JKR model ) cxtended the Hertzian model

to two clastic adhering spheres in normal contact by using an overall energy balance

10



approach. It is assumed in the JKR model that the adhesion between the two spheres results
only in a change of surface energy over the contact area and thus the attractive interparticle
forces are of infinitely short range. The contact area predicted by the JKR model is therefore
larger than that by Hertz, with an infinite tensile stress at the perimeter. Another theoretical
model was provided by Derjaguin et al ( 1975 ) ( the DMT model ) considering the attractive
forces to have a finite range outside the contact area. The DMT model assumes that the
adhesion forces have no effect on the shape of the particles and hence the contact area cxerts
a Hertzian compressive pressure; only outside the contact area is there a tensile stress which
decreases with surface separation. Some discussions and comments for both the JKR and
DMT model were given by Tabor ( 1977 ). Savkoor and Briggs ( 1977 ) made an extension
of the JKR theory to analyse the effect of a tangential force upon the size of the contact area,
which showed that the contact area of two elastic adhering spheres under a given normal

load is reduced when a tangential force is applied.

In the JKR model the total energy Uy can be divided into three components: the stored
elastic energy Ug, the mechanical potential energy Uy, and the surface energy Ug, which

can be expressed as

Ug= (P15 +P2P"3) /1 (16E* R 19)""? (2.25)
Uy=-Po (P23 +2P, P} )/ (16E*R19)" (2.26)
Ug= -Tma’= -T'm ( 3RP, /4E*)* (2.27)

where P, is the effective Hertzian normal force; Py is the applied normal force: I is the
Dupre energy of adhesion. which is equal to ¥, + v, - ¥} (y; and ¥y, are the surface energies
of each contacting bodies and ;- is the interfacial energy ). Satisfying equilibrium. dU+/

dP, = 0, the effective Hertzian normal force is obtained as

P,=Py+3nlR+ \/6nrRP0 +9n TR

—Py+ 2P+ V 4Py P + 4P; (2.28)
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where

p=3

c=5 R (2.29)

The contact radius is defined by
a’ = 3RP, / 4E* (2.30)

which is larger than that given by Hertz since P; > P;. When the applied load is made
negative the contact radius decreases and separation of the two bodies will occur if Py = -P_.

which defines the pull-off force.

2.3.2 Adhesive peeling and interfacial sliding

It was argued by Savkoor and Briggs ( 1977 ) that the tangential stress distribution over the
contact area would be prescribed by the “ no-slip ™" solution of Mindlin ( 1949 ) when the
effect of oblique loading was considered in the presence of adhesion. Under increasing

tangential force T there is a reduction in the contact radius which can be expressed by

a®= (3R/4E*) (Po+2P .+ V 4P P+ 4P%- T’E* /4G* ) (2.31)

Savkoor and Briggs suggested that this reduction would relate to a “ peeling ” mechanism
which continues in a stable manner until a critical tangential force is reached. When the
relative tangential displacement reaches that corresponding to the critical tangential force the

peeling process is complete. If the critical value of tangential force

T.=4V (PyP.+P?)G*/E* (2.32)
is reached, the contact radius will reduce to

a’ = (3R /4E*) (Py+2P,) (2.33)

Thornton and Yin ( 1991 ) examined the tangential behaviour after peeling and concluded
that the contacting surfaces must peel before an interfacial sliding can occur. Assuming the

transition from peeling to sliding to be smooth a new sliding criterion was proposed
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T=p(Po+2P,) Pp>-0.3P, (2.342)
T=wP [1-(P;-Py)/13P; 13 Py<-03P, (2.34b)

Thornton and Yin argued that Savkoor and Briggs’s model suggested two failure criteria. the
peeling failure defined by ( 2.32 ) and the sliding failure defined by ( 2.34 ). The
relationship of tangential force-displacement would change when the normal load Py reaches

the value

P=2P . [(¥Y-1)xv¥Y (¥-1) ] (2.35)

where

2
¥ = 4G* /|y E*

Taking the positive square root in ( 2.35 ), if Py < P, the tangential force at the end of
peeling is greater than that necessary for sliding and hence, when the tangential displacement
reaches the corresponding value, T drops to the value given by ( 2.34a ) or ( 2.34b ). If P, >
P, peeling is followed by the development of a slip annulus which spreads radially inwards
until sliding occurs; there is not a sudden change of the tangential force. The reported
theoretical model for tangential behaviour in the presence of adhesion was validated by the
experimental observations for polyethylene-terephthalate monofilaments, Briscoe and

Kremnizer ( 1979 ) ( see Thornton and Yin 1991 ).

The effect of adhesion on oblique impact of identical particles has been examined by
computer simulated experiments. It was reported by Thornton and Yin ( 1991 ) that the
rebound angle, velocity and particle spin were all functions of the total history of the impact
duration following an oblique impact. The results also showed that, although adhesion
affected the dissipation and redistribution of energy for all angles of impact, the effect was
most pronounced when peeling was completed at the end of the impact. One of the
significant consequences of the effect of adhesion was reported to be the possible bouncing
back of a particle along the initial impact trajectory. as shown in Fig. 2.6 (a). However.

investigations concerning the effect of impact angle, impact velocity. and magnitude of
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Fig. 2.6 Rebound angles for different impact angles ( with and without adhesion ):
(a). rebound angle of the particle centre: (b ). angle of reflection for the
contact patch ( Impact of two clastic spheres with surtace energy I'= 0.4

Thornton and Yin 1991 ).
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surface energy on the particle bouncing behaviour were not given. For relatively lurge impact
angles at which gross sliding occurs during the whole process of the impact. the relationship
between the interfacial friction and surface adhesion was also not examined in previous

investigations.

In respect of surface deposition, due to the effect of surface adhesion. there is a range of
impact velocities for which a particle will remain adhered to the target and rebound will not
occur. Johnson ( 1986 ) argued that the critical sticking velocity, V .. below which sticking
would occur, could be obtained by relating the initial kinetic energy of the particle to the
work done by the adhesive force. He suggested that the work done could be calculated as the
area under the JKR force-displacement curve where o < 0, which was approximately equal
to P.o,, where 0. is the relative approach at separation. More details will be provided in

Chapter 5.

2.4 Elasto-plastic impact

Bitter ( 1963 ) analysed three stages of an elasto-plastic indentation process and used an
energy balance method to study the phenomena of erosion. A simple energy balance model
with adhesion energy estimated from the classical theory for the point contact was proposed
by Dahneke ( 1971, 1972, 1973 and 1974 ). The proportion of energy lost was assumed in
his analysis to be a constant degree during the plastic deformation, so that the energy loss
was overestimated at high impact velocities. Plastic deformation was also included in the
adhesion theory by Brenner et al ( 1981 ) to explain the energy loss during an impact of large
metal particles with a hard surface. Other investigations of elasto-plastic impact wcere
reported by Wempner et al ( 1984 ) and Follansbee and Sinclair ( 1984 ). Based on Bitter's
work. Rogers and Reed ( 1984 ) presented a theoretical model which considered both clastic
and plastic deformations occurring during particle-surface impacts. and in which a good

aercement with experimental results was found for low and moderate impact velocities. A



similar model to that used by Rogers and Reed was proposed by Fichman and Pnueli ( 1983

) in the case of two particles holding together because of adhesion forces.

2.4.1 Elasto-plastic impact without adhesion

As described by Bitter ( 1963 ) the whole process of an elasto-plastic impact can be divided
into three stages. The first stage of interaction between the bodies starts at the moment of
initial contact of the bodies and ends when the peak pressure reaches the elastic yield limit of
the softer of the two bodies. In this elastic deformation stage the Hertzian theory may be
applied. The second stage commences at the onset of plastic deformation and ends when the
impacting bodies have zero relative velocity. The area of plastic deformation grows from the
centre of the contact zone and is surrounded by an annulus in which only elastic deformation
occurs. In the third stage of impact the stored elastic energy is recovered and the motion of

the particle depends on the incident velocity, surface adhesion. and surface roughness, etc.

According to Davies ( 1949 ) the elastic yield limit is reached only if the impact velocity

is greater than a limiting elastic velocity

® 2.2 4 3

Vy=Lsee) 6=—) B (2:36)
¥~ 2B* Sp y

where p is the density of the impacting particle and o, is the elastic yicld limit. The energy
stored in elastic deformation at the end of the first stage is mVy2 / 2. Also the relative

approach of the two bodies during this stage can be obtained from the Hertz equations as

o, >

ay:Rt2E,§) (2.37)

Bitter showed that for small deformations the area of the annulus of elastic deformation 18
always the same during the second stage and equal to the value at the end of the first stage of

impact. It was argued that when the particle approaches the maximum compression there are

16



two types of elastic strain energies, the energy stored in the region of elastic deformation U,

and the energy stored in the area of plastic deformation Up, and

Uc=%m\!§ (2.38)

1 2 s
Upe=§ay0'yﬂ:ap (2.39)

By assuming a1J2 = 2Ra, = 2R( o* - 0., ) the energy loss in terms of plastic deformation is

o 0.’ 2 2
U,= f cynapdaancy(a*-aY) (2.40)

where o* and o, are the total maximum compression and plastic deformation respectively.

Bitter ( 1963 ) identified the relationship

Upe= V15U U,/4 (2.41)

N
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(a) Elastic (b) Elastic-plastc

Fig. 2.7 Pressure distribution at contact area: (a) elastic impact - Hertz;

( b)) elasto-plastic impact.
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and gave the energy balance equation during the loading process as

]
SMVi= Ugt Upet Up=Ugt V 1SULU, /4 + U, (2.42)

However, the energy equation governing the unloading process was not presented and the

coefficient of restitution cannot be determined from his analysis.

An impact model which deals with fully plastic indentation was proposed by Johnson (
1985 ) to calculate the coefficient of restitution and its dependence on impact velocity. It was
assumed that when the fully plastic state is approached the relationship between the contact

radius and the total ( elastic and plastic ) compression can be described as o = a* / 2R

according to the experimental results. The energy balance equation during plastic loading is

1 S “Gya*4
2—,mVi= ma cy(a/R)da= ( 2.43)
0

4R

The unloading process is purely elastic and the stored elastic strain energy is gradually
released and converted into kinetic energy of the particle. The force-contact radius

relationship is provided by the Hertzian equations during elastic recovery, but at the

: . . )
transition point from loading to unloading the maximum contact force is P* = mo,a*. The

kinetic energy of rebound can be expressed as

2 2
| .2 23px* 3no a*’

y
2 ™Ve = ToEa* -~ 10E* LRt

The normal coefficient of restitution is obtained from

1 2

, 2™r 6noR

€h= 1 5 T SE*a* (245)
Em\fi

Substituting for a* using ( 2.43 ) there results

5/8 -1/8
- -1/2 -1/4
e;=1.720, B* 'p VY (4.46)
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It is expected, as demonstrated by Johnson ( 1985 ), that the coefficient of restitution
gradually falls with increasing velocity after the initial elastic yield limit is exceeded. When a
fully plastic indentation is obtained e, is proportional to V-4, Experimental results taken
from Goldsmith ( 1960 ) show the same behaviour and the power law relationship between

coefficient of restitution and impact velocity approximately has an exponent of -1/4.

Aston University
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Fig. 2.8 Ricochet behaviour of particles upon impacts: the ricochet curve delimits

the regions of ricochet and indentation ( Bulantsev et al 1985 ).

Most theoretical and experimental studies of plastic impact have been mainly concerned
with the erosion of metal. Hutchings et al ( 1976 ) developed a computer model of oblique
impact for a rigid sphere against an ideal rigid-plastic solid surface. The model was
implemented by Rickerby and Macmillan ( 1980 ) and Hutchings et al ( 1981 ) for different
impact velocities and impact angles. Their results indicated that the model successtully
predicted the energy absorbed during an impact, and the rebound velocity. The dependence
of the crater volume on impact velocity was reasonably predicted. However. neglecting
elastic forces the model cannot account for the particle rebound from a normal impact. nor
can it be expected to remain valid at very low impact velocities. A theoretical and

experimental investigation of particle ricochet upon impact at high speeds ( 200 - 1500 m /
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sec ) was reported by Bulantsev et al ( 1985 ). Using a modified finite-element model. the
process of rebound of a sphere upon impact along the normal to the plate and the process of
collision at an angle against an aluminium plate were investigated. A simple relationship,
concerning the behaviour of particle ricochet, between impact velocity and impact angle .
was experimentally established ( Fig. 2.8 ). It was also reported that, for normal impacts.
particles with high impact velocity would not bounce off the softer plate at any velocity.
Sundararajan and Shewmon ( 1987 ) presented some experimental observations of oblique
impact for a hard ball against ductile plates in which the behaviour of six ductile materials
was examined over a range of impact velocities and impact angles. The dimensions of the
resulting impact craters and the rebound velocity and angle were also experimentally

measured.

2.4.2 Elasto-plastic adhesion models

The surface adhesion acting over the contact area and its effect on particle interactions have
been extensively investigated and, in the literature, there are quite a few reported adhesion
models which deal with elasto-plastic deformation for different purposes. No attempt is
made to cover all of the relevant literature. The following models are relatively well-known

and particularly somewhat relevant to this study.

Brenner et al ( 1981 ) presented an energy balance model in which the stored elastic
energy and the energy required to break the bonding had been taken into account to deal with
the onset of bounce. In this model the deformation in the incoming stage of impact process
was assumed to be predominantly plastic and the stored elastic energy furnished the kinetic

energy of rebound in the recovery stage. If the impacting bodies are of the same material the

energy balance model is given as

> V;=U.-U, { 247

2
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where V_ is the particle velocity in the recovery stage, U, is the stored elastic energy and Uy,
is the energy required to break the bond, and

2 2 2 4
=31t(1—v)oya (2.48)

g SE

2
Uy=clna (249)
where E and v are the elastic properties of the target; a is the maximum contact radius: o, is

the pressure under which the metal flows plastically during the impact and can be obtained

from the normal force divided by the projected impact area at maximum penetration: I" is the
adhesion energy per unit of contacting area and c is the fraction of the impact area over

which interactive bonds are created between the two bodies.

Assuming that the deformation was predominantly plastic Brenner et al (1981) developed
the relationship between the particle radius R and the radius a of the contact area as
a’/R*=1.1(p/o,)"*V, (2.50)

where p and o, are the density and the elastic yield limit of the target surface respectively; V;
is the initial or impact velocity of the particle. Using ( 2.50 ), the particle velocity in the

recovery stage obtained from (2.47 ) is

2 514 4
, 1.038m(1-v )o, V; 3.3.¢l'V;
V= - 2:51)
r 1/4 112 172 (
p E 2Rp o,

By letting V, = O the critical velocity V. above which the particle bounces off the target

surface 1s given as

2 5
0.256cT E-

<L 12 112 2 ,
Rp o, (1-v)

It is worth noting that the equations for the rebound velocity and the critical velocity in the

paper by Brenner et al ( 1981 ) contain errors. The above equations based on their analysis

are correct.



Based on the analysis of Bitter ( 1963 ), Rogers and Reed ( 1984 ) considered a sphere
impacting with a plane surface. They assumed that plastic deformation was the only energy
loss mechanism and proposed the following criterion for the particle rebounding from the

surface

% Vi-U,>U, (2.53)

where U, is the energy dissipated due to plastic deformation and U, is the total adhesive

energy available at the end of the impact. During loading the effect of surface energy was

ignored and, following the analysis of Bitter ( 1963 ), Rogers and Reed ( 1984 ) defined U,

by the equation
1 2 1 2.2 15 . .2.1/252
Using the JKR theory, the total adhesive energy U, was defined as
Un=Po(PY+2P, P}y /13 (4B*3)" R
213
+nl" (3RP,/4E*) ¢ 2.559)
with
\f 2 52
P, =Py+3nTR .+ "V (Py+3nIR.) -Py (2.56)

where Py = mg is the gravitational force due to the mass of the sphere and R > R accounts

for the flattening of the sphere as a result of plastic deformation.

In order to calculate R, Rogers and Reed ( 1984 ) assumed that the unloading behaviour
was elastic and the radius of the total contact area at the end of the loading phase could be
expressed as

3PR. . 1/3 (2.57
a=(ﬁ£) )

where P is the sum of the forces in the plastic and elastic regions of the contact area and i

given by



4 I,Q( lSmV? 35

2
P=mag +zE*R )
Y )
3 16E*R 2 (2.58)

Assuming Bitter’ s ( 1963 ) postulate

2. QoD =
a _ay+ap (2.39)

the effective particle radius R, is defined as
R =4E*(a;+a.)""/ 3P (2.60)

where the projected radius of elastic deformation at initial yield ay and the radius of plastic

deformation a, are

2
15mV 1/5
g YR (261)
16E
2U 12 R
ap= (=) " (2 -
chy no, (2.62)

Wall et al ( 1989 ) compared the model of Rogers and Reed ( 1984 ) with experimental
measurements of the coefficient of restitution for ammonium fluorescein particles impacting
a silicon target. They found that the decrease in restitution coefficient with increasing impact
velocity, indicative of plastic deformation, occurred at much lower velocities than observed
experimentally. They attributed this to the fact that the model assumed a constant yield limit,
independent of impact velocity. Consequently, they modified the Rogers and Reed model by
replacing the static yield limit 6, with the dynamic yield limit Gyd which is strain rate

dependent. The dynamic yield limit O'yd according to Malvern ( 1951 ) was defined by
d . .
cy=6y[1+mln(l+n£p)] (2.63)
where m and n are empirical fitting constants and the plastic strain rate was expressed as
) 3 2 002
Epz(lfn)(lfv_\.)(vi~vy) (2.64)

where V, and V, are the impact velocity and the yield limit velocity respectively. Figure 29

shows a comparison between the predictions of the Rogers and Reed ( 1984 ) model and the

i
o



experimental data measured by Wall et al ( 1989 ). It is seen that the model of Rogers and
Reed ( 1984 ) can only match the experimental data at impact velocities close to the sticking
velocity. For high impact velocities, however, the model underestimated the velocity ratio by
a great amount. The results of the modified Rogers and Reed ( 1984 ) model in which the
dynamic yield limit was taken into account, also shown in Fig. 2.9, indicate that the
modified model agrees better with the experimental measurements over a range of impact

velocities.

Wall et al ( 1989 ) also examined the effect of the target properties and particle size on the
particle bouncing behaviour. It is seen from Fig. 2.10a that the experimental measurements
of the velocity ratio ( V,/V; ) depend on target materials at low impact velocities, but there is
not a material dependence at high velocity when the plastic deformation dominates the impact
process. The same behaviour was observed for the effect of particle size and the

phenomenon is diagrammatically illustrated in Fig. 2.10b.

Aston University

Hlustration removed for copyright restrictions

Fig. 2.9 Comparisons between the measurements of velocity ratio and predictions of

Rogers and Reed ( 1984 ). and modified Rogers and Reed for 2R = 4.9 pym ammonium

fluorescein particles impacting a silicon target surface ( Wall et al 1989 ).
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Fig. 2.10 Experimental measurements of the effect of target properties ( a )
and particle size ( b ) on the velocity ratio over a full range of impact

velocities ( Wall et al 1989).
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2.5 Surface roughness and its effect on impact

2.5.1 Nature of surface roughness

Real surfaces are never smooth. When two surfaces are pressed into contact they touch at the
tips of the surface irregularities, so that the real area of contact is only a fraction of the
normal area. Instead of the continuous force and resulting continuous pressure distribution.
the force between rough solids must be considered to be the sum of a set of individual forces
transmitted through an array of discrete contact spots. Over each small area of the surface the
collective effect of these individual forces can be treated statistically as a pressure. Higher

pressure may correspond to a higher density of contact spots or to larger individual spots.

There is considerable evidence that asperities on real surfaces can have any shape
whatever and any distribution of heights. Providing basic solutions for the governing
equations exist for these shapes, the effect of surface roughness on contact phenomena can
be predicted by combining these solutions with a probability distribution function for the
asperity parameters. A number of physical surface models have been proposed. Some of
them are based upon individual model asperities which are assumed to deform elastically or

plastically; others are based on the random nature of the surface profile.

Greenwood and Williamson ( 1966 ) proposed a quantitative roughness model with the
assumption that the summit height distribution of surfaces is Gaussian and all summits have
a constant radius of curvature. The simplification in using a constant radius of curvature was
removed by Whitehouse and Archard ( 1970 ). Greenwood and Williamson’s theoretical
model has also been applied to the point contact of spheres by Greenwood and Tripp ( 1967

) and Mikic ( 1974 ), and to the line contact of cylinders by Lo ( 1969 ).

Nayak ( 1971 ) proposed a two-dimensional random process model of surface

roughness based on the theory of statistical geometry developed by Longuet-Higgins ( 1957
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) for the analysis of ocean surfaces. It was assumed in this theory that the surface heights.
slopes, and curvature possessed a multi-Gaussian probability density. Navak's model was
used to analyse the plastic contact of rough surfaces and a similar analysis was performed by
Onions and Archard ( 1972 ). Cheng et al ( 1987 ) presented an elasto-plastic asperity model
which was based on volume conservation of an asperity control volume during plastic
deformation. Numerical results obtained from the model were compared with other existin g
purely elastic and purely plastic models. One of the criteria by which the validity of these
models can be assessed is whether they predict proportionality between true contact area and
load. An introduction to rough surface models and their applications can be found in the

book of Thomas ( 1982 ).

2.5.2 The effect of surface roughness with and without adhesion

The behaviour of rough surfaces is determined by the statistical distribution of asperity
heights and secondarily by their mode of deformation. If the deformation is within the limit
of elasticity of the material for a given pressure distribution the deformation laws can be
found from elasticity theory. A relationship between separation and pressure can then be

established.

In an axi-symmetric case the contact of a smooth sphere of radius R with a nominally flat
rough surface can be simplified. The asperities are taken to have spherical caps of uniform
radius k, whose heights above a mean datum have a statistical distribution ®(Z,) and
standard deviation o, which deform elastically and independently according to the theory of

Hertz. The force required to compress an individual asperity by an amount o, and the

contact area A are given by

a

5~ 372
P.=3E%, 0, (2.65)

A =TkQ, (266)
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Fig. 2.11 Contact of a smooth elastic sphere with a nominally

flat randomly rough surface.

Referring to Fig. 2.11, the profile of the undeformed sphere relative to a datum which is

taken at the mean level of the rough surface is

y=y0-r2f2R (2.67)
With a bulk displacement oy, and an asperity displacement o, the separation d between the
two surfaces is

d(r) = 0y (1) - y(r) = -y + (1°/2R ) + 0, (1) (2.68)
The asperity displacement o, = Z - d, where Z 1s the height of the asperity summit above

the datum. The effective pressure and the expected total area of contact over radius r were

given by Greenwood and Williamson ( 1966 ) as

12y
4n E*k,
pr) = —— f[zs-d(rn”cb(zs)dzs (269)
‘ d
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A =m k| (Z,-dr))OZYZ, 3T
d

where 1 is the number of asperities per unit area. Greenwood and Tripp ( 1967 ) defined an

effective contact radius by

a=3n f"”rp(r)drm f“"p(r)dr (2.71)

The effect of surface roughness on the distribution of normal pressure, for low loads and

high loads, is illustrated in Figs.2.12a and 2.12b respectively. The non-dimensional

parameter [3 is defined as

p==c0
===l (272)

where @ is the bulk compression and a is the contact radius for smooth surfaces under the
load P, as calculated from the Hertzian theory. It can be seen from Fig. 2.12a that surface
roughness is very significant at low loads. Compared with the Hertzian pressure distribution
for the same applied load, the maximum pressure at the centre is greatly reduced by surface
roughness and the load is distributed over a much larger apparent area of contact. At high

loads, shown in Fig. 2.12b, the differences become insignificant.

It has been experimentally found that the measured adhesion decreases drastically when
the surface of rubber or glass is roughened. The extent of adhesion decrease cannot be
accounted for solely as the reduction in real area of contact. Johnson ( 1976 ) suggested that
if the force required to separate the individual asperity is

P =-3 Tk, (273)

the total contact force per unit area P between two contacting surfaces due to adhesion under

load P is the sum of the forces exerted by all the asperities whose height exceeds d. 1.e.

P=npP, f F(ov/a)P(Z)d(Z) (2.74)

d-a,
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Fig. 2.12 Effect of surface roughness on contact pressure distribution without
adhesion: solid line - effective pressure distribution p ( r ); broken

line - Hertzian pressure distribution ( Johnson 1985 ).

where o, is the maximum separation of the asperity before the adhesion breaks and

3(P,/P.)+2+2(1+P,/P.)"?
171241/3
]

3*3[P, /P +2+2(1+P,/P,)

where P, is the force at an individual asperity contact. In the presence of adhesion. Johnson

( 1976 ) defined an elastic adhesion index [3,, and

53 9, *
o I6RE*'c, 113 4 ,E*o, 113
pr=—=(——=—) =g5l—=") (2.76)
o 3P, 2
¢ c n 'R

The maximum tensile force per unit area required to separate the surface was defined as P._.

The reduction in adhesion with surface roughness was illustrated by Johnson ( 1976 ) by

plotting P./nP. against B,, as shown in Fig. 2.13. Experimental measurements by Fuller

and Tabor ( 1975 ) supported the trend shown in the figure.
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Fig. 2.13 Reduction in adhesion with surface roughness: broken line - as

suggested by Johnson ( 1974 ), adhesion ceases when B, > 1.6:

solid line - as measured by Fuller and Tabor ( 1975 ).

As discussed before, the surface roughness affects the consistency and repeatability of
the coefficient of restitution in the cases of normal collisions. Brenner et al ( 1981 )
presented an investigation of normal impact adhesion in which the effect of surface
roughness of both the target plate and the particle on the critical velocity for bounce was
examined. In order to compare the results of different experiments they defined a critical
velocity statistically in terms of a sticking probability which is the fraction of impinging
particles that adhere permanently to the surface for a constant set of experimental conditions.
The critical velocity was defined as the velocity at which the sticking probability was 0.5. It
was reported that for both the plate and the ball, surface roughness resulted in an increase in
the sticking probability compared to smooth plates and balls ( Fig. 2.14 ). The critical
velocity at a temperature of 973 K, for example. was 0.2 m / s for the smooth balls. but

about 1.4 m/ s for the rough balls.

Recently. Borzone et al ( 1990 ) cxperimentally investigated the tangential behaviour of
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particle-wall interactions on rough surfaces. Particle impact and rebound parameters were
determined by using a high-speed photographic technique in which single particles were
targeted, using an eductor, onto a ceramic surface. The particles then were fed into the
eductor and their trajectories were photographed ( Fig. 2.15 ). A considerable number of
points were measured in order to obtain the correlations for rebound angles and velocities

because of the dispersion in the data.

Rebound angle and velocity were correlated with impact angle. It was reported that. for
smooth surfaces, the ratio of rebound velocities to impact angle showed less scatter than the
ratio of rebound angle to impact angle. This means that measurements of kinetic energy were
more reliable than trajectories. For rough surfaces, it was reported that the dispersion of the

data was too great to establish any reliable correlation with impact angle.

Aston University
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Fig. 2.14 Effect of ball and plate roughness on the sticking probability of
iron balls striking iron plates at 973 K at various impingement

velocities ( Brenner et al 1981 ).



Aston University

ustration removed for copyright restrictions




2.5.3 Plastic deformation and surface roughness

The deformation of an asperity will cease to be purely elastic beyond a certain load. Plastic
flow starts within an asperity, and as the load increases the zone of plastic flow increases
until eventually the entire asperity deforms plastically. In their earlier work Bowden and
Tabor ( 1954 ) suggested that the contact pressures were equal to the flow pressure of the
softer of two contacting materials and the normal load was then supported by the plastic flow
of the asperities. Later, Greenwood and Williamson ( 1966 ), Whitehouse and Archard (
1970 ), and Onions and Archard ( 1973 ) argued that the surface contact must often involve
an appreciable proportion of asperity contacts at which the deformation is entirely elastic. It
is now generally recognised that, under conditions of multiple contacts even if the
deformations are entirely elastic, the true area of contact can increase almost proportionally

with the load.

A non-dimensional plasticity index, a combinational parameter of surface statistics and
material constants which determines whether the contact will be essentially elastic or elasto-
plastic, has been proposed by different authors in different ways. It has already been
mentioned that the plastic deformation starts at a point within an asperity while the
surrounding material continues to deform elastically. Fully plastic deformation occurs when
the mean contact pressure over the contact zone is about three times the value at the onset of
plastic flow. At this stage the deformation is described by the ideal plastic contact theory
where the interfacial pressure is constant and equal to the indentation hardness, and there is

no surface deformation outside the contact zone.

The form of the plasticity index presented by Greenwood and Williamson ( 1966 ) is

w:%(g)wz T

where H is the hardness of the material: 6* is the standard deviation of the asperity peak

distribution; and k. is the radius of curvature of the asperities ( assumed to be constant).
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The plasticity index given by Whitehouse and Archard ( 1970 ) is
E*
y=17(c/B*) {278

where o is the standard deviation of the asperity height distribution and B* is the correlation

distance.

Johnson ( 1976 ) considered the case of fully plastic deformation in the presence of

adhesion and proposed a plastic adhesion index y; where

2 2
Y= —=n H'ko/2l B’

"

(279

He also defined a * coefficient of adhesion ™ as the ratio of the force required to separate the
surface to the force which pressed them together; which was related to the plastic adhesion

index by the equation
P I+y

B=cle—exp(-1/yy) (2.80)
WYa

The corresponding reduction in adhesion due to surface roughness is shown in Fig. 2.16

clearly indicating that very small adhesion occurs if y; > 2.
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Fig. 2.16 Reduction in adhesion with surface roughness ( plastic ) ( Johnson 1976 ).
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2.6 Computer simulated impact experiments

While physical experiments to confirm the theoretical models of particle collisions under
different conditions have been conducted for more than one hundred vears since Hertz (
1882 ), only in recent years has computer simulation been used to investigate particle
impacts. For rigid particles against a ductile target surface, mainly relatin ¢ to the erosion of
metal, previous computer simulated impact tests include Hutchings et al ( 1976 ), Rickerby
and Macmillan ( 1980 ), Hutchings et al ( 1981 ), and Bulantsev et al ( 1985). The results of

their simulations and experimental observations have been discussed in Section 2.4.

Computer simulation of assemblies of contiguous solid particles was initiated by Cundall
(1971, 1974 ), who developed the so called Distinct Element Method ( DEM ) in which the
interaction of the particles is considered as a transient problem with states of equilibrium
developing whenever the internal forces balance. The normal and tangential force-
displacement behaviour in the original program was modelled by linear springs. The DEM
can also be used to simulate single particle impacts with the incorporation of particle

interaction laws based on contact mechanics theories.

The simulation of an impact process consists of a series of calculation cycles in which
the evolution of the collision is advanced over a small increment of time. The wall is
assumed to be stationary during impact. In order to eliminate the effect of gravity on particle
velocity, the particle is placed in a position which is very close to the target wall. In the first
calculation cycle the incremental normal and tangential displacements of the sphere are
obtained by multiplying the prescribed initial particle velocity components by a very small
time step. Adding the incremental displacements to the co-ordinates of the particle centre
gives the new position of the particle. The forces and force increments established in the first
cycle or time step are determined from the initial conditions of the theoretical equations. The
tangential forces at the contact point contribute to the relative spin and the moment

components are stored to calculate the rotational velocity and update the angular position in
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the next time step.

In the second and subsequent cycles the current particle velocity components are used to
provide the relative normal and tangential displacements increments, from which the new
particle position is obtained according to the current position. The current contact normal and
tangential stiffness, provided by the theoretical contact mechanics, are multiplied by the
normal and tangential incremental displacements to obtain contact force increments. The
motion of the particle is governed by the equations according to Newton's second law. in
which the components of the out of balance force and momentum furnish the lincar and
rotational movements respectively. For the linear motion, the components of particle
acceleration are obtained by dividing the components of the newly updated out of balance
force on the particle by the particle mass, while taking account the effect of gravity. The
accelerations are multiplied by the small time step to provide velocity increments which are
used to update the particle velocities. Finally the new incremental displacements, obtained by
multiplying the velocity components by time step, are used to record the new position of the
particle. The rotational movements of the particle is modelled in the same way as the linear

motion. The above calculation cycle is repeated until the end of the impact.

Randall ( 1989 ) conducted computer simulated normal and oblique impacts of non-
adhesive elastic spheres against a wall. The coefficient of restitution was examined and the
relationship between rebound angle and impact angle was reported to be a good agreement
with that given by Maw et al ( 1976, 1981 ). The effect of surface adhesion forces.
according to Johnson et al ( 1971 ) and Johnson ( 1976 ) in normal interactions and Savkoor
and Briggs ( 1977 ) and Thornton ( 1992 ) in tangential interactions. was implemented into
the program by Yin ( 1992 ). The results of computer simulated particle-particle interactions
of oblique impacts with and without adhesion. reported by Thornton and Yin ( 1991 ), have

been discussed in Sections 2.2 and 2.3.

2.7 Concluding remarks
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Using the JKR theory, surface adhesion was incorporated into the impact model proposed
by Rogers and Reed ( 1984 ), and the dynamic yield limit, as defined by Malvern ( 1951).
was used to modify the model of Rogers and Reed by Wall et al ( 1989 ). The most
advanced theoretical treatment to date is that of Wall et al ( 1989 ), but this is restricted to
normal impacts and the effect of surface energy during the impact process is neglected.
Therefore, it is necessary to extend the work by Thornton and Yin ( 1991 ) to incorporated
plastic deformation and the work of Wall et al ( 1989 ) to oblique impacts in order to
examine the mechanisms of energy loss due to oblique collisions which are still little
understood. For the case of no adhesion the most relevant model is that of Johnson ( 1985 ).
which deals with fully plastic impact. However, for relatively small impact velocities at
which the colliding particle undergoes elasto-plastic deformations the model is not able to

provide reasonable solutions.

The basic asperity model of Greenwood and Williamson ( 1966 ) has been extended to
include such aspects as curved surfaces ( Greenwood and Tripp 1967 ), two rough surfaces
with misaligned asperities ( Greenwood and Tripp 1971 ), non-uniform radii of curvature of
asperity peaks ( Hisakado 1974 ), elliptic paraboloidal asperities ( Bush et al 1975 ).
asperities of plastic deformation ( Nayak 1971 ), and asperities of elasto-plastic deformation
( Cheng et al 1987 ). However, the experimental investigations of contacting rough surfaces
are far behind the considerable developments of theoretical work. Experimental studies
aimed at measurements of the asperity properties are understandably limited by the great
difficulties involved in trying to measure the precise value of the parameters which the
theoretical model are based on, such as mean curvature of asperity peaks, standard deviation
of asperity heights, and area density of asperities. These factors create major difficulties
when attempting to numerically simulate impact with rough surfaces. Consequently. in this

study. the effect of surface roughness will not be considered.
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Chapter 3 Normal impact of elasto-plastic spheres

3.1 Introduction

This chapter considers the elastic-plastic impact behaviour of a sphere impacting
orthogonally with a wall. The initial, pre-yield, behaviour is described by Hertzian theory
which was presented in Section 2.2. Assuming the absence of strain hardening or strain rate
effects, the post-yield behaviour is described by modifying the Hertzian pressure distribution
to account for the limiting normal pressure, 6,, due to plastic deformation at the contact. The
modified Hertzian theory is then used to obtain analytical expressions for the coefficient of
restitution, the contact force evolution and the contact duration. Finally. resuits of computer
simulated normal impacts are presented and compared with theory and previous experimental

results.

3.2 Yield

When a sphere of radius R impacts the target surface all the kinetic energy is absorbed and
transformed into elastic energy provided that yield does not occur. If the impact velocity is

just large enough to initiate yield, using ( 2.14 ) and (2.16 ) we have

Oty O 8E*a.
lm\/E:f Pda:SEzf a'da= —2 (3.1)
A ) I5R’
from which
ISR m\ S SnpR” V (32)
“_\:( 16E* ) = ( 1E* )
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where p is the density of the particle and V. which we define as the yield velocity, is the

velocity below which the interaction behaviour is assumed to be elastic. From Hertzian

theory, the maximum contact pressure at the centre of the contact area is

_ 3P _2E*a
0~ 2_

'}
2ma nR 3Kk

We now define a " contact yield stress " Gy =pp (a,)and from ( 3.2) and ( 3.3 ) there

results
2E* Svaz 1/5
o, ="— - (34)
bt 4E
from which
no2, 2 .12 52
Vy=(5z) (—) "o
y * (3.5)
2E 5p | y
which corresponds to ( 2.36 ) originally derived by Davies ( 1949 ).
3.3 Force-displacement relationship
For elastic spheres the Hertzian pressure distribution and normal contact force are
3P 2 2.1/2
o)y=—=(a -1) (3.6)
2ma
a
P 211:] o(r)rdr (3.7)
0

If plastic deformation occurs we assume a Hertzian pressure distribution with a cut-off

corresponding to the contact yield stress 6, ( Fig. 3.1 ) which is constant for a given impact

velocity. After yield the normal force P is given by

a,
P:PC-ZJII (G(T)'Uy)fdr (38)
0
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where P, is the effective elastic force given by (3.7 ) and a, 1s the radius of the contact area

under plastic deformation. Integrating ( 3.8 ) we obtain

Hertz

% %

Fig. 3.1 Pressure distribution with plastic deformation.

P=mnalo, + P [ 1-(a/a)’ (39)

Using (3.6 ), o, may be defined as
3P,
Gy=——" (3.10)

y 2
Znay

or, with reference to Fig. 3.1,

3P a, 2.1/
o,=—=[1-(E£)] (3.11)
2ma”
The contact radius is obtained from
a® = (3RMHE*) P, (3.12)

Hence. using ( 3.10). ( 3.11) and ( 3.12') we find that
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a
1-(;")2=(?)2 (3.13)

or

.2 2 2
a —ap+ay (3.14)

which corresponds to the assumption of Bitter (1963) that the area of the annulus of elastic

deformation remains equal to the total contact area at yield. Using ( 3.13 ) we may rewrite (

3.9)as
=no,(a -ay)+ e(?)

2. -2
=Py+n0'y(a -ay) (3.15)

Fig.3.2 Flatted contact surfaces under plastic deformation.

Experimental observations indicate that the contact curvature reduces during plastic
deformation and varies from ( 1/R ) at initial yield to ~( 1/2R ) at the fully plastic state,
Johnson ( 1985 ). As shown diagrammatically in Fig.3.2. during plastic deformation the
elastic compression 0., at the centre of the contact area is less than the relative approach o
and the contact curvature is reduced from I/R to 1/R,,, where R, may be considered to be the

radius of an equivalent elastic sphere. Hence. the contact radius may be defined as

- "

a =Ra or a =R (3.16)



But, since the variations of R, and 0., during plastic loading remain uncertain. it is necessary

to substitute ( 3.16a ) into ( 4.15 ) to obtain
2
P:Py+n0y(Ra-ay) ( 3.17)

from which the plastic normal contact stiffness is defined as

k“:j—P=chy=2E*ay (3.18)
o

During elastic recovery the force-displacement relationship is assumed to be elastic and is

provided by the classic Hertzian equations but with a contact curvature Ry, corresponding to
the point of unloading. At the transition point from loading to unloading the contact area

generated by the actual maximum contact force P* is the same as that developed by the

maximum equivalent elastic force P,* for a contact curvature of 1/R. Hence, using ( 3. 12),

3=£p *ZSRP
4E* " © T 4E*

*

Bk (3.19)

which leads to

RP.X
= 3.2
Ry=—= (3.20)
where the equivalent elastic force is

4E* .3 4 fi2. 2

The complete force-displacement curve for elastic-plastic loading and elastic unloading is
diagrammatically illustrated in Fig.3.3. It is seen from Fig.3.3 that the linear plastic loading
curve is tangential to the Hertzian curve at the yield point y and intersects the vertical axis at

P, < 0. Using ( 3.18 ) we may write

P,~Py, P*-Pg

ZE*a}: —';--* o (3.22
y
from which
. 2E* 3
P0=P_\,- Eb*a_\(l_\:P).-— R ay

T



P
=P _%P)’:-Ty ¢ 35231

and the maximum relative approach is

P*-P, 2P*+P,

nRoy 2chy

oF =

(3.24)
Substituting ( 3.24 ) into ( 3.21 ) we have

P*—4E* 2P"‘+Py
€& T 3R

32
) (3.25)

2150'y

from which the maximum contact radius is given as

a*:(

2P* + P, )Uz

21t6y (:3:26)

Consequently, from ( 3.20 ) the equivalent particle radius during elastic recovery is

=4E*( 2P*4-Py)3m .
P 3P .
ZKGY

P i comm s s sl e s

Y .

Fig. 3.3 Force-displacement curve for loading and unloading.
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3.4 Particle bounce and coefficient of restitution

The impact process may conveniently be considered as divided into three distinct stages (
Bitter, 1963 ). The first stage starts at the moment of initial contact of the bodies and the
deformations in both bodies remain purely elastic until the peak pressure reaches the elastic
yield limit of the softer of the two contacting bodies. In this stage the classic Hertzian theory
can be used. The second stage commences at the onset of plastic deformation and ends when
the impacting bodies have zero relative velocity. The area of plastic deformation grows from
the centre of the contact zone and is surrounded by an annulus in which only elastic
deformation occurs. In the third stage of impact the stored elastic energy is gradually
released and transformed into kinetic energy of the particle. After impact the motion of the

particle depends on the energy dissipated during the elastic-plastic impact.

The coefficient of restitution, e, is generally viewed as an experimentally determined
parameter which in some way represents the effect of inelastic material behaviour, where
part of the initial energy has been lost during the impact. It is defined as a ratio of the
departure velocity to the approach velocity. The mechanisms of energy loss during impact
involve many aspects, such as plastic deformation, elastic wave propagation, surface
adhesion forces, internal friction, surface roughness, electrostatic effects, etc. Theoretical
and experimental investigations indicate that plastic deformation is the dominant factor which
dissipates initial kinetic energy and determines bounce of the particle when the impact
velocity becomes relatively high or fully plastic deformation is achieved. The energy loss in
elastic waves during plastic impact will be discussed in the next section. As we can find later
the amount of energy loss in elastic waves is small and we are justified to concentrate on the

mechanism of plastic deformation while ignoring other minor affecting factors.

From Fig.3.3 up to the instant of maximum compression part of the initial kinetic energy
is dissipated during plastic loading while a certain amount of energy is transformed into

tored elastic strain energy with maximum contact radius a* and contact force P*. The
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energy transfer equation is

1 a* a, a*
§mVﬁi=f Pdot =f Pda+f Pdat

0
n!

2 1
=§Pyay+ E(PY+P*)((1*-0&Y)

1 2Ir”‘+Py
(PY+P*)(—~——-CLY)
21tRc:sy

2
gpyay'l" i

(P +P*)(2P*+P,) |

"o Py%y 2P*°‘y ( 3.28 )

47|:R0y
where
2 2 35 3
T Rc)'y ntRo
o= S and  Py=- 2)’ (3.29)
4E* 6E*

If the particle bounces off the surface there is a residual displacement oL, corresponding

to permanent plastic deformation. The process of elastic unloading corresponds to one in

which a particle with a radius of R, undergoes an equivalent displacement o, = a* - o,. The

kinetic energy of rebound is equal to the work done during elastic recovery

f Pda= f Pda——P*(a* ap)=%P*ae (3.30)
where the equivalent displacement according to the Hertzian theory is

2
a* ] 3R p* 2/3 1 ”3 3p* 2/3
o= Ep_ ( 4E* ) (4E=ic ) (331)

Substituting o, and R, from ( 3. 27 ) the energy balance equation during rebound becomes

2 3ps’  2mO, 12
: mV Y

> Vo= o5¥ (2pr 1 p ) (3.32)
- Y

At very high impact velocities when a, << a* o, << o* and P_\ << P* the maximum

contact force may be approximated as
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2
P*= ncya* (3.33)

and (3.28 ) and (3.32) may be rewritten as

2 x4
] 2 P* ncya
5 mVy;= = (3.34)

2Ro, 2R

and

2 2
3
1 .2 _ 3P* 12 3px? 3m o a*
2 ™WVar= lOE*( p* )" I0E*a* ~  10E* S

The coefficient of restitution defined as the ratio of rebound velocity to impact velocity is

therefore obtained from

1 2
2 fmvnr 3TD(5,R
= T 3 "5 (3.36)

Using ( 3.34 ) we have

RmV
d-( ) (3.37)
y
therefore
o 12 TEO'
crm (2 e~
FIJ
5/8 -1/8
=13240, B~ v, (338)

It is clear that the coefficient of restitution is not a material property. but depends upon
the severity of the impact. Johnson ( 1985 ) conducted an analysis of a particle bouncing
upon plastic impact. He argued that in a fully plastic indentation the relationship between the
compression o and the contact radius a is o = a® / 2R, so that the loading slope is 2nRo,.
which is twice that used in this study. The coefficient of restitution at high impact velocities

according to Johnson ( 1985 ) 1s
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-1/8
YR —1720' Ppartizy oy (3.39)

ni

( SE*
which is 1.3 times of that given in ( 3.38 ) since twice the stored elastic strain energy exists

at the end of the loading process.

During the preparation of this thesis, Thornton ( 1994 ) obtained a complete analytical
solution for the coefficient of restitution based on the theoretical treatment described in

Section 3.3. The theoretical derivation is presented below. Rewriting ( 3.28 ) there results

1 2 2 1 PE—P
=mV_ .=z P + = (P,+P*)( )
2 ni 5 P)‘ 2 y T[RO-Y
2
. ps2 P
3 ™y* IE%a.  2E*a (3.40)
Since
SR _.,2_5E*a, _.o,12
Py="—=mVy=(—"mVy) (3.41)
4a,
we may rewrite ( 3.40 ) as
1 2 P’ 1 2
nganﬁ;ﬂ“ﬁmVy (3.42)
from which the maximum contact force is given as
p*2 = 4B*a, (4 mV2 - = mv?) (3.43)
= ay( m 3 y
Therefore ( 3.35 ) may be expressed as
I 3 62y 1 ..2 1 2
§mvnr:§;z(jmvni—ﬁmvy) ( 3449
The coefficient of restitution can be obtained from
| VZ =
2 Em I 6"‘\' | V:
en= I ~ =5—d;-( 2) (345]
EI’I'IV;.;|1 ni

Since
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» 3P 2 2P*+P,

y (346)
2‘.!!(5y 2ncy
we have
a, 7 3P 3
Ak Y
(&) = 25739, " T 2P9/P, (S)

Using ( 3.41 ) and ( 3.43 ) there results

2.

P¥.5 6.,.Y¥4 1
(5, =35(5-5
Py v? (3.48)
or
p* 6 L]
P, \/g(vmwy) -3 (3.49)

Substituting ( 3.47 ) and ( 3.49 ) into ( 3.45 ) we have

2 6Y3 1 V, .2
€h= 5 5 ] [l_ ('\_(i)]
1+2v (Vm/V ) e
:6ﬁ Vylvni 172

] = [1-—(\, )](350)

5 6 2
(vyxvm)nq/g-g(vy;vm)

from which the coefficient of restitution is obtained
[108 V }V, ]134[ 1 Vy 9. _ 142

(Vy/Vyi)+ 2'\/6“1-(\/’ ;"Vm)

(3.51)
If Vi = Vy, equation (3.51) gives e, = 1. At very high impact velocities when V, <<

( 3.51) can be simplified as

l'll’

=[108V»’ ]

= 1.185 2

Since V, is a material related parameter, alternatively. we may substitute ( 3.5 ) into ( 3.52)

and the expression for the coefficient of restitution is given as

S -178
en=13240, E*p V! (353)

n

which is in agreement with ( 3.38).
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3.5 Force-time relationship and energy dissipation in elastic waves

In order to estimate the contact duration for an elastic-plastic impact the force-time
relationship during elastic-plastic loading and elastic unloading must be known. The
Hertzian treatment of elastic impact gives an expression for the time of contact between the
two colliding bodies which has been found to be dependent on the velocity of approach. The
contact force during elastic-plastic impact is also related to the severity of impact. For the
simplicity of analysis the yield stress of material is assumed to be constant during the loading
process and the effect of a dynamic yield stress is ignored. Referring to ( 3.15 ) the contact

force in the loading process is
p=p 2 2, 1
= y+TtGy(a -ay)_ncyR(a-iay) (3.54)

The equation governing the motion of the sphere with mass m is given by

ma:—P=~ncYR(a—%ay) (.3.53 )

The expression of the response frequency in the solution of the above differential equation
will be very complicated. To simplify the mathematical treatment, it is assumed that there is
negligible elastic deformation at initial yield and also in material surrounding the contact
point. This is only valid for high impact velocities, but by using this assumption we may
rewrite ( 3.55) as

N - 2_ (3.56)
mo = -NG.a = msyRa

The solution of this differential equation is
o = o* sin @t OStSm’Z(Up ( 3.57)

where a* and @, are the maximum approach and the response frequency for plastic loading

respectively, and

a=a*mpcos mpt (3.58)

& 2 2

e * ) 31 — b
o=—a {Ep sin mpl —CUP(I
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or
- 2
m = - =
o tﬁpam noyRa

2
mp=nclem
30 1/2
4p R

(3.60)

(3.61)

(362)

where p; is the density of the sphere. Up to the instant of maximum compression the kinetic

energy is absorbed in local elastic and plastic deformation of the two colliding bodies

L= [ mins o
2m ni= ) Ct—fmyRC(

and therefore

R? 11

1/2 4
) Vni

ar=(—2) V= (2

no‘YR op

From ( 3.60 ) the expression for the time dependent contact force is

P(t)=-mo= nGyRa*sin Gjpt = P*sin mpt 0<t< ch2ti§p

and the maximum contact force is

4p.c. 172
P*=myRa*:nR2(%) v,

With respect to ( 3.45 ), under the same assumption as above, we have

2 6a, B BTEUYR _4 RGYR |
nT5a* T SE*a* ~ 5 m 4E*a*3m

e

9

4 ©, 4 2 2
§'4E*a*f3m‘§mp"me

-

Since as demonstrated in Appendix A

4[4 0,
B = 3m V5 e,
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(3.64)

(3.65)

(3.66)

( 3.67)

(3.68)



is the response frequency during elastic recovery in an elastic-plastic impact and the first part
of ( 3.68 ) is valid for purely elastic impacts as well. It is seen that the elastic frequency is
dependent on the severity of impact. At the point of transition from loading to unloading the
force function and its time derivative must be continuous and the force-time relationship can

be given by
P(t)=P*cos O (t-n20,) n20, < LS 20 +1/20, (3.69)

where P* is the value of the maximum force at the transition point and is given by ( 3.66 ).
The total contact time including plastic loading time t; and elastic recovery or unloading

duration ty; is therefore given as

Tt w21 1. ™

t:tL+tU:*£—+—'—=§(——'+——'):—(l+H5f4en)
28, 20, o, B, 20
R 4 12 p, 112
=-1Ei—(1+}'5!4en)(—ﬂ) =nR (1+V5/Ae,)(—) (3.70)
30'y 30'),

The complete loading-unloading history as described in equations ( 3.65 ) and ( 3.69 ) is

shown in Fig. 3.4.

Force P
2w, . 2w,

Pk |-

Fig. 3.4 Force-time relationships defined by ( 3.65)and ( 3.69 ).
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As demonstrated in Section 2.2.1, for purely elastic impacts the power law relationship
between the contact duration and impact velocity has an exponent of -1/5 and the force-time
curve is symmetric. It is seen from ( 3.62 ) and ( 3.70 ) that the time of collision during
plastic loading is independent of impact velocity, however the total contact time varies with
impact velocity due to the involvement of the coefficient of restitution which is proportional
to V;-1/4 as demonstrated in ( 3.38 ). Numerous collision experiments ( Andrews, 1931;
Tabor, 1951 ) have shown that the asymmetric type of force-time curve is of general
occurrence, if plastic flow occurs. As the impact velocity is increased further, the coefficient
of restitution e, falls and the elastic unloading time t{; becomes a smaller proportion of the

total time of impact t.

It is worth noting that the contact time at initial yield given by ( 3.70 ) is not exactly equal
to that given by ( 2.10 ). The reason for this may correspond to the assumption that the
elastic deformation in the initial stage of loading is ignored and ( 3.56 ) is valid for the whole
range of impact velocities whether they be below or above the yield velocity. Under this
assumption an asymmetry of the force-time curve occurs at initial yield, and it is seen from (
3.70 ) that the time of elastic recovery is slightly longer than that for the loading process

when e, = 1.0. Substituting V, of (3.9 ) into ( 2.10 ) the minimum elastic impact time is

K 1/5 12
*2.87(—m—2v—) A eeR(2L) (3.71)
(o]

le,min"
*
RE y y

and the maximum plastic impact time by lettinge, = 1 in (3.70 ) is

1/2
=3.84 R(ﬂ) (3.72)
G)’

Up.max

which is less than the value of t, ;.

The energy dissipation in elastic waves during plastic impact was estimated by
Hutchings ( 1979 ). who analysed the force-time relationship during plastic loading and

clastic unloading separately. The relationship between the plastic and elastic responsce
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frequency was assumed to be related to the coefficient of restitution. which is close to this
study as demonstrated in ( 3.68 ). A complete analysis of the initial kinetic energy radiated to
the free surface of semi-infinite solid during plastic impact is given in Appendix A. The

major results of the analysis are presented below.

Under a transient time dependent force which has the pulse shape of sin@t or cos@t the

total energy loss in elastic wave propagation according to Hunter ( 1957 ) is

(v,
W= 23 p*zmo (3.73)
P,Co
where
Co=(E*/p,)? (3.74)
2
1-v 1/2
Lvy) =B(1+vy)(—=2) (3.75)
1-2v,

which is only related to the Poisson’s ratio of the substrate v,; p, is the density of the target

surface; P* and @ are the maximum contact force and the response frequency respectively.
The maximum force is unique in both loading and unloading process due to the smooth
loading and unloading transition. However, the frequency in elastic recovery is no longer
equal to the previous one in the plastic loading process. An equivalent frequency was
defined by Hutchings ( 1979 ) and then used to calculate the total energy dissipation in
elastic wave motion. It is at this point the present analysis differs from that of Hutchings.
From physical arguments, the total energy loss can be subdivided into two parts: the energy

loss in the plastic loading process W, and the energy dissipation during elastic recovery W...

and
3
(V) 2 : p,c 1/2
Wp=g LR (L) Va (3.76)
P,Co

8 4



c(vz) 2 4 W
Wez— - Pr@ =4l ot (3.77)
pZCO f

The total radiated energy is then given by

3
&vy 23, po, 12 , 4 1
W=W, +W,= TR(—2L) Vi(l+4/z ) (3.78)
3 3 5 e
cho !

and the fraction of the initial kinetic energy loss is

3
W C(v.,) 36, 12
Wea o= ow () (1+V‘;_el)
P.Co 4p, 8

Emvni (3.79)

For U;0g particles striking a steel plate, at an impact velocity of V;, = 1.0 m/s, which is
slightly above the yield velocity, the percentage energy loss W* is 0.818%; when V_. = 10
m/s equation ( 3.79 ) predicts that W* = 1.07%; and at V,; = 100 m/s we have W* =
1.564%. In the previous analysis we assume that there is no effect of the dynamic yield
stress during impact. If this factor is going to be included the situation would be much more
complicated. As the fraction of energy loss is very low we are justified to ignore the energy
loss in terms of elastic wave propagation during elastic and elastic-plastic impacts

irrespective of whether or not we take into account the effects of a dynamic yield strength.

3.6 Computer simulation results

Numerical simulations of normal impact of elasto-plastic spheres with a plane smooth wall
have been performed using the computer program TRUBAL. Detailed information about the
computer code, and the modifications that have been made to incorporate the new theories
described in this thesis, will be presented in Chapter 8. Typical simulations will be illustrated
for the case of U;Og particles impacting a stainless steel surface. The particle and target
properties used in the simulations were provided in Table 1.1. The particle radius used in the

computer simulated experiments is R = 10 um.
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Figure 3.5 shows the normal force-displacement curves obtained for impact velocities of
5.0, 10.0 and 20.0 m/s. After plastic yield the slope of the loading curves is unique, in
agreement with ( 3.18 ). At different impact velocities the elastic unloading curves are not
parallel to each other since the contact curvature decreases with an increase in impact
velocity. Consequently, the slope of unloading curve at the transition point becomes stiffer

as the severity of plastic indentation increases.

= 40
% || = 'mpactvelocity: 5.0 m/s e
- ® Impact velocity: 10.0 m/s ,ﬂ"t
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Fig. 3.5 The normal force-displacement relationship at different impact velocities.

Coefficients of restitution, obtained from the simulations, are plotted against impact
velocity in Fig.3.6 . It is seen that there are three ranges of behaviour: elastic impact, clasto-
plastic impact and fully plastic impact. If other mechanisms of energy dissipation such as
elastic wave propagation. surface roughness, and internal friction, etc.. are ignored. the
clastic collision process is entirely reversible and the impact and rebound velocities arce
identical. The coefficient of restitution, therefore, is unity. At high impact velocities the
plastic deformation dominates the loading process and the initial plastic yield force Py is
insignificant compared with the maximum contact force generated. It can be seen from

Fig.3.6 that the results of the computer simulations in this high velocity range match the
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theoretical power law relationship given by ( 3.38 ) very well. However, in the range V, <
Vii < 10V, the difference between the simulation results and the predictions of ( 3.38 ) are
significant. The differences are of major concern since this is a region which is commonly

encountered in process engineering problems.

B8 Computer simulation
— Equation ( 3.38)

Coefficient of restitution, e

1 T T T T T T T T T T T

i 1 10 100

Impact velocity ( m/s )

Fig. 3.6 Computer simulated normal coefficient of restitution in the full range

of impact velocity and theoretical predictions given by ( 3.38 ).

The simulated results and the power law relationship ( 3.38 ) are replotted in Fig. 3.7 to
emphasise the difference. Superimposed on the figure is an alternative prediction recently

suggested by Stronge ( 1994b ) which, for a sphere impacting a wall, takes the form

3/8

Vv
2] (3.80)

[%(7)

<\
et
umiw

Inspection of ( 3.80 ) shows that, for V,; >> V.. the equation degenerates to

V. 14
L‘n=l.193(v—:-i) (3.81)
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and that, for V, = Vy, e, = 1. However, Stronge's ( 1994b ) equation ( 3.80 ) also predicts

e 1:for Vy <V, < 1.59Vy, as shown in Fig. 3.7.

In Fig. 3.8 the coefficient of restitution obtained from computer simulated ex periments
are compared with the analytical solution ( 3.51 ) provided by Thornton ( 1994 ). It is seen
that there is an exact agreement between the analytical predictions and the simulation data.
Since the analytical solution is based on the theoretical assumptions incorporated into the
computer code, Fig. 3.8 provides the verification that the computer program has been

correctly coded.

The evolution of the normal contact force with time is shown in Fig. 3.9 for an elastic
impact and an elasto-plastic impact. In both cases of computer simulation an impact velocity
of 50.0 m/s was used. In order to simulate the elastic impact a very high yield stress was
prescribed to ensure that no plastic deformation occurred. It can be seen that for the elasto-
plastic impact the force evolution is asymmetric, in agreement with Fig. 3.4, the rebound
period being significantly shorter than the loading period. It is also noted that the total impact
duration is larger than that of the equivalent elastic impact. For comparison, the evolution of

the equivalent elastic force P, during the loading period of the elasto-plastic impact is also

shown.

Figure 3.10 shows how the contact duration varies with impact velocity, indicating the
total contact time t, the loading period t; and the unloading period ty;. For an impact velocity
equal to the yield velocity V= 0.625 m/s, the computer simulation gave t; =ty = 0.0384 ps
which may be compared with the theoretical prediction of 0.0385 ps according to ( 2.10).
As the impact velocity increases both the loading period and the unloading period decreasc.
However, as can be seen from Fig. 4.10, at impact velocities V, > 5.0 m/s the loading
period tends to a constant value of t; = 0.0297 us as predicted by ( 3.70 ). Therefore, it 1s

concluded that the computer simulated results agree very well with the theorctical

predictions.

88



8 Computer simulation
1 -==" Equation ( 3.38)
i — Stronge (1994) - ( 3.80)

Coefficient of restitution, e ,,
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Impact velocity ( m/s )

Fig. 3.7 Computer simulated coefficient of restitution compared with

the predictions given by Stronge ( 1994b ).

8 Computer simulation
===* Equation ( 3.38 )
09 — Thornton (1994) - ( 3.51 )
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Fig. 3.8 Computer simulated coefficient of restitution compared with

the predictions given by Thornton ( 1994 ).

89



Contact force ( mN )

Fig. 3.9 Force-time curves of elastic and plastic impact at an impact velocity of 50.0 m/s.
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3.7 Summary and discussion

The compliance and force-time relationships based on the classical Hertzian theory have been
extended to incorporate plastic deformation for orthogonal impacts. It has been demonstrated
that the portion of the initial kinetic energy lost due to the elastic wave propagation during an
elasto-plastic impact is not significant and can be neglected. The asymmetric evolution of the
normal force during the contact period and the velocity independent plastic loading time
obtained in the simulations are in agreement with the experimental observations by Andrews
(1931 ). The computer simulation results match the theoretical predictions of the coefficient

of restitution and contact duration very well.

The coefficient of restitution at high impact velocities, shown in Equation ( 3.38 ), is
1.185 ( Vy/Vy )'/4. Although the normal contact stiffness derived in this study is half that
given by Johnson ( 1985 ) the power law relationship between the normal coefficient of
restitution and impact velocity has the same exponent of -1/4 for both cases, a feature which
is supported by experimental measurements. From the experimental point of view, the yield
velocity V, above which e, <1, is much easier to measure. Consequently, in order to verify
the theory the impact model presented in this study can avoid the difficulties in measuring the

yield stress.

In the literature, there exists an unsolved problem of the yield stress suitable for use in
elasto-plastic impact models. It has been found ( Timoshenko, 1934; referring Johnson,
1985 ) that for a particle indenting a free surface of semi-infinite solid the condition for
plasticity is first reached when the maximum contact pressure po = 1.6Y or the mean
pressure p,, = 1.1Y is obtained, where Y is a uniaxial yield stress. Both experimental and
numerical studies ( Tabor 1951. Hardy et al 1971 ) suggest that the mean contact pressure
increases with the severity of the indentation and under high loads rapidly approaches a
value of p,, = 3Y. at which a fully plastic state is obtained. For the mean pressure in the

ranee of 1.1Y < p,, < 3Y. the indentation is called elasto-plastic. Johnson's ( 1985 ) model.
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which is based on the assumption P = 3Y, overestimated the coefficient of restitution even
for fully plastic impacts. In this study, it is assumed that the limiting normal pressure o, =
KY maintains constant during plastic loading, where the constant K, according to Hardy et
al (1971 ), should be in the range of 2.3 - 2.5. For fully plastic impacts &, is approximately
equal to the mean stress at the contact. For impact velocities which are close to the vield
velocity, as indicated by Hardy et al ( 1971 ), the stress distribution is between the uniform
distribution and the elliptic Hertzian distribution, but pj is larger than 1.6Y. The assumed
distribution in this study, a Hertzian one with a cut-off of o, may slightly increases the
yield velocity but the distribution is close to the actual distribution and the difficulty caused

by variations of p,, for use in the impact models can be avoided.

It is important to note that, since the contact force and the contact radius are in continuity
at the transition from loading to unloading, an imbalance of the contact pressure distribution
occurs at this transition during which the approximately uniform distribution is
instantaneously changed to the elliptic Hertzian distribution. The same problem exists for the

models by Johnson ( 1985 ) and Stronge ( 1994b ).



Chapter 4 Oblique impact of elasto-plastic spheres

4.1 Introduction

Although the theory of particle impact for normal collisions has been relatively well
established, at least for high velocities, there appear to be no published analytical solutions
for oblique impact with plastic deformation. The problem of oblique rigid body collisions
has been investigated by Brach ( 1981, 1984, 1988, 1989 ), Keller ( 1986 ) and Stronge (
1990, 1991, 1992, 1994a ). However, by ignoring the particle elasticity and plastic
deformation at the contact, rigid body collision theory has limitations for process engineering

applications.

In this chapter, results of computer simulated oblique impact will be presented. The
normal contact interaction law was based on the theory presented in Chapter 3. For
simplicity, it is assumed that Mindlin's ( 1949 ) partial-slip solution remains valid for all
impact velocities and hence the tangential stiffness is given by ( 2.18 ). Therefore. it should
be noted that for normal components of velocity higher than the yield velocity the contact

radius is related to the effective Hertzian normal force P,. The sliding criterion is controlled

by the actual normal force, i.e. ITI = pP. Some of the work in this chapter has been reported

by Thornton and Ning ( 1994 ).

4.2 Evolution of contact forces and energy components

For oblique elastic impacts the normal-tangential force and tangential force-displacement
rclationships were reported by Thornton and Yin ( 1991 ). In this section the cffect of plastic

deformation on these relationships is examined. Figures 4.1 and 4.3 show the evolution of

93



the normalised tangential force during the impact period for different impact angles at impact
speeds of 5.0 m/s and 20.0 m/s respectively. Compared with Fig. 2.3. which was obtained
by Maw et al ( 1976, 1981 ) for elastic impacts, it is seen from Fig. 4.1 that the tangential
force-time curves are affected by plastic deformation at low impact angles. but for other
impact angles the pattern of evolution is similar to that under elastic deformation. For
example, at 8 = 15°, the tangential force undergoes three half cycles of oscillation. though
the last one is very small. Contact sliding only occurs at the final stage of impact. As
demonstrated in Section 3.4, the plastic loading time t; is longer than the elastic unloading
period ty; and the total contact time for an elastic-plastic impact, therefore, is longer than that
for an equivalent elastic impact. Consequently, for small impact angles at which sliding only
occurs over part of the impact duration, the tangential force has to undergo an extra half
cycle to compensate for this. For an impact speed of 20.0 m/s, Fig. 4.3 shows that the last
cycle becomes longer at 6 = 15°. Further computer simulation results indicate that for V; =
100 m/s there is a third half cycle of tangential force even for 8 = 30°. It is also seen from
Fig. 4.3 that contact sliding occurs at the beginning of the impact. The reason for this is that,
since the contact force for a high velocity plastic impact is significantly less than the effective
elastic force which determines the contact area, the limiting friction condition ITl = uP is
easier to obtain and therefore sliding occurs. It should be noted that, in Figs. 4.1 and 4.3,
the total contact time varies with the normal component of impact speed which is dependent

on the impact angle.

Figures 4.2 and 4.4 show the loading and unloading paths for different impact angles at
two impact speeds. For an impact speed of 5.0 m/s, at low impact angles. e.g. 8 = 15°,
contact sliding only occurs in the final stage of unloading and the direction of sliding is
opposite to that for elastic impacts as reported by Yin ( 1992 ). If the impact angle is greater
than a certain value sliding initiates at the start of loading and continues until the moment at
which the tangential incremental force AT < PAP is obtained. After passing the peak value
the tangential force reduces, reverses in direction and finally contact sliding reoccurs. The

ratio of sliding duration to the total contact time 1s dependent on the impact angle. At very
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large impact angles, e.g. 75°, sliding occurs throughout the impact with no reversal of the
tangential force direction. For an impact speed of 20.0 m/s. it is seen from Figure 4.4 that at

0 = 15° contact sliding occurs at the start of the impact and finishes when the condition AT <
HAP is reached during loading. After the maximum negative value is obtained the tangential
force increases and becomes positive again. When the friction condition is reached sliding
reoccurs and continues until the end of the impact. The maximum normal force in Fig. 4.2
and Fig. 4.4 decreases with an increase of the impact angle since the simulations were

performed for a constant impact speed.

It should be noted that, for elastic impacts, the condition governing initial sliding during
loading, as reported by Maw et al ( 1976 ), is that the parameter ; 2 1.0 which corresponds
to ® = 23°. However, when plastic deformation is severe, e.g. V; = 20.0 m/s, sliding
initiates at the start of the impact with 6 = 15°. For elastic impacts, contact sliding occurs
throughout the impact when y; > 4y -1 = 4.77, corresponding to the impact angle of 6 2
63.7° for the material properties used in this study. It will be shown in Section 4.3.3 that

plastic deformation affects this criterion.

The tangential force-displacement relationship is plotted in Fig. 4.5 and Fig. 4.6 for
various impact angles at the two impact speeds. The energy loss during oblique impact in
terms of shear deformation can be demonstrated by the force-displacement curves. It is seen
from both figures that the tangential displacement prior to particle departure increases with an
increase of impact angle since the tangential component of impact velocity increases. Finally
for the impact angles at which sliding occurs throughout the impact process there is no
reversal in the direction of tangential displacement. Figure 4.7 shows the normalised
tangential force-displacement relationship at 8 = 15° for impact speeds of 0.5 m/s and 20.0
m/s respectively. It can be seen that, as a result of plastic deformation. the second reversal in

the tangential displacement leads to a positive tangential force prior to the end of the

collision.



T/ ULPmax

Impact angle: 15°
Impact angle: 30
* Impact angle: 45
* Impact angle: 60°

B |mpact angle: 75°

Fig. 4.1 Normalised tangential force plotted against normalised contact time for

different impact angles at an impact speed of 5.0 m/s.
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Fig. 4.2 Normal force-tangential force relationship at an impact speed of 5.0 m/s.
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of 15° for impact speeds of 0.5 and 20.0 m/s.

In this study two types of energy loss mechanisms under consideration are friction and
plastic deformation. Information about the distribution of energy and work done by the
normal and tangential forces will allow us to understand the role each energy loss
mechanism plays and investigate the impact process more precisely, for instance, by
examining whether the energy terms violate the principle of energy conservation. The

evolution of total ( both linear and rotational ) kinetic energy and types of work done during

impact are shown in Fig. 4.8 and Fig. 4.9 for impact speeds of 5.0 m/s and 20.0 m/s
respectively. For the case of normal impacts shown in Fig. 4.8 (a ) and Fig. 4.9 (a) the
kinetic energy decreases with a corresponding increase in the work done by the normal force
during loading since the kinetic energy is gradually transformed into local elastic and plastic
strain energy. When the normal force and normal work done simultaneously approach their
maximum values the kinetic energy becomes zero because the particle is momentarily
stationary. In the unloading process the stored elastic strain energy furnishes the kinetic

energy of rebound. Due to the involvement of plastic deformation the collision process is not
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reversible and a certain amount of energy, depending on the severity of plastic indentation.

has been lost.

For oblique impacts the total kinetic energy never reduces to zero partly due to the
rotational kinetic energy developed and partly due to the fact that the normal and tangential
velocities reverse directions at different times. As for normal impacts, the normal work done
is not reversible if the normal approach velocity is above the yield velocity. The work done
by the tangential force is twofold: work done in shear at contacting surfaces and work done
to furnish particle rotation. The way in which these two components of tangential work
evolve during an impact is shown in Fig. 4.8 and Fig. 4.9. For impact angles less than the
angle at which sliding occurs throughout the impact the tangential work exhibits two local
maxima and one local minimum corresponding to the maximum and zero values of tangential
force respectively. The rotational work done has a maximum value at zero tangential force
after which there is some partial recovery. However, if sliding occurs throughout the impact

both components of tangential work increase continuously.
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Fig. 4.9 Distribution of energy and work done at an impact speed of 20.0 m/s

for different impact angles.

As a result of an oblique impact there is a reduction in linear kinetic energy, a gain in
rotational kinetic energy and energy is dissipated due to plastic deformation and friction. In
Fig. 4.10 and 4.11 each of the three components of energy are expressed as a ratio of the
initial kinetic energy and plotted against impact angle for collisions of a U;Og particle to
steel wall with R = 10 pm, v = 0.3 and p = 0.35. Figure 4.10 shows the effect of impact
angle for elastic collisions. The linear kinetic energy ratio reduces with impact angle until a
minimum value of 0.53 is obtained at an impact angle 8 = 60° and then increases to unity
when 0 = 90°. The rotational kinetic energy ratio increases with impact angle to a maximum
of 0.28 at 8 = 55° and then decreases to zero at 8 = 90°. The ratio of energy dissipated also

increases to a maximum value of 0.25 at 6 = 70° and then reduces to zero at 6 = 90°.

The effect of impact angle on the three energy ratios is shown in Fig. 4.11 for an impact

speed of 5.0 m/s. For a normal impact the linear kinetic encrgy ratio is 0.48 since V| > v
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and, because there is no rotational kinetic energy developed, the ratio of energy dissipated is
0.52 and is entirely due to plastic deformation. As can be seen in the figure. the effect of
impact angle on the rotational kinetic energy ratio is very similar to that obtained for the
elastic impact, Fig. 4.10. The maximum occurs at the same impact angle, 8 = 55°. but ix
0.25 which is slightly less than that for elastic impacts. The linear kinetic energy ratio
increases slightly to a value of 0.52 at 8 = 22° and then decreases to a minimum of 0.45 at 6
= 55° before increasing to unity at 6 = 90°. The ratio of energy dissipated decreases to about
0.29 at 8 = 55° and then is approximately constant in the range of 55° < 6 < 65° before
reducing to zero at © = 90°. The shape of the dissipated energy ratio curve indicates a
transition from plastic dissipation to frictional dissipation. It is important to note that. since
the speed is constant for all simulations, there is a transition from elasto-plastic to elastic
impact at © = 83° and that in the range 0 < 6 < 83° the degree of plastic indentation reduccs

with an increase of impact angle.
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4.3 Coefficient of restitution and rebound angles

4.3.1 Theoretical considerations

According to Newton’s laws of motion the normal and tangential impulses, F, and I

developed at the contact patch are given by

Fn:m(vm"vnr)

Fl= m ( Vli'vtr)
and the rotational impulsc is

F,= mk "( -, )

where k is the radius of gvration of the solid; @, and , are the initial and rebound rotational

velocities respectively. If there is no initial particle rotation. @; = 0. and

108

(4.3)



oo FR _R(Vy-Vy)

r 44
me kz ( )

In this case the normal approach and departure velocities of the local contact point are equal

to the corresponding components of the particle centre. The tangential velocity of the contact

point upon departure, v, is given by

2
R (V,;-V,)
V=Vt RO =V, - ——— = (4.5)
k
For a solid sphere R? / k? = 5/2. Therefore, we have
7 5 7Ve 5 7. 5 1

— - = = Vo ——-— = i = -— 6}

Ve=z Vg Vi=Vi(z 5 -3)=Vi(ze03) (

where e is the tangential coefficient of restitution, defined as the ratio of the tangential

departure velocity to the tangential approach velocity at the particle centre. Using the

definition of the normal coefficient of restitution, e, = V,,./ V,,;, we may rewrite ( 4.6 ) as

Ve _Vu 7.5, (47)
Vnr’!en Vni 2 2

from which
5 2eyVe/ Vo 5 2eVy/Vy 5 2€,tanb,
SETTNNG T IV, 1T e (45 )

where 6, = arc tan ( v,/ v, ) 1s the reflection angle of the contact point which, as shown by
Maw et al ( 1976, 1981 ), is dependent on the impact angle 6. The rebound rotational

velocity is dependent on the initial tangential impact velocity as indicated by ( 4.4 ) which

may be rewritten as

o  5(1-¢) (+9)
- 2R

Finally the total coefficient of restitution. defined as the ratio of the rebound speed to the

impact speed of the particle centre. is obtained from

9 3 3 o | 2 { "1!(} }
e =e,cos B +e sinH

and the rebound angle 6, of the particle centre 1s given by
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tan 6

(4.11)

Equations (4.8 ), (4.9),(4.10),(4.11 ) and ( 3.51 ) completely define the kinematics of

the rebounding particle provided that e, is known. To proceed further it is useful to introduce

the two parameters suggested by Maw et al ( 1976, 1981 )

w=&tane
i
A . R
X=5(14+—)
2 K2

where, for a sphere impacting a target of the same material,

_2(1-v) _4G*

A =
2-v E*

and, since R?/ k? = 5/2 for a solid sphere, we have
x=7\A/4

Consequently, we can rewrite ( 4.8 ) as

t:n Wc,
¥

s
L R

and rewrite (4.11 ) as

(4.12)

(4+.13)

(4.14)

(4.15)

(4.16)

(4.17)

Therefore. it is necessary to understand how Wy, and y, vary with y;. Consider a special

case, when contact sliding occurs throughout the whole impact process. we have I, = pk,.

From ( 4.1 ) and ( 4.2 ) there results
N~ Vi = H( Vii= Var)

or

H( Vni_ vnr) =

B !-1( 1"Vnr""vni)

=] -—=
© V[i tan 6
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The direction of V  is always opposite to that of V., and therefore we may rewrite ( 4.19)

as
B u(l+e,) (48
e T (4.20)
tan 0 Y,/ h B
and for elastic impacts we have
e 2
=] - — 2
{ W-,f'k (4.21)

which is only dependent on the coefficient of friction and impact angle.

4.3.2 Elastic impact

A series of simulations was performed to examine the effects of impact angle, cocfficient of
friction and Poisson's ratio on the particle rebound after collisions. In order to provide a
comparison with the next section which deals with plastic deformation. the normal approach

velocity was fixed for all angles of impact and to ensure elastic deformation during an impact

a value of V; = 0.5 m/s was used. Figure 4.12 shows the effect of impact angle on the
tangential coefficient of restitution for three values of friction coefficient . It is seen that
there is a minimum coefficient of restitution which is independent of p but the corresponding
optimum angle increases with [t. Using the parameter y suggested by Maw et al ( 1976 ), ¢,
plotted against y; is shown in Fig. 4.15. As can be clearly seen from the figure, the three
curves merge into one in which the minimum tangential coefficient of restitution ¢, ;=

0.582 occurs at y*; = 4y - 3 = 2.765. With respect to ( +.8 ), e is related to the local

reflection angle 8, and the impact angle 6.

Forp =0.35,v = 0.3 and A = 0.82353, computer simulation results suggest that 6, =
28.56° at an optimum impact angle 6* = 49.6°. Using (4.8 this gives ¢ 0 = 0.582,
which is equal to that obtained by simulation. The relationship between the tangential

coefficient of restitution and the impact angle may be approximated by



1-(1-egmin) Sin (M0 /26% ) for 0<H<O*

= {

4

. T T
1-(1—et‘min)smfi(f-ﬁ)!{j-e*) for 8*<6<

The comparison between the predictions given by ( 4.22 ) and the computer simulation
results for i = 0.35 and v = 0.3 is shown in Fig. 4.19. It is seen that Equation ( 4.22 ) can
provide a good fit to the computer simulated data for the parameters used. It should be noted
that for low and high values of friction, for example, u = 0.1 and p = 0.8, the curve fitting

is not satisfactory and that other mathematical functions need to be considered.

The rebound angle of the particle centre plotted against impact angle is shown in Fig.
4.13, which demonstrates that under all circumstances the rebound angle is equal or less
than the impact angle. The normalised data using the parameter y is shown in Fig. 4.16.
Variations of the reflection angle at the contact point with impact angle and friction are
shown in Fig. 4.14. The unified data of y, against y; is shown in Fig. 4.17. which is in
agreement with Fig. 2.4 provided by Maw et al ( 1976, 1981 ). The condition governing
initial contact sliding at the start of the impact is y; = 1.0 according to Maw et al ( 1976 ).
However, it is apparent from Fig. 4.17 that when y; 2 1/A contact sliding initiates at the start
of the impact and this indicates that the corresponding initial sliding angle is larger than that
suggested by Maw et al ( 1976 ) due to the effect of Poisson’s ratio. It is clear that the
parameter  normalises the data in terms of friction. The effect of Poisson's ratio on elastic

impacts, which Maw et al ( 1976, 1981 ) did not take into account. needs further

clarification.

Figure 4.20 shows the variations of reflection angle of the contact patch for different
values of Poisson's ratio. It is seen that when the impact angle is larger than a critical value.

at which contact sliding occurs throughout the impact process, there is no effect of Poisson's

ratio. It is also scen that the impact angle corresponding to initial sliding at the start of the

impact decreases with an increase of v. which corresponds to w decrease in £ The effectotv

1 L2



on the rebound angle of the particle centre is shown in Fig. 4.21. The tangential coefficient
of restitution is plotted against impact angle for different values of v in Fig. 422 If the
impact angle is less than the angle which produces sliding throughout the impact. it can be
seen that the tangential coefficient of restitution depends on the value of v. The minimum
value of e, decreases with an increase in v. The normalised reflection angle vy, ratio y./y,.
and e, plotted against the normalised impact angle v; are shown in Figs. 4.23. 4.24. and
4.25 respectively. The proportional relationship between V. /V; and e, is clearly illustrated in
the figures and is in agreement with ( 4.16 ). The trend of y,, at small impact angles is
emphasised in Fig. 4.26 by replotting Fig. 4.23. It is seen that for all values of Poisson's
ratio, Y, is approaching zero when ; is reduced to zero. A numerical problem therefore
arises since, according to ( 4.16 ), e, is indeterminate due to the fact that the second term
involves a zero divided by a zero. Further simulation results indicates that for any value of

Poisson's ratio e, and /v, are approaching unity as y; — 0.

From Figs. 4.23, 4.24 and 4.25, it is also seen that by using y the data for high impact
angles becomes scattered due to the change of v. To unify the data, an alternative way
according to ( 4.21 ) is to use ,;/ A rather than ;. Figures 4.27, 4.28 and 4.29 show the
variations of W ./ A, W,/ V; and e, with y; / A respectively and all the data is unified if the
sliding condition exists during the whole process of the impact. It is therefore concluded
that, for elastic impacts, the tangential bouncing behaviour can be predicted when y; > 6A at
which contact sliding occurs throughout the impact, while the pattern of the tangential

coefficient of restitution for other impact angles varies with the material properties and needs

further investigation.
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Fig. 4.12 Tangential coefficient of restitution against impact angle.
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Fig. 4.13 Rebound angle of the particle centre against impact angle.
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Fig. 4.18 Nondimensional reflection angle ratio against nondimensional impact angle.
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Fig. 4.22 Tangential coefficient of restitution against impact angle for

different values of Poisson's ratio.
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Fig. 4.23 Nondimensional reflection angle of the contact patch against

nondimensional impact angle for different values of Poisson's ratio.
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Fig. 4.24 Nondimensional reflection angle ratio against nondimensional

impact angle for different values of Poisson's ratio.

Fig. 4.25 Tangential coefficient of restitution against nondimensional

impact angle for different values of Poisson's ratio.
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4.3.3 Elasto-plastic impact

Computer simulations were performed to investigate oblique collisional behaviour for impact
velocities above the yield velocity. From oblique impact simulations using constant impact
speeds it was demonstrated that, as shown in Fig. 4.30, the impact angle has no effect on
the normal interactions and the normal departure velocity is determined by the normal
approach velocity. However, as indicated by ( 4.16 ), the tangential coefficient of restitution
is dependent on the severity of plastic indentation. In order to exclude variations due to this
effect, the normal approach velocity was kept constant for each set of simulation tests in
which the impact angle was varied from zero to a value close to 90°. Four different normal
approach velocities ( V; = 5.0, 10.0, 20.0 and 100.0 m/s ) were used corresponding to a
range of values for the normal coefficient of restitution ( e, = 0.694, 0.588, 0.496 and
0.332 ). The results are compared with those of elastic impacts using a normal approach

velocity of 0.5 m/s.
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Fie. 4.30 Normal coefficient of restitution against normal approach velocity.

The effect of plastic deformation on the reflection angle of the contact patch is shown in

Fie. 4.31. It is secn that, for the range 0.5 < V; < 20.0 m/s ( e, = 0.5), the variation ot



reflection angle with impact angle is similar to that obtained for elastic impacts but the
transition from forward to backward motion occurs at a higher impact angle with an increase
in plastic deformation. However, the results obtained from V,; = 100 m/s show that at very
high impact velocities and low impact angles the contact patch rebounds backwards. It is
also seen from the figure that the reflection angle is equal to the impact angle when 6 = 0
and 90° and there is a unique minimum value which does not depend on the normal approach
velocity. Figure 4.32 shows the variations of the rebound angle of the particle centre with
the impact angle. The results show that, due to plastic deformation, the rebound angle can be
larger than the impact angle, a behaviour which is supported by the experimental results (

Brauer, 1980 ).

The tangential coefficient of restitution plotted against impact angle is shown in Fig. 4.33
in which the minimum value of e, increases with an increase of the impact velocity but the
corresponding impact angle is not affected. The minimum value of e, corresponds to the

value of the reflection angle which is not affected by the normal approach velocity ( see Fig.

4.31 ). For v = 0.3, computer simulation suggests that 6, = -28.56° at 8* = 49.6°.
Therefore, using ( 4.8 ) we obtain

6 o, D208 (4.23)
t,mm 7 7

which confirms the trend shown in Fig. 4.33. The figure also shows that as 6 — 90°, ¢, =

1.0. However, an uncertainty exists for e, at 8 = 0 since both tan8 . and tan 6 are

approaching zero. Although further computer simulation results have clearly indicated that as

8 — 0.e, = 1.0, there is an abrupt change in the tangential coefficient of restitution at very

small impact angles when plastic deformation occurs.

As discussed in Section -4.3.2. for elastic impacts the tangential coefficient of restitution
is proportional to the ratio of y ./ since e, = 1.0. When plastic deformation occurs, ( 4.16)
indicates that the relevant parameter is e Y /. Therefore. in agreement with Stronge (

1994a ), for oblique elasto-plastic impacts we examine the variation of
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enwcr__ entanecr_ Vir (124
B B 24)
A K u'vni

with
Vi_tanB vy

A K KV

(4.25)

as shown in Fig. 4.34. The results may be compared with the predictions of Stronge ( 1994a
) which are shown in Fig. 4.35. It can be seen that, if sliding occurs throughout the impact,
there is an agreement between the two sets of predictions. However, if sliding only occurs
over part of the impact duration the results of the computer simulated impacts are
significantly different from the predictions of Stronge ( 1994a ) who used linear compliance
relationships for both normal and tangential interactions. The effect of the normal coefficient
of restitution illustrated by the computer simulated results suggests that in the extreme case

of e, = 0, as shown in Fig. 4.34,

en wCr —

0 for 0<—<35 (4.26)
A A

e“w‘"zﬂ"—i—aﬁ for l—}'123.5 (4.27)
A A A

and that sliding occurs throughout the whole impact process if y;/A 2 3.5. Further

examination of the data indicates that, for the general case, gross sliding occurs if

2v.
_———W‘ >7—¢, (4.28)
(l+ey)A
or
l+e
tanBZ-EE—-., “)(7-en) (4.29)

Therefore. if sliding occurs throughout the impact, the data shown in Fig. 4.34 is
normalised by multiplying both axes by 2/(1+e,). as illustrated in Fig. 4.36. Figure 4.37
shows the tangential cocfficient of restitution plotted against the normalising parameter
2y;/A(1+e,) and it can be seen that if ( 4.28 ) is not satisfied the data are significantly

dependent on the normal coefficient of restitution.
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Fig. 4.35 Nondimensional reflection angle against nondimensional impact

angle ( Stronge, 1994a ).
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Fig. 4.37 Tangential coefficient of restitution against nondimensional impact

angle for different normal approach velocities.

4.3.4 Oblique impacts at a constant impact speed

To measure the particle rebound from a target surface, constant impact speeds are normally
used in real experiments rather than a constant normal approach velocity. Figures .38, 4.39
and 4.40 show the coefficients of restitution e, e, and e for different impact angles at
impact speeds of 5, 10, and 20 m/s respectively. It is seen that the normal coefficient of
restitution increases as the impact angle increases due to the reduction in the normal velocity
component. The tangential coefficient of restitution exhibits a minimum value which
increasces with impact speed due to the decrease in ey . in accordance with (.23 ): and the
optimum impact angle is independent of impact speed. As defined by ( 4.10 ), the total

coefficient of restitution e is dominated by e, at small impact angles but approaches the same

value as e at very large angles of impact.



Figure 4.41 shows the experimental measurements of normal and tangential coefficicnts
of restitution reported by Brauer ( 1980 ) who used steel spheres of 2R = 6 mm colliding on
a PMMA target surface at an impact speed of 4.4 m/s. It is seen that the transition from
elastic to plastic deformation is clearly illustrated. When 8 = 0°, it is observed that e, = 0.93
and this means that plastic deformation occurs; for 6 = 90°, e, = 1.0 and deformation is
elastic. The evolution of the total coefficient of restitution with impact angle observed by
Brauer ( 1980 ) is in agreement with the linear kinetic energy of the particle after the collision
obtained by computer simulation shown in Fig. 4.11. It is also seen from the figure that for
high impact angles, e, — 1 and the data for the tangential coefficient of restitution becomes
scattered at very small impact angles. Based on the experimental measurements, Brauer (
1980 ) suggested that the minimum tangential coefficient of restitution €, .., = 0.68
occurred at © = 25° and the total coefficient of restitution reached its minimum vale of e =

0.875 at 6 = 35°.

Since the experimental data become scattered at relatively low impact angles, Brauer's (
1980 ) estimation of the impact angle, at which e, ;, occurs, may not be reliable. According
to the previous analysis, the corresponding impact angle for e, is determined by the
friction between the two contacting surfaces. With respect to ( 4.8 ), the reflection angle 6,
will be zero at a certain impact angle when gross sliding occurs and this gives e, = 5/7.
Using Brauer's ( 1980 ) data, we obtain 6 = 32° when e, = 5/7. Referring to ( 4.20 ), we
have /A = 7(1+e,)/2 or | = 2tan6/7(1+e,) = 0.0925. At this friction level and with e, =
0.93. the minimum tangential coefficient of restitution will be less than Brauer's ( 1980 )
estimation and previous computer simulated results suggest that &y, = 0.6 at 8 = 15° An

alternative interpretation of Brauer's results. based on the above argument. is also shown in

Fig. 4.41.

Computer simulated oblique impacts were also performed at a constant speed in order to
attempt a comparison with the experimental data. Figure 4.42 shows the coefficients of

restitution ¢, ¢, and ¢ for different impact angles for a constant speed of 1.25 m/s. which



corresponds to a normal coefficient of restitution of 0.93 at 8 = 0. A friction value of 0.0925
was used according to the previous argument. Other material properties. such as Poisson's
ratio and yield stress, etc. are the same as those of U;Og particles. Although the particle and
target materials used are different from those of Brauer ( 1980 ). Fig. 4.41 and Fig. 4.42
demonstrate that the trends are similar except for that of the normal coefficient of restitution.
From Fig. 4.42, it is seen that the normal coefficient of restitution increases with the increase
of impact angle due to the decrease of normal approach velocity. However. the normal
coefficient of restitution in Fig. 4.41 remains approximately constant until 6 = 60° and then
increases with an increase of impact angle. The reason for this may be due to the
experimental conditions and differences in the material properties used in the impact tests. It
also should be noted that the impact speed of 1.25 m/s used in the computer simulations is
less than that used by Brauer ( 1980 ) ( V, = 4.4 m/s ). However, since the yield stress of
PMMA is less than U3Og but the particle radius of R = 3 mm is significantly larger than that

of U40g particles ( 10 pm ), the same value of the normal coefficient of restitution can still

be achieved.
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Fie. 4.38 Cocfficients of restitution at a constant impact speed of 5.0 mi/s.
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Hlustration removed for copyright restrictions

Fig. 4.41 Experimental measurements of coefficients of restitution for steel
spheres ( 2R = 6 mm ) colliding on a PMMA target surface at an

impact speed of 4.4 m/s ( Brauer 1980 ).
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Fie. 4.42 Computer simulated coefficients of restitution of a U0 particle for

an impact speed of V; = 1.25m/s (R=10pum, g =0.0925. v =0.3).
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4.4 Computer simulated impacts with initial particle rotation
4.4.1 Theoretical considerations

The rotational motion of U;Oyg particles in the transportation rig is a common occurrence.
For instance, after an oblique collision there must exist an angular velocity for the particle
upon departure no matter if the initial angular velocity was zero or not. In order to simplify
the situation, only plane motion is considered in this study. As shown in Fig. 4.43. a
particle with an initial angular velocity , is moving towards the target surface in the n-t
plane. The normal and tangential approach velocities are V,; and V,; respectively. Consider
the case of a normal collision, where V,; = 0. After a very small time step At there is a
relative tangential movement, Ad = w,RAt, as well as the relative normal motion. Aot = V,;
At, between the two contacting surfaces. The tangential displacement A3 will result in a
tangential incremental force AT according to ( 2.18 ). The rebound trajectory will thercfore
no longer be normal to the target plane but inclined at an angle to the n axis due to the effect
of the tangential force caused by the initial particle rotation. In oblique collisions with initial
particle rotation the tangential displacement at the contact therefore should include the
tangential component of linear velocity of the particle as well as the displacement resulting

from initial particle rotation.

With respect to (4.1), (4.2 ) and (4.3 ), when initial particle rotation exists we may

rewrite (4.4 ) as

(Di—m,:FlRfmkE:R(Vn—V")!kj (4.30)
The tangential rebound velocity of the contact patch after the impact is given by

V= Vi + Roy =V, +Rw, - R* (V= V) /K (431)

Since R*/ k== 5/2 we have

'
b h
o

7 4 -
Vi = Ry +Evlr"' V., = R, +\n('jL:‘

(5]



Fig. 4.43 Particle-wall impact with initial rotation ( plane motion ).

7 5 Ro,
=V, (fe~2+—1)
t1 2 t 2 V”

v

(432)

In order to normalise the initial angular velocity @;, we here define a new parameter, ;. as

ni

and from ( 4.32 ) we obtain

en_"trzﬁ(ze_i __¢i )

Vnr Vni 27 2 tan 6
Therefore

. §+g(entan8“_ 0, )

1T w8 tane
or

(4.33)

(4.34)

(4.35)

(4.36)

where p is the coefficient of friction. When contact sliding occurs throughout the whole

impact process, since ( +4.18 ) is still applicable, the tangential coefficient of restitution is

given by ( 4.20 ). However. due to the effect of initial particle rotation, the corresponding



gross sliding impact angle varies with the initial angular velocity and it has to be determined

by computer simulation.

4.4.2 Elastic impacts with initial rotation

The objective of this section is to examine the effect of initial rotation on the tangential
coefficient of restitution, the rebound angle of the particle centre and the reflection angle of
the contact patch. To ensure elastic deformation during the process of an impact a constant
normal approach velocity of 0.5 m/s was used in the simulated tests. The effect of initial

rotation on plastic impacts will be presented in the next section.

We, first of all, examine the departure angular velocity due to oblique collisions with no
initial rotation in order to identify the possible range of angular velocities in a particle flow
system. It was found ( see Fig. 4.51 ) that for a U;Og particle with R = 10 pm the maximum
value of ¢, is in the range of ¢, < 2.0, or in terms of the departure angular velocities @, .
< 10° rad/s. The angular velocity resulting from an initial impact will affect the behaviour
during further collisions and the angular velocity of the particle can continue to increase with
the number of collisions that may occur. In this study, only the second collision will be
considered. In reality, interactions of contacting micron-sized particles are significantly

affected by surface energy effects and the surface forces will substantially reduce the

departure angular velocity for oblique impacts.

In computer simulations the rotational direction is positive if the tangential motion of the
contact point caused by the particle rotation is positive. In the casc of normal impacts. a
positive ®; will lead to a negative rebound angle of the particle centre and vice versa. For
oblique impacts, the rebound angle depends on the impact angle. initial angular velocity and
the direction of the particle rotation. In the computer simulated tests. four different initial

angular velocities ( @; = 40000. 100000, -40000, and -100000 rad/s ) were used.



corresponding to a range of values for the parameter 0, ( ¢; = 0.8. 2. -0.8 and -2 respectively

)e

Figure 4.44 shows the variations of the tangential coefficient of restitution with impact
angle for the given initial angular velocities. It is seen that at low impact angles a positive
value of ¢; leads to a negative tangential coefficient of restitution. When 6 — 0. e, will be
approaching infinity at different directions according to the sign of ;. It is also seen that if
the impact angle is approaching 90° the tangential coefficient of restitution is equal to unity.
regardless of the value and direction of the initial angular velocity. The rebound angle plotted
against impact angle is shown in Fig. 4.45. The normalised data of the rebound angle in Fig.
4.47 illustrates that, for elastic impacts under all circumstances, ly/A+¢,/ul < hy /A+d,/pl.
Figure 4.46 shows the reflection angle of the contact patch against impact angle. Since the
magnitude and direction of the initial angular velocity influences contact sliding, it is seen
from the figure that different ¢, correspond to different gross sliding angles. As can be
expected, if the initial angular velocity is large enough, gross sliding occurs at a zero impact
angle. The nondimensional reflection angle is plotted against nondimensional impact angle,
shown in Fig. 4.48. Due to the effect of initial particle rotation, the data is not unified. In
order to normalise the data, it is necessary to account for ¢, as shown in Fig. 4.49. It is seen
that the unified data curve can be subdivided into two parts in the range -co < y;/A+0;/t <0
and 0 < y;/A+0,/lL < oo respectively. Each part of the curve corresponds to the curve of Fig.
2.4, initially reported by Maw et al ( 1976, 1981 ). For the negative values of y,/A+¢,/11.
when ¢; — oo, 6, is approaching -90°. The condition which governs gross sliding during
an impact is Iy;/A+;/l| 2 6. The normalised data of the tangential coefficient of restitution
are shown in Fig. 4.50. It is seen that when gross sliding occurs the computer simulated
results agree very well with the theoretical predictions given by (4.21 ). It can be concluded
that Fig. 4.50 provides a unique curve which determines the tangential coefficient of

restitution for clastic impacts under the circumstances of variations in friction. impact angle

and initial angular velocity.
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Fig. 4.44 Tangential coefficient of restitution against impact angle for

different initial angular velocities ( V,; = 0.5 m/s ).
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Fie. 4.45 Rebound angle of the particle centre against impact angle for

different initial angular velocities ( Vg, = 0.5 mv/s).
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Fig. 4.46 Reflection angle of the particle centre against impact angle

for different initial angular velocities ( V; = 0.5 m/s ).
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Fig. 4.50 Normalised tangential coefficient of restitution against the parameter

V;/A+¢;/u for different normal approach velocity ( V,; = 0.5 m/s ).

4.4.3 Elasto-plastic impacts with initial particle rotation.

The effect of initial particle rotation on elasto-plastic collisions will be discussed in this
section. A constant normal approach velocity of V, = 5.0 m/s was used in the simulated

tests. Figure 4.51 shows the variations of the non-dimensional parameter ¢, with impact
angle for oblique collisions with no initial particle rotation. The corresponding results
obtained for elastic impacts ( V,,; = 0.5 m/s ) are also shown. It is seen that in both cases the
maximum value of ¢, is less than 2.0 and the maximum value decreases with an increasc in
normal impact velocity when plastic deformation occurs. For the computer simulated elasto-

plastic impacts the departure angular velocities are in the range of @, < 10° rad/s.

The tangential coefficient of restitution. rcbound angle and reflection angle of the contact
patch arc plotted against impact angle in Figs. 4.52. 4.53 and 4.54 respectively. It is clear

that the trends are qualitatively similar to those for elastic impacts. However, it can be seen
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that, when 8 = 0, due to the effect of plastic deformation. the absolute value of the rebound
angle is larger than that for elastic impacts, but the reflection angle is less. When 8 — 90°, it
can be seen that both 6, and 6, are approaching 90°, the same behaviour which is obseryed
for elastic impacts. Normalisation of the reflection angle is achieved by using
2(yi/A+0;/n)/(1+e,), as shown in Fig. 4.55. It is evident that contact sliding occurs
throughout the whole process of the impact when 12(y/A+/)/(1+€,)] = 6. The normalised
data for the tangential coefficient of restitution is shown in Fig. 4.56. It should be noted that,
although the tangential coefficient of restitution is predictable if gross sliding occurs
according to ( 4.20 ), the unified data curve of e, is dependent on the normal approach

velocity, as was illustrated in Fig. 4.37.

Figure 4.57 provides the comparison of normalised reflection angle for elastic and plastic
impacts. The effect of plastic deformation on the reflection angle in the range of -6 <
2(yi/A+¢;/p)/(1+e,) < 6 is clearly seen. Finally, the comparison of the normalised tangential
coefficient of restitution between the two normal approach velocities is shown in Fig. 4.58.
Since plastic indentation is not very severe, the difference between the two curves is not

large but this difference will increase with an increase of normal approach velocity.
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Fig. 4.51 The departure angular velocities resulting from oblique impacts (R =10 pm ).
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Fig. 4.52 Tangential coefficient of restitution against impact angle

for different initial angular velocities ( V,, = 5.0 m/s ).
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Fig. 4.53 Rebound angle of the particle centre against impact angle

for different initial angular velocities ( V,; = 5.0 m/s ).
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Fig. 4.54 Reflection angle of the contact patch against impact angle

for different initial angular velocities ( V,; =5.0 m/s ).
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Fig. 4.56 Normalised tangential coefficient of restitution against the parameter

Vi/A+¢;/ with different initial angular velocities ( V,; = 5.0 m/s ).
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Fig. 4.58 Comparison of normalised tangential coefficient of restitution between

elastic and plastic impacts.

4.5 Summary

Computer simulated tests have been performed to investigate oblique collisions of elasto-
plastic spheres in this Chapter. Results have been presented to illustrate the tangential force-
displacement relationships and the evolution of contact forces and energy components over
the impact duration. The effects of two material properties, interfacial friction and Poisson's
ratio, on particle bounce behaviour have been examined for variations of impact conditions (
impact angle, impact velocity, initial particle rotation ). The results obtained were then
compared with experimental measurements and theoretical predictions provided by the
impulse equations based on Newton's laws. Good agreement between the computer
simulated results and experimental data reported by Maw et al ( 1976, 1981 ) was obtained
for clastic impacts. Although different material properties were used, the results of elasto-
plastic impacts presented in this study show an encouraging agreement with the reul

cxperimental results of Brauer ( 1980).
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It has been demonstrated that if contact sliding occurs throughout the impact duration
analytical solutions are available to define the complete post-impact conditions. For all cases

investigated, the gross sliding condition applies if

2 tan 6 + ¢
T )2T=%; (4.37)
np
or
u(l+e,)
tanﬂ2-——2——(?—t3n)—¢i (4.38)

If (4.38) is satisfied, then

(l+e,)
et=1—£—— (4.39)
tan O
s SRNRPAE. 4.40

ni

and the rebound angle of the particle centre, 8., is given by
e
tan O = —tan 6 (4.41)

where e, is defined by ( 3.51 ).

It has been demonstrated that, for any impact angle, an additional initial angular velocity

affects the collisional behaviour in a way that corresponds to an equivalent impact angle Beq

where

tanﬁeq:tan8+¢i (442)

If contact sliding does not occur throughout the impact process the particle rebound
behaviour is more complex. It has been shown that the parameter y = Atan8/p, suggested
by Maw et al ( 1976, 1981 ). provides the scaling rule for interparticle friction but not for the
elastic properties of the particle/target interface characterised by A = 2(1-v)/(2—v). It has also
been shown how the severity of plastic indentation. defined by the normal coefficient of

restitution €. affects the rebound behaviour.
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For impact angles which do not satisfy the criterion provided by ( 4.38 ) it is possible to
apply curve fitting techniques to the computer simulated data to predict the rebound condition

for specified values of v and e,. However, further work is required to examine the

possibility that analytical solutions can be found for the cases when contact sliding does not

occur throughout the whole process of the impact.
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Chapter 5 Normal impact of adhesive spheres

5.1 Introduction

For micron-sized particles the impact behaviour is significantly affected by surface energy
effects. When particles impact a surface there is a critical velocity above which the particles
do not remain adhered to the surface but bounce off. Theoretical analysis and experimental
observations indicate that the critical impact velocity is very sensitive to variations in the
particle and target properties, such as particle size and density, surface energy and surface
roughness, and elastic/plastic properties of both particle and target. The critical impact
velocity of particles colliding with a wall is of great importance in process engineering since
gas-borne particles present many operational and environmental problems. A criterion for
determining whether particles bounce or adhere upon impact needs to be established for use
in the numerical modelling of particle transport in turbulent flow fields. It is also necessary

to be able to predict the rebound behaviour.

When the impact velocity is larger than the critical sticking velocity, the particle bounces
off the target surface with a departure velocity which is always less the impact velocity. even
for elastic collisions, because a certain amount of initial kinetic energy has to be dissipated in
order to break the adhesive bound. If the impact velocity is larger than the yield velocity then
energy dissipation will also occur due to plastic deformation at the contact patch. Although
several elasto-plastic adhesion models have been developed. see Chapter 2. none of the

existing theories has considered the effect of surface adhesion during both the loading and

the unloading stages of the impact event.

149



This chapter discusses the normal impact of both elastic and elasto-plastic adhesive
spheres. The JKR model of adhesion is extended to account for plastic deformation and
theoretical solutions for the critical sticking velocity and the yield velocity are presented. The
impact behaviour where particle bounce occurs is also investigated and some results of

computer simulation are presented. Some of the work in this chapter has been reported by

Ning and Thornton ( 1993 ).

5.2 Force-displacement relationships

For adhesive elastic spheres, Johnson ( 1976 ) provides relationships between the contact

force, the contact radius and the relative approach; which may be written as

o 3(PP)+2:2(1+PP)" .

o 3¥pp 22201 4P

and
o. 4 -3/2
Z=3"% ) [1-3()] (52)
af aC [
where
3
P.= -iTtTR (53)

2 2 5
n TR . 1/3 3P’ 1/3
) =——2) (54)
E* 16RE*

9xR% .13 ,3RP._1/3

- c (:5.5
acI(FS—E*—) = (4= ) )
and T is the interface energy. The contact radius is defined, Johnson et al ( 1971 ). by
3RP; , 1/3 (56)
B (TET )
where .
P =P+2P .t (4PP.+4P¢) - ¢ 5.7
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is the effective Hertzian contact force. The relative approach and contact force may also be

expressed, Johnson ( 1985 ), as

a’  2nla 112

TP (et 5.8)
R ( E* ) (
e 4E*a3 ; 811:]—'}5*'3 1/2 (5.9)
=73R - 2%

Aston University

llustration removed for copyright restrictions

Fig. 5.1 Force-displacement relationship with adhesion ( Johnson, 1976 ).

Aston University

llustration removed for copyright restrictions

Fig. 5.2 Force-contact radius relationship with adhesion ( Johnson. 1976 ).



Table 5.1 Key points on the curves of force-displacement and force-contact radius

P o a
8
A —a 0 (%)ma‘
4
B 0 (_3 )" a; 4"a
_ 1 .2/3
3 [
F = P l 2/3
. [« - a}' (5) ﬂl

It was shown by Thornton and Yin ( 1991 ) that, by differentiating both ( 5.8 ) and ( 5.9

) with respect to a and then combining, the normal stiffness is given by

dP_ r. 3-3(a/a)”
do a n (5.10)
o 3-(a./a)

orusing ( 5.5) and (5.6),
dP_ o, 3/P1-3VP
i a 5.11)
it 3/P, - JP, (

which degenerates to the Hertzian solution ( dP/do = 2E*a ) when there is no adhesion ( P,

=0).

In Figs. 5.1 and 5.2 the force-displacement curve and the relationship between the
contact radius and the contact force are plotted in terms of the dimensionless parameters

P/P_. a/a; and a/a.. For key points on the curves the corresponding expressions for P. o

and a are provided in Table 5.1.

According to JKR theory, Johnson ( 1985 ). the pressure distribution over the contact

arca is given by



2E*a“_(”a)2]1f2_ (21"E*

p(r) = e ) (R o s (5.12)

Adopting a similar approach to that presented in Chapter 3 for the case of no adhesion. we
assume that during plastic deformation there is a limiting compressive contact stress. O,.as
shown in Fig. 5.3. It then follows that the normal contact force is given by

a

P=P.-2n [p(r)-oy]rdr (5.13)
0 5.1

where P, is the elastic force according to JKR theory. Therefore

4E’*‘a3 az n 3,12 212 Vi 2
P:Pc——-—3R [1—(1——5) ]+ (8T nE*a”) [1—(1—_‘2’) J+mag,
a

a
(5.14)

B\%
\

Fig. 5.3 Pressure distribution with adhesion.

As we demonstrated in Chapter 3, Bitter's ( 1963 ) assumption is analytically correct for
the case of no adhesion. In the presence of adhesion, this assumption is no longer valid.

However. in order to simplify ( 5.1+ ) we shall assume Bitter's assumption

o2 2 5.15)
a =ap +a, (
where the contact radius at initial yield is. according to (5.12). related to the limiting yicld

stress by




=2E"‘a),_ 2IE* 112

o
YR na)

y
Substituting ( 5.15 ) into (5.14),

4E*a> !

3R

-

P=P,—

and using ( 5.9 ), we obtain

3
*a
- Y. 12 2 2
P= 3R (8I'mE*a) ay+no');a—ay)

Differentiating ( 5.18 ) and ( 5.8 ),

2
dp 2I'mE*a, 1,
= S b
T2 = 211:0‘ya ( - )
do  2a 112

do. _2a 't
@R ‘%)

from which

ap ,do _2nop-a, (2TmEY a)"”
da’da oy /R-(Tn/2E*a)"

Therefore

dp _ TR, —ay( ImE*R%2a°)""?

dot | — (I'nR%/8E*a’)"?

However, from ( 5.5)
AR’ =8E*a’/9
and, therefore, the contact stiffness during plastic indentation is defined as

3/2
Q _ SJrERCb'y - 2E*ay (a./a)

2

do 3-(a./a)

or

dP _ 31tR0'ya/P1 - 2E*a VP,
da 3JP, - /P,

a )
(l—§)+(8]“nE*a3)m(1 - ) emoa’- o)

(3.16)

¢317)

(5.18)

(5.19)

(5.20)

(5.21)

(522

(5.23)

(5.24)



which degenerates to the solution for the non-adhesive case ( 3.18 ) when I' = 0 since P.=0

and, from ( 5.5 ), nRo, = 2E*ay.

During unloading the force-displacement relationship is assumed to be elastic and is

provided by the JKR theory but with a changed radius of contact curvature R, due to

flattening of the contact surfaces. The unloading process is equivalent to one in which a

particle of radius R undergoes elastic deformation during which the stored elastic strain

energy is gradually released. Due to the change in contact curvature the pull-off force is

given as P = -P_ where

3
Pe=5mR, (5.20)

which is greater than that for the case of elastic adhesive spheres given by ( 5.3 ).

Consequently, modifying ( 5.10 ) and ( 5.11 ), the contact stiffness during unloading is

given by
3-3(ay/
B ey 2 Bl R 3.2%
(5.27)
do 3-(ag/a)
or
aE opy 3/Py-34/Pq (5.28)
do 3u/Pro-al Py
where
3R
33=Z'E_£ P, ( 5.29)
3 3R
aa= 75+ Pa (530)
and
P, =P+2P + V 4PP + P, (531)

It is necessary to define R, in the above equation. In order to do this. we assume a smooth
transition in the contact radius as the impact conditions change from plastic loading to elastic

unloading. For continuity at the point of unloading
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L3_3RP*| 3RP*

¥ TEF T ER ke )
Therefore
RP*| = R, P*|, =R, (P* + 2P, + V 4P*P_+ 4P . ) (5.33)
or
[P*R/R,— (P*+2P_ )1 = 4P*P_ + 4P7, (5.34)
Expanding the left hand side of ( 5.34 ) leads to
(RP*,-R,P*)*= 4RR P* P, = 4R’P* P, (5.35)

Since, using ( 5.3 ) and ( 5.26 ), we find P_R = PCRP. Therefore the required expression
for R, is given by

RP*,

e 5.36
P~ P* + /4P P¥, (236

The complete force-displacement curve for elasto-plastic loading and elastic unloading is

diagrammatically illustrated in Fig. 5.4.

R

Fig. 5.4 Force-displacement relationship for clasto-plastic loading and

elastic unloading.



5.3 Yield velocity

For fine particles, the impact velocity below which no plastic deformation occurs depends on
both the limiting yield stress and the interface energy. The yield velocity increases with an

increase in yield stress, as shown in Chapter 3, but decreases if the interface energy is

increased.

Referring to Fig. 5.4, an expression for the yield velocity may be obtained from

o
-é—mvi =f Pdot (3.37)
0

using ( 5.9 ) and ( 5.20 ), ( 5.37 ) may be rewritten as

By

1 2 4Ea 3 Mi2s=2a
[— I

1]
= 3R (3 E ) g -Gy ) 1da (538)
g
where
4 2;3 211:1"R 4RP (5.39)
ag=alg 0"(3 ( JE* ) *(3E*)
Rewriting ( 5.38 ) as
ay
4
I 2 8E*a 14 a2, 512
= = - 5= 2nla | d
2mVy [3R2 3R(21ftl"E) a~ +2nla]da A
Ay
and integrating, leads to
5
* ) 9
_’_ mv2= i ¥ f} (ZnTE*)“'am+nl"a;
2 y 2 3R y .
15R
_[@P_ (2 nE*)'"2 0 +1:rao] (5.41)

15R"

Substituting ( 5.39 ) and ( 5.3 ) into the above equation, it can be shown that




5
8E*a .
mV)= Y—-3%(2rcrE*)”2a;”2+rcra§+0.881 nla; (542)
15R*

which agrees with ( 3.1 ) when I' = 0.

Combining ( 5.42 ) and ( 5.16 ) in order to obtain an analytical solution for the vield
velocity in terms of the yield stress appears to be impracticable. However. it is possible to
solve ( 5.16 ) numerically to find the contact radius which satisfies the equation and then this
value can be substituted into ( 5.42 ) to obtain the yield velocity. Following this procedure
for U;Og particles ( R = 10 um ) the effect of interface energy on the yield velocity and the
contact radius at yield was examined. The results are shown in Fig. 5.5. It can be seen that
an increase in interface energy leads to an increase in the contact radius at yield and a
decrease in the yield velocity. There is only a small reduction in yield velocity for I" < | but

the yield velocity reduces significantly in the range I' > 1.

contact radius at yield ay (L m)

Yield velocity Vy (m/s ) and

00 . L] T ¥ PO RR) T T T Tt
A 1 10

Interface energy. I" ( J/m =5

Fie. 5.5 Variations of yield velocity and contact radius at yield with interface energy

Equation ( 5.-41) indicates that if ay = a, then Vy = 0 and ( 5.16 ) may be written us



_2E*ay ( 2TE* 172

y nR Ta (543)

c

Substituting ( 5.39 ) into ( 5.43 ) leads to

TE*% 13

2 44
T R (3 )

0'),=(

which demonstrates that if the yield stress is less that given by ( 5.44 ) plastic deformation

occurs at the instant that the surfaces come together for all values of impact velocities.

5. 4 Stick/bounce conditions
5.4.1 Elastic spheres

The following explanation of the stick/bounce criterion was provided by Professor K.L.
Johnson in an oral contribution to a meeting of the Institute of Physics ( Tribology Group )

on " Adhesive Forces in Powder Flows " at the University of Surrey in September 1985.

According to JKR theory, when two colliding surfaces come into contact the normal

force between the two bodies will immediately drop to a certain value, P = -8P /9 ( point A
in Fig. 5.1 ), due to van der Waals attractive forces. The velocity of the sphere is then
reduced gradually and part of the initial kinetic energy is radiated into the substrate as elastic
waves. When the contact force reaches a maximum value the particle velocity has been

reduced to zero and the incoming stage is complete.

In the recovery stage the stored elastic energy is released and converted into kinetic
energy and the particle moves in the opposite direction. All the work done during the loading
stage has been recovered when point A is reached during the recovery stage. However. at

this point. when a = 0. the sphere remains adhered to the target and further work is required

to separate the surface. As shown in Fig. 5.1. separation occurs at point F and hence the
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work required to break the contact is given by the shaded area U,. It was suggested by

Professor Johnson that a sufficiently accurate expression for U, was
Us=P.o
and by substituting ( 5.3 ) and ( 5.4 ) this leads to

5I‘SR4 I3 rs 4
b4
) =7.58( R )113
2 2
E* E*

9
US=§(

Thornton ( 1991 ) integrated the equation
_a[
U= f Pdo
0

to obtain

-]
r'R* 113

*2)

U,=0.9355Pat,=7.09 (
E

which was also obtained by Johnson and Pollock ( 1993 ).

(545)

(546)

(547)

(548)

Neglecting energy losses due to elastic wave propagation, the only work dissipated

during the collision is the work done in separating the surfaces, U,. Therefore we may write

2

L v tmvi=v,

Lozl
2o 2
The critical velocity V, below which sticking occurs, is given by

2
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Therefore, substituting ( 5.48 ) we have

r
V=184 () () P ()™

Pi
For V,; > V, bounce occurs and ( 5.49 ) may be written in the form of

2U,

bl

me-

1_(&
Vni

and, combining ( 5.50 ) and ( 5.52), the coefficient of restitution is given by
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v, .
cn=[l*(ﬁ)2] (5.53)

Figure 5.6 illustrates the particle size dependence of the critical sticking velocity. given
by (5.51), for U304 particles impacting a stainless steel target and the analytical predictions
are also compared with those obtained by computer simulations. Particle and target
properties used in the calculations and computer simulations are listed in Table 1.1. Plastic
deformation affects the onset of particle bounce since the work done during the impact
includes the irreversible work deforming the surface in the contact region. However. as
shown in Fig. 5.5, for U304 particles of R = 10 um the limiting elastic velocity is about
0.62 m/s which is larger than the critical impact velocity of Vi = 0.016 m/s for the
parameters used. It is also true that plastic deformation will not occur for the particle size
range of R = 1 - 20 um. We are, therefore, justified to use the JKR elastic adhesion theory

to predict the onset of bounce for U;Og particle transport in turbulent flows.

= 0.12
E
& 0.10 4
>‘” . .
> 0.08 - @ Computer simulation
g —— Analytical solution ( 5.51 )
L 0.06 4
=T1]
2
o 0.04
2
= 1
2 0.02
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@)
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Particle radius, R ( L m )

Fie. 5.6 Critical impact velocities of U;Og particles with different particle sizes.

161



1.0 -—
& o 9 u
’ E o] [ ]
= o}
= 0.8 *
= o]
? °
= i o
o 0.6 *
5 o]
i 0.4 -
P | B Interface energy: 0.2
@) ® Interface energy: 0.4
024 B8
B e
0‘0 T T T T rrr] T T T TT
.01 | 1

Impact velocity ( m/s )

Fig. 5.7 Coefficient of restitution plotted against impact velocity for interface

energies of I"=0.2 and 0.4 J/m?.

The relationship ( 5.53 ) between the coefficient of restitution and impact velocity is
shown in Fig. 5.7 for U3O0g particles of radius R = 10 pm with surface energy I' = 0.2 and
0.4 J/m? respectively. It is seen that after the critical sticking velocity is reached the
coefficient of restitution increases sharply with an increase of impact velocity. As the impact
velocity is increased further the coefficient of restitution gradually increases towards unity,
where the energy required to break the contact, U,, is far less than the initial kinetic energy
of the particle. The critical sticking velocity increases with an increase of surface energy, in
agreement with ( 5.51 ). It should be noted that with a further increase in impact velocity. the

coefficient of restitution will decrease if plastic deformation occurs.

5.4.2 Elasto-plastic spheres

In the previous section simple equations were obtained for the critical sticking velocity and

the cocfficient of restitution for the case of adhesive elastic spheres. For adhesive clasto-
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plastic spheres the force-displacement behaviour during the complete loading-unloading

cycle is more complicated, as shown in Fig. 5.4.

During elastic recovery the behaviour is equivalent to the unloading of an elastic sphere

of radius R,,. Therefore, we may define the rebound kinetic energy as

* * :
2 o B0 - . 4 onTE*) %72 4 nTa*? + 0.881 ala2 — 0.973 nTa’,

ISR,

(5.54)

where

2
Onl'R_ _1/3 3R
2= ()= (Gl (555)

and a* is the maximum contact radius during the impact. The initial kinetic energy may be

written as
t i b (5.56)
-2~m ni~—~2—m y
oy
Using ( 5.18 ) and ( 5.20 ),
a#
o* E*
f Pdo = =g —2(2rne) Pap P+ o (a’-a)) ]
(1), 4
¥
[ R (ZE* a ]da

which, it can be shown, leads to

o= TV no,
f Pda=4E 2;”(a""— a§)+ (a* - a ) +2nl“a(a*— ay)

2R
o 3R
502 2 12 5/2
I;R "’FTtE*) y(63"‘ +5a)a* - llay )
2o, T'm 12, . 512 2 12 o 502
“?')“2?? (a*” "—Sa@a* "+8ay ) (5.58)

The coefficient of restitution e, =V /Vy can. in principle. be obtained from (5.54),
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(5.42) and ( 5.58 ) but it is clear that the resulting equation will be extremely complicated

and solutions are more easily obtained by performing computer simulated impacts.

5.5 Dynamic yield stress

It has been shown that, for both adhesive and non-adhesive spheres, the coefficient of
restitution is dependent on the contact yield stress 6, which has been assumed to be
independent of impact velocity. However, in material science it is generally recognised that.
for most metals, alloys, and many non-metallic materials, the mechanical response is
dependent on the rate of straining. Consequently, for some impact situations, it may be

necessary to introduce the concept of a dynamic yield stress which is strain rate dependent.

The following logarithmic law was proposed by Deutler ( 1932 ) ( see Goldsmith, 1960 )

to describe the observed dependence of yield stress on the plastic strain-rate

d .
0},=0y(l+Aln(epIB)) (5.59)

where A and B are constants, 0'3, is the dynamic yield stress and G, is normally taken as the

static yield stress corresponding to €y = B. The dynamic plastic strain-rate Ep can be

determined from the maximum relative approach o* and the duration of plastic loading t,,.
Assuming that the effect of surface adhesion is not significant when impact velocities are

well above the yield velocity, we may use ( 3.64 ) and (3.70 ) to define

12
a* =2RV,; (£-) (5.60)
30‘y

12
‘p=“R(§p—) (5.61)

b §

and the plastic strain rate is

oo @V (5.62)
2Rt xR



It also follows from ( 3.2 ) and ( 3.71 ) that

L% (15R2mv§ 25 3 RE*V, 15
Y“2Rty"2R2 16E* ) 2.8?( 2 ) (5.63)

or

B=034b (5.64)

R

Therefore

£ V..

£ =0.938 & 5.65)

B 938 Vy (

and, without any significant loss in accuracy, the dynamic yield stress may be expressed as

d
6,=0,(1+Aln (Vy/V,)) (5.66)

It was demonstrated in Section 5.3 that plastic yield can occur at V; = 0 when Vy <V, In
this case, it is more convenient to define Gys as the contact yield stress corresponding to the
critical sticking velocity V, and rewrite ( 5.66 ) as

d s
6,=0, (1 +Aln(Vy/Vy)) (5.67)

5.6 Computer simulated experiments

Figure 5.8 shows the results of computer simulated impacts of a U0y particle of radius R =
10 um with a stainless steel wall. The properties of both sphere and wall are given in Table
1.1. Figure 5.9 illustrates the effect of surface energy on the coefficient of restitution
obtained. It can be seen that, for the range of V, < V; <V, the coefficient of restitution
increases with an increase in impact velocity. For impact velocities Vi; > V,, the coefficient
of restitution decreases as the impact velocity is increased and. as shown in Fig. 5.9, is not
significantly affected by surface energy. Consequently, if V >> V.. we may define the
critical sticking velocity V by (5.51 ) and use ( 5.53 ) to predict the coefficient of restitution

for V. < V,; < V,: for Vi > V. (3.51) is used to predict the coefficient of restitution with
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yield velocity V defined by ( 3.5 ). Using these procedures, the analytical solution and the

computer simulation results are in very good agreement, as shown in Fig. 5.8.

Further simulations have been performed to examine the effects of yield stress on the
coefficient of restitution. The results are plotted for three values of yield stress in Fig. 5.10.
Except for the value of the yield stress used, all the properties corresponded to a U;04
particle impacting a stainless steel target, as given in Table 1.1, For comparison, the normal
case ( oy = 3.04 GPa) gives Vy =0.62 m/s, V, = 0.016 m/s and the maximum value of e
= 1.0. If the yield stress is reduced to o, = 1.2 GPa the critical sticking velocity is not
affected but the yield velocity is reduced to V, = 0.048 m/s and the maximum coefficient of
restitution is reduced to e, = 0.95. When the yield stress is further reduced to o, = 0.5
GPa, the yield velocity is less than the sticking velocity which is increased to V, = 0.032.
For this case of V, <V, the maximum coefficient of restitution is approximately 0.5. It
should be noted that at high impact velocities, V; >> V, all the data sets approximate to a

power law relationship with an exponent of -1/4.
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Fic. 5.8 Comparison of the coefficient of restitution between computer simulated

results and analytical predictions based on ( 5.52) and ( 3.51).
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Wall et al (1989,1990) reported some experimental results of ammonium fluorescein
particles impacting a silicon target. It was decided to investigate whether agreement with
their results could be achieved using the modified version of TRUBAL. Simulations have
been performed for a range of impact velocities up to 100 m/s using the follow ing propertics
given by Wall et al for the particle: R = 2.45 um, p = 1.35 Mg/m®, E= 1.2 GPa. v = 0.3. u
= 0.35; and for the wall: p = 1.35 Mgr‘m3, E =182 GPa,v=0.3, u=0.35.

Using theories which did not account for surface energy effects during the loading stage.
Wall et al (1989) found that a reasonable fit to the experimental data was obtained using the
fitting parameters 6, = 74 MPa and I" = 0.38 J/m%. However, they recognised that the value
for the interface energy was higher than expected. It was suggested that the surface energy
of ammonium fluorescein should be in the range 0.04-0.05 J/m? and for silicon the surface
energy should be between 0.10 and 0.14 J/m?. In the simulated impacts we have used I" =
0.2 J/m2. With these values the critical sticking velocity V = 0.567m/s according to ( 5.51)
and is significantly less than the experimentally implied value of V ~ 2 m/s. Impact
simulations were, therefore, carried out to match the experimental data for the lowest
velocity reported by Wall et al ( 1989), i.e. V; = 2.0 m/s with e, = 0.38, and it was found
that a contact yield stress of o, = 35.3 MPa was required. With this value of o, the velocity
required to initiate plastic yield V, is less than the critical velocity for sticking V = 1.9 m/s.

In fact, it was found that plastic yield occurs, in the centre of the contact area, even for zero

load.

For a given set of impact velocities, Fig. 5.11 shows the typical force-displacement
curves obtained. The slope of the loading curve is the same for all three different velocitices.
It is evident that. in the elastic recovery process, the maximum negative normal force. or
pull-off force, increases with an increase of impact velocity: a clear indication that plastic
‘hdentation leads to an increase in the radius of contact curvature. With 6 = 353 MPa.T'=
0.2 J/m> and other properties as defined above. Fig. 5.12 shows the coefficients of

restitution obtained for different velocities and the comparison with the experimental results

168



of Wall et al ( 1989 ). It can be seen that, for V. > V.. the simulated results underpredict the
coefficient of restitution by a significant amount. However, at hi gh impact velocities the
computer simulated results are parallel to the experimental data when plotted on a log-log
plot. Consequently, in order to explain the difference between the computer simulated
impacts and the experimental results a further series of impact simulations was performed to
determine what values of 6, were required to fit the experimental data. The results are

shown in Fig. 5.13.

It can be seen that, in order to obtain agreement with the experimental data, it is necessary
to assume a yield stress which increases with impact velocity. At velocities above 40 m/s the
results imply a decrease in yield stress with increasing velocity. This may be explained by
shear heating effects at high strain-rates in the experiments, Johnson (1985). However,
since the experimental data was obtained by scaling the figure provided by Wall et al ( 1989
), this is not certain. In addition, the coefficient of restitution is quite sensitive to the value of
yield stress used, especially for an impact velocity which is just slightly above the sticking

velocity.

Ignoring the possible decrease in yield stress due to shear heating at high velocities, the
fitted values of yield stress are approximated by ( 5.67 ) with A = 1.429, V= 2.02 m/s and

a limiting value of o,= 150 MPa, as shown in Fig. 5.13. We therefore introduce a dynamic

yield stress which is defined as
30 (1+1.4291n(V,;/2.02)) V<30 m/s
o) = { (5.68)
150 V,i>30 m/s
The computer code was then modified to incorporate a dynamic yield stress in this way and a

final series of simulations was performed. The results, illustrated in Fig. 5.14, show good

agreement with the experimental data over the complete velocity range.
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5.7 Summary

In the presence of adhesion the normal impact behaviour is analysed in this chapter. For
elastic spheres a criterion which determines whether the particle bounces or adheres with the
target surface has been established for the investigated materials. The computer simulation
results show a very good agreement with the analytical solution. The impact velocity which
initiates plastic deformation is examined and a criterion governing the onset of plastic yield
has been obtained. It has been found that the yield velocity decreases with an increase of
surface energy as well as yield stress. Consequently, the yield velocity obtained in this study

is less than that in the case of no adhesion estimated by Davies ( 1949 ).

For adhesive elasto-plastic spheres a new mathematical model, which is an extension to
the JKR model of adhesion, has been developed to deal with the capture and rebound of
small particles from surfaces. The normal coefficient of restitution is based on the normal
force-displacement relationship during loading and unloading with consideration of the
flatting of the contact surfaces due to plastic deformation. The effects of interface energy and
yield stress on particle bouncing are investigated. It has been analytically and numerically
demonstrated that, at relatively high impact velocities, the effect of surface adhesion is not
significant and the impact behaviour can therefore be described by the equations without
adhesion. Computer simulated impacts of hard spheres of U30g have been shown to provide
sensible results in terms of the effect of velocity on the coefficient of restitution. For soft.
micron-sized particles of ammonium fluorescein impacting a silicon target it is found that it is
necessary to introduce the concept of a velocity dependent dynamic yield stress in order to

obtain computer simulated results which are in agreement with real experimental data of Wall

et al ( 1989, 1990 ).

172



Chapter 6 Oblique impact of adhesive spheres

6.1 Introduction

There appears to be no published detailed investigation of oblique impacts of micron-sized
particles for which the effect of surface adhesion may be important. In general, however.
most impacts will be oblique. Therefore, in this project. oblique impacts of adhesive spheres

have been simulated and are reported in this chapter.

6.2 Theoretical considerations

The theoretical basis for the normal contact force-displacement behaviour was described in
Chapter 5. It is assumed that the theories of Savkoor and Briggs ( 1977 ) and Thornton (
1991 ), see Section 2.3.2, are still applicable after plastic yield and that the tangential
interaction only affects the normal interaction rules by the way in which the initial tangential
peeling process suggested by Savkoor and Briggs ( 1977 ) reduces the contact radius. This
affects the magnitude of the normal contact stiffness, defining by ( 5.11 ), ( 5.25 ) and (

5.28 ), and the calculation of the modified contact curvature, Rp, as explained below.

Savkoor and Briggs ( 1977 ) incorporated the tangential work done into the JKR energy

balance model and obtained the following equation for the contact radius

3 3R

= (P+2P 2 V 4PP, + 4P% - T’E*/AG* ) (6.1)

a

Consequently. to definc Rp. it is necessary to modify ( 5.32 ) to ( 5.36 ). Assuming a
smooth transition in the magnitude of the contact radius at the change from plastic loading to
elastic unloading we may rewrite ( 5.32) as
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a*3=3RP*1 __Z”RPP”= Ir

= 6.2
4E* 4E* Vash
but with the substitutions
\/ 2
P*, = P* + 2P + V 4P* P_+ 4P>. T’E*/4G* (6.3)
Vapre v ol T
P*, =P* + 2P+ V 4P*P_ + 4P_ - TE*/4G* (6.4)

where P*, and P*,_ are the equivalent Hertzian forces at the end of loading and at the

beginning of unloading respectively. Therefore

RP* =R P* =R, (P*+2P, % Vaprp_+ 4P2 - T’E*/4G* ) (6.5)

which leads to

RP*,
R T=A

)=
P* +V 4P_P*, - T’E*/4G*

(6.6)

rather than ( 5.36 ). A problem arises with ( 6.6 ) if T2 E*/4G* > 4P_P*. In this case R, is

calculated as

RP*,
Rp=P—* (6.7)

During elastic unloading the contact stiffness is provided by ( 5.28 ) with the equivalent

Hertzian force defined as

P .= P+2P_+V4PP_ + 4P> - TE*/4G* (6.8)

cr—

where P is the actual contact force.

6.3 High speed oblique impacts ( V; > Vy)

Using the properties given in Table 1.1, with o, = 3.04 GPa, computer simulations of U;0g
particles ( R = 10 pm ) impacting a stainless steel target have been performed to examine the
effect of impact velocity and impact angle on the rebound behaviour. For impact speeds up

to 100 m/s, Fig. 6.1 shows the variations of the normal coefficient of restitution with normal
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approach velocity. The figure clearly demonstrates that the effect of impact angle on the
normal coefficient of restitution is not significant for high speed impacts. At impact velocitics

close to the sticking velocity there are minor variations of e, with impact angle.

For oblique collisions at high impact speeds, or more relevantly high normal approach
velocities, the effect of surface adhesion is not significant since the interactions between the
two contacting surfaces are dominated by the effect of plastic deformation. This is
demonstrated in Fig. 6.2, 6.3 and 6.4 which are typical of all the simulated high speed
impacts of adhesive spheres. Figures 6.2, 6.3 and 6.4 show the effect of impact angle on the
reflection angle of the contact patch, the rebound angle of the particle centroid and the
tangential coefficient of restitution respectively. The results shown are for a series of
simulations in which a constant normal approach velocity of 5.0 m/s was used, which is
higher than the yield velocity Vy = 0.62 m/s. In the figures, the results are also compared
with the corresponding series of simulation tests of non-adhesive elasto-plastic spheres
reported in Figs. 4.31, 4.32 and 4.33. Except for the tangential coefficient of restitution

obtained for a 5° angle of impact the data from both series of simulations are almost identical.
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Fig. 0.1 Effect of impact angle on the normal coefficient of restitution.

175



—&—  Without adhesion

*=——  With adhesion

Reflection angle - contact patch ( )

-30 -

S0—r—r—rTrrr 7T T
0 10 20 30 40 50 60 70 80 90

Impact angle ( °)

Fig. 6.2 Comparison of reflection angle at the contact patch with and
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Fig. 6.4 Comparison of tangential coefficient of restitution with and

without adhesion at V; = 5.0 m/s.

6.4 Ciritical sticking velocity

Computer simulations have been performed in order to examine the effect of impact angle on

the critical sticking velocity. From ( 5.51 ) we may write

V./A=184 (69)

where
5

I 1/6
A=(——) (6.10)

3
p 1E"‘st
Figure 6.5 shows how V /A varies with impact angle. It can been seen that as the impact

angle is increased the critical sticking velocity ( speed ) increases at an increasing rate.

Superimposed on the figure is the curve V /A = 1.84 sec 6 which fits the simulation data
points very well. This suggests that the critical parameter is the normal component of the

impact velocity. The normal component of the critical impact velocity, as obtained from the

177



computer simulations, has been plotted against impact angle for different particle sizes in
Fig. 6.6. The figure shows that, although there is some observed variation with impact
angle, the normal component of the critical impact velocity is approximately constant.
Simulations were repeated for different coefficients of friction. Typical results are shown in
Fig. 6.7 which illustrate that, although small differences were observed for zero friction, the
critical sticking velocity is not affected by friction. Computer simulations have also been
conducted to examine the effects of other factors, such as surface adhesion energy, Young's
modulus, and particle density. The value of the critical velocity changes with particle and
target material properties, but the variation of the critical velocity with impact angle remains
the same. This, of course, confirms the validity of Fig. 6.5 for the normalised critical
velocity. Therefore, we may conclude that the critical sticking velocity ( speed ) below which
particles will remain adhered to the target surface is given by

5
_1.84 I 1/6

30
<
- 1.84 sec §
8 R=10 pm
20 1 ™ R-':S pm

° R=2 pm

b R=1 pm

S I TS RN SRS (N FR N MRS IR Bl
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Impact angle (°)

Fig. 6.5 Normalised critical impact velocity.
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In the analysis of particle impact behaviour the energy lost due to elastic wave
propagation, as demonstrated in Chapter 4, is not significant and therefore is ignored.
However, in computer simulated impacts, if the particle sticks to the wall and this energy
loss mechanism is not considered the contact forces will continue to oscillate indefinitely and
an equilibrium state will never be attained. Furthermore, in the computer simulated
experiments of particle systems in which energy is transferred through the solid bodies the
energy loss has to be considered in order to reach a quasi-static equilibrium state. To account
for this type of energy dissipation, " contact damping " is used. More details about the so-
called damping forces are provided in Chapter 7. The significance of normal and tangential
contact damping is demonstrated in Fig. 6.8, which shows the evolution of the normal and
tangential forces with time when the impact speed is less than the critical sticking value. It
can be seen that the amplitude of both the normal and tangential forces decreases with time
and finally zero values are approached when the state of equilibrium is obtained. The

corresponding relationship between normal force and tangential force is shown in Fig. 6.9.

10 T

—— Normal force

—— Tangential force

Contact forces (LN )

Impact time ( 1L S )

Fio. 6.8 Variations of normal and tangential forces with impact time for an

impact speed of 0.01 and impact angle of 60°.
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Fig. 6.9 Oscillation of normal and tangential forces when the particle sticks with

the target wall at an impact speed of 0.01 m/s and impact angle of 60°.

6.5 Bounce behaviour of elastic spheres

Since it was shown in Section 6.3 that high speed impacts are not significantly affected by
surface adhesion, this section will focus on normal approach velocities in the range V, < V

< Vy.

6.5.1 Effect of initial particle rotation

It was shown in Fig. 4.51 that the normalised angular velocity at rebound, ¢, = @ R/V ;.
resulting from oblique impacts of non-adhesive elastic spheres with no initial rotation

increased with impact angle to a maximum value of 1.75 when sliding occurred throughout

the impact. It was also shown that the maximum value of ¢, decreased as the normal

approach velocity increased. for V; > V)_, Figure 6.10 shows ¢, plotted against impact angle
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for three different constant normal approach velocities in the range of V, < V,, < V. Itcan
be seen that, for a normal approach velocity of 0.5 m/s, the maximum value of ¢, = 1.751in
close agreement with the non-adhesive case. As the normal approach velocity decreases the
maximum value of ¢ increases. For V ; = 0.02 m/s the maximum normalised rebound
angle velocity ¢, =5.15. However, this corresponds to a tangential rebound velocity of the
contact patch of 0.103 m/s which is less than the value of 0.875 m/s corresponding to V,,, =

0.5 m/s.

Simulations have been performed in order to examine the effect of initial particle rotation,
defined by the normalised initial angular velocity ¢;, on the rebound condition following
oblique impacts. The results obtained for a constant normal approach velocity of 0.1 m/s are
used to illustrate the typical behaviour. Figure 6.11 shows the effect of initial rotation on the
rebound angle of the particle centroid, for both positive and negative values of initial angular
velocity. The corresponding reflection angle of the contact patch is shown in Fig. 6.12. It
can be seen that, for the case of no initial particle rotation, the behaviour is similar to that
reported in Section 4.3.2 for non-adhesive elastic spheres ( see Figs. 4.13 and 4.14 ) except
at small impact angles. Figures 6.11 and 6.12 show that both the particle centroid and the
contact patch rebound back along the initial approach trajectory if the impact angle 6 < 25°.
This phenomenon was also observed by Thornton and Yin ( 1991 ). By examining the
detailed contact force evolution during the simulated impacts, it was identified that the initial
peeling process of Savkoor and Briggs ( 1977 ) was completed during the loading stage for
0 > 25°. For the impacts with 6 < 25°, when the " bounce back " phenomenon was

observed, tangential peeling was only completed as the end of the unloading stage was

approached.

The effect of initial rotation. as illustrated in Figs. 6.11 and 6.12, suggests that the data
may be normalised by the same procedures as described in Section 4.4.2. Therefore, the
data shown in Fig. 6.12 is also shown in Fig. 6.13 in terms of (e y;/A ) plotted against (

wif?..+¢i!u ). It can be seen that the pattern of behaviour is similar to that obtained for non-
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adhesive elastic spheres, as shown in Fig. 4.49, except for two features. First. for adhesive
elastic spheres there is the bounce back phenomenon at small angles, as described above.
The second difference is that the remainder of the curve is displaced by an amount A in
comparison with the non-adhesive case. It would appear, from the results shown, that A = (
tan 6, ) / 1, where 6. is the maximum impact angle at which bounce back occurs when there

is no initial particle rotation.

Figure 6.14 shows the effect of initial particle rotation on the tangential coefficient of
restitution. Using the same normalisation procedures as in Section 4.4.2, the data has been
reported in Fig. 6.15. Comparing Fig. 6.15 with Fig. 4.50 the same differences are
observed as found in the comparison of the contact patch behaviour for adhesive and non-
adhesive particles. This is as would be expected due to the theoretical relationship presented

in Section 4.3.1.
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Fig. 6.10 The normalised departure angular velocities caused by oblique impacts

with no initial particle rotation ( interface energy I'=0.2 Jm?).
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Fig. 6.11 Effect of initial rotation on the rebound angle of particle centre
at a constant normal approach velocity of 0.1 m/s with positive

(a) and negative ( b ) initial angular velocities.

184



Reflection angle - contact patch ( ©)

60 ——m—— 77— T

— v
0 10 20 30 40 50 60 70 80 90

Impact angle (°)

Reflection angle - contact patch ( ©)

BT 7 T T T T T

0 10 20 30 40 50 60 70 80 90

Impact angle (©)

(b)

Fig .6.12 Effect of initial rotation on the reflection angle of contact patch
at a constant normal approach velocity of 0.1 m/s with positive

( a) and negative ( b)) initial angular velocities.
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Fig. 6.13 Normalised reflection angle against the parameter y,/A+¢,/L

for different initial angular velocities ( V; =0.1 m/s ).
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Fig. 6.14 Tangential coefficient of restitution against impact angle with positive

(a) and negative ( b ) initial angular velocities ( V; = 0.1 m/s).

20 ,
= ] i
ét 15.: .
+ ] i
< ) i
s
® : O ¢i=0.4
57 i i —— ;=10
3 : —— ¢;=-04
o . Ty —o— $i=-10
1 & —O0—  Without adhesion
A T —
-5 0 5 10 15 20

Vi /A+0i/u
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6.5.2 Effect of impact velocity

The effect of impact velocity on the bounce behaviour of adhesive elastic spheres is
illustrated by results of oblique impact simulations using three normal approach velocitics
V,i =0.02, 0.1 and 0.5 m/s, which correspond to normal coefficients of restitution e, =
0.617, 0.982 and 0.993 respectively. In Figs. 6.16, 6.17 and 6.18, the tangential coefficient
of restitution, the rebound angle of the particle centroid and the reflection angle of the contuct

patch are plotted against impact angle for the three normal approach velocities.

The three figures show that, for the case of V; = 0.5 m/s when impacted at angles of 5°
and 10°, the particle rebounds back along the initial approach trajectory without any particle
rotation having been generated by the impact. For 8 > 25° the tangential coefficient of
restitution, as shown in Fig. 6.16, are almost identical to the values obtained for the non-
adhesive case, which is superimposed on the figure. When V; = 0.1 m/s, the particle
rebounds backwards for 6 < 25° but the rebound angle is not equal to the impact angle
because e, = -0.85. When 6 2> 35° the variation of e, with impact angle is similar to that of

the non-adhesive case but the values are significantly different.

If the impact velocity is only slightly higher than the critical sticking velocity, e.g. V; =
0.02 m/s, then it is clear from Figs. 6.16, 6.17 and 6.18 that the surface energy has a
significant effect on the rebound conditions. Even at large impact angles the tangential

coefficients of restitution are very different from the values obtained with no adhesion.

Figures 6.16 and 6.17 show that the particle bounces forward for 6 < 35° and that the
bounce back behaviour is only observed in the range 40° <8 < 50°. Figure 6.18 shows that.
for 8 < 50°, the contact patch moves forward at the end of the collision and a comparison of
the rebound angles and reflection angles over this range of the impact angles indicates that

particle rotation occurs as a result of the impact.

The data shown in Fig. 6.18 has been replotted in Fig. 6.19 in terms of (e W /7))
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against (y; /A ) with the non-adhesive case superimposed. It can be seen that, when sliding
occurs throughout the impact, parallel linear relationships are obtained. In Chapter 4 it was
shown that, for the continuous sliding condition, the data sets could be normalised by using
the parameters ( 2e,y /A(1+e,) ) and ( 2y;/A(1+e,) ). However, it is clear from Fig. 6.19
that this procedure will not work but separates the data sets even more. A method of
normalising the data shown in Fig. 6.19 for the effect of adhesion has not been found and

this aspect of the work requires further investigations.

6.5.3 Effect of friction

For small impact angles the tangential peeling process is only completed as the end of the
unloading stage is approached. Consequently, it is not expected that friction will affect the
bounce behaviour for these impact angles and Fig. 6.20 confirms this expectation. When
peeling is completed during loading, the figure also indicates that, as found for non-adhesive
elastic spheres, the minimum tangential coefficient of restitution is independent of friction.
In Fig. 6.21 the nondimensional reflection angle of the contact patch y_/A is plotted against

the nondimensional impact angle y;/A. If peeling is completed during the loading stage then

V45i=0.02 m/s
Vai=0.1 m/s
Viai=0.5 m/s
No adhesion

Tangential coefficient of restitution, e ,

S R T L oy R o R TR e SR e LN T

T L I ] ®
0 10 20 30 40 50 60 70 80 90

Impact angle ( °)
Fig. 6.16 Tangential coefficient of restitution against impact angle.
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the data is satisfactorily normalised for the effect of friction, as was shown in Chapter 4 for
non-adhesive elastic spheres. Therefore, as shown in Fig. 6.22, the relationship between the
tangential coefficient of restitution and the impact angle may be normalised by using the

parameter ;/A, provided that the peeling process is completed during loading.
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Fig. 6.17 Rebound angle of the particle centre against impact angle.
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Fig. 6.18 Reflection angle of the contact patch against impact angle.
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6.6 Summary

Computer simulations have been performed to examine the capture and rebound of adhesive
particles upon oblique collisions. At high impact speeds, the effect of surface adhesion on
the bounce conditions has been found to be insignificant since plastic deformation dominates
the process of the impact. The results obtained for the case of no adhesion, presented in

Chapter 4, can therefore be used for the impacts of adhesive spheres.

Variations in particle and target properties can lead to a change for the value of critical
impact velocity but the curve pattern of velocity with impact angle always remains the same.
It has been found that the normal component of the particle initial velocity is the dominant
factor determining whether the particle bounces off or sticks to the surface. The computer
simulation results also show that the effect of friction on the onset of bounce is not
significant due to the adhesion between two contacting surfaces. Nevertheless, there is a
need for detailed experimental observations to confirm the prediction of computer simulated

results.

For the rebound behaviour of elastic adhesive spheres, the effects of initial particle
rotation, friction and impact velocity on particle bounce are examined. It has been found that
the surface adhesive peeling is one of the most influential factors affecting the bounce
behaviour and the transition of the peeling failure from unloading to loading leads to a
significant change in the magnitude of the bouncing parameters. It has been demonstrated
that, using the same normalisation techniques as for non-adhesive particles, scaling rules are
available in order to account for the variations in initial particle rotation and friction.

However, for the effect of impact velocity. further investigation is needed.



Chapter 7 Computer program TRUBAL

7.1 Introduction

TRUBAL is a computer program for the modelling of three-dimensional particle systems.
Using the Distinct Element Method ( DEM ) the structure of TRUBAL resembles that of the
two-dimensional program BALL. At Aston, the adapted program from Cundall’'s 1988
version of TRUBAL has been modified and enhanced extensively by incorporating particle-
particle interaction laws based on theoretical contact mechanics. Also, a number of facilities
such as simultaneous screen monitoring, three-dimensional graphics output, assembly
generation of random and regular packings, and the introduction of planar walls have been
included in the program. Current computer simulations at Aston are being applied to quasi-
static shear deformation of dense granular media, ensemble properties of mixtures of hard
and soft spheres, hopper flow, particle crushing and agglomerate impact fracture /

fragmentation.

There are two versions of TRUBAL at Aston. The basic version is used to simulate dry
particle assemblies while the other one is newly developed from the basic version in order to
model pendular liquid bridges in moist particle systems. In the basic version, for the case of
no adhesion, the normal and tangential contact forces are based on Hertzian theory and
Mindlin and Deresiewicz ( 1953 ) respectively. In the presence of adhesion the JKR model is
used for the normal contact stiffness while the tangential behaviour is governed according to

Savkoor and Briggs ( 1977 ) and Thornton ( 1991 ).

In this Chapter a short introduction to the simulation procedures and program structure is
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first presented with a focus on the storage of ball data, wall data. and contact links in the
main memory array. Based on the basic version of TRUBAL. incorporation of plastic
deformation without adhesion according to the theory described in Chapter 3 is then
discussed. For adhesive elasto-plastic particles, the implementation of the modified JKR
model presented in Chapter 6 is described. Finally a brief description about the use of the
program is given with an emphasis on the simulation of single particle impacts with a wall

and agglomerate-wall collisions.

7.2 Main structure of TRUBAL

7.2.1 Simulation procedure and program structure

A granular medium is composed of distinct particles which displace independently from one
to another and interact only at the contact points. The discrete character of the medium results
in a complex behaviour under conditions of loading and unloading. The process of
simulation in TRUBAL consists of assembly generation, cyclic calculation of contact forces
and particle movements, data processing for various purposes, and output of numerical data
and graphic plotting. The basic structure of TRUBAL developed by Cundall and Strack (
1979 ) remains in the present version of the program although a number of modifications,
especially in the interaction laws, have been made and more options have been provided in

order to deal with a wide range of practical engineering problems.

Figure 7.1 shows the main structure of TRUBAL. At the beginning of a simulation an
"input command file", which contains the operative commands and the particle parameters is
connected to the main executive program. Particles and boundaries such as walls are then
ecnerated randomly or created in positions specified by the user. For a restart run the
assembly and boundaries are retrieved based on the previously saved file. Using the Distinct

Element Method the evolution of contact forces and particle movements is achieved through
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Fig. 7.1 Diagram of the program structure of TRUBAL.
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a series of calculation cycles in which contact forces and particle positions are updated over

each small time step. The number of cycles is set by the user.

The program identifies a cubic " workspace " which is divided up by a grid to form a
series of boxes. Particles are mapped into their respective boxes according to the comers of a
circumscribing cube. The maximum number of boxes in which a particle has entries is eight.
When it is necessary to determine those particles that are neighbours or contacted to a given
particle, only the local boxes which the particle has entered need to be searched rather than
the whole defined space. The resulting contacts are stored in a linked list memory structure
which allows fast re-allocation of memory when contacts are created or deleted. When a
particle is mapped into a box the particles which were mapped previously into the same box
are searched and their distance to the newly mapped particle is calculated. If the accumulated
component of the translational displacement for a boxed particle exceeds a specified value a

check is made to test if the particle then needs to be remapped into different boxes.

When executing the program, the facility of screen graphic monitoring incorporated in
the current Aston version of TRUBAL simultaneously provides information such as the
relationships of normal force-displacement, normal-tangential force, and tangential force-
displacement for single particle collisions: energy partitions and contact number for
agglomerate impact. This facility is particularly useful when the user does not know how

many cycles are needed to reach a particular state of the particle system.

Computer simulation using the Distinct Element Method was originally performed by
Cundall and Strack ( 1979 ) to examine the quasi-static shear deformation of compact
assembles of particles. However. the computational technique lends itsclf more readily to
many other areas of scientific and industrial interests. A variety of capabilities for data
processing has been developed and enhanced in TRUBAL, enabling the users eastly to
access the computational results and vision images according to their own problems. The

subroutines in the original version of TRUBAL, which provide contuct histograms and
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calculate maximum, minimum, and average contact forces and particle velocities. stress and
energy partitions, are retained. The Aston version of TRUBAL provides additional facilities
such as identifying clusters from a contact list of particles in contact with each other.
drawing connection diagrams for the assembly and other data processing facilities related to

the simulation of agglomerate impact fracture / fragmentation.

In the process of simulation the control mode, boundary conditions. and material
properties may need to be changed. The results obtained at one stage can be saved for further
use. With the desired parameters changed further simulation is then based on the previous
stage rather than starting at the very beginning. Finally the output facilities in TRUBAL
provides both printed numerical data and graphic plottings. With the printout options the
results include sphere data, wall data, contact data, energy terms, stress tensor. Using the
graphic plotting options the user can obtain 2-D and 3-D colour pictures of spheres. walls,
contact forces, contact connection diagram, particle velocities and clusters of connected
particles. The graphic package of the current version of the program is written in FORTRAN

using graPHIGS API for IBM RS6000 workstations.

7.2.2 Memory partition

A single array A( 1) used in TRUBAL contains all the information on particles. walls,
boxes. and contacts and is continuously updated during the process of simulation. The array
A(1) is equivalenced to an integer array IA( ) so that integers may also be stored. The main
array can be subdivided into three parts for storing the ball data, wall data, and contact data.
The dimension of each part is determined by the number of boxes and the maximum number

of particles and walls sct by the user. Figure 7.2 shows the main memory map.

The memory limit of [ = M5 in A( 1) is setin the program and can be adjusted by the
user when it is necessary. If the capacity of the main memory is exceeded an error message
will be given and the program stops. The addresses of M2. M3, and M3A indicate the upper
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limits of the array of ball data, wall data, and box data respectively. Free memory units

should always be allowed between each array. For the maximum number of balls and walls.

denoted by My, and M, respectively, we have

M2=MI +Mba]| *Nvarb ( 7[ )
M3 = M2 + Mwﬂ” * Nvarw ( T2
M3A =M3+2*N,,, (7.3)

where N, is the number of variables stored in each ball data array: N, is the number of
variables stored in each wall data array; and N, is the number of boxes. The actual storage
units occupied by the arrays of ball data, wall data, and box data are less than the partitional
memory because the number of particles and walls in the simulation system is less than the
number defined initially. If a number of particles Ny, and walls N, are generated we

have the upper addresses of the actual storage

MIA = Npayp * Nygrp (74)
M2A =M2 + Nwa“ * Nvarw ( 75 )
M4 = M3A +2 * NIink + Ncom * Nvan: ( 7.6 )
A(T) 4
T T T
1 | 1
Ball : Wall : Box :
; Free 1 Free Link lists & contact data , Free
data ! data ! data :
I
: I I
Mi=l MIA M2 M2A M3 M3A N M5

Fig. 7.2 The memory map of thc main array Al L:):
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where Ny, is the number of variables stored in each contact data array: N}, and N, are
the number of links and contacts created during the process of simulation. All of the
addresses of M1A, M2, -+, M5 except M4 are fixed during each session of simulation for a
given input file. However, the upper address of link lists and contact data. M4, is
dynamically located depending on the number of links and contacts, which changes from

time to time. The storage scheme for link lists and contact arrays is shown in Fig. 7.3.

box 1 box i box NB
— e i
high memory
M3 M3A
address of the address of the
first contact next contact
« acontactarray _, « acontactarray _,
address of the address of the
first lower link next lower link
———————
address of the address of the
first sphere second sphere

Fig. 7.3 The storage scheme for link lists and contact arrays.



7.2.3 Data array of balls, walls, and contacts

In the current version of TRUBAL the dimension size of one ball data array is set to N,
= 31 and the size for the wall data array is set to N, = 41. The variables allocated into the

31 elements of a bail data array B( N, ) are

B(1)toB(3): Co-ordinates of the ball centre x, y, z;

B(4)toB(6): Accumulated displacement increments Ax, Ay. Az;

B(7)toB(9): Components of the translation velocity Vs V).. N

B(10)to B( 12 ): Angular displacements ¢,, by, &, about x. y, and z axis
respectively;

B( 13 )to B( 15): Accumulated angular displacement increments Ag, . Ady. AD,:

B( 16) to B( 18 ): Components of angular velocity ,, Wy, W]

B( 19 ) to B(21 ): Components of out-of-balance force F,, Fy, E:

B( 22 ) to B( 24 ): Components of out-of-balance moment M, . M,. M,:

B(25 ) Code made up of two variables ITYPS and ITYPM, indicating the
particle size type and material type respectively:

B(26)to B(29): Free;

B(30): Code identifying which agglomerate the ball belongs to ( 1 or 2 ):

B(31): Free.

The information stored in the 41 elements of a wall data array W (N, ) are

W(1)toW(4): Parametersd, a, b, c which define a planar wall as the form of

d = ax + by +cz;
W(5)toW(7): Components of wall translational velocity V.. V. Vy,:
W( 15)to W( 17): Accumulated displacement increments of the wall Ax. Ay,,. A7y
W( 19 ) to W(21): Components of out-of-balance wall force F . F,. F;:
W(25): Code indicating the material type ITYPM:

Others: Free.



The variables allocated in the contact data array C( Nyare ) have always been changed
from time to time. Even for the Aston version of TRUBAL the allocation of the variables
varies from different research projects. For instance, based on the basic version of TRUBAL
which is used to simulate dry particle assemblies ( N, = 23 ). Lian ( 1994 ) extended each
contact array from 23 to 31 elements to add liquid bridge forces for the simulation of moist

particle systems. In this study when implementing plastic deformation into the computer

code the number of variables in each contact array is set to N, = 27 and the allocations in

the contact array are as follows

C(1)toC(3): Components of the tangential force at the contact point T,, Ty T
C(4): Normal contact force ( Hertz, or JKR, or plastic contact force ), P;
C(5)toC(6): Addresses of the two bodies in contact ( ball-ball or wall-ball ):

C(7)toC(9): Components of the relative tangential displacement 3, By, d,;

C(10): Resultant tangential displacement, 9;

C(I1): Resultant tangential force at the contact point. T:

C(12): Tangential force from which unloading commenced, T* ;
C(13): Tangential force from which reloading commenced, T** ;
C(14): Accumulated distance that the tangential force falls short of its

equivalent curve of constant normal force, DD;

C(15 ) Tangential peeling force in the presence of adhesion, T;

C(16): Interfacial surface energy, y=172;

C(17): Radius of the contact area, a;

C(18): Code indicating the direction of the tangential force, CDF( | or -1 ):
C(19): Free;

C(20): Code to indicate if the work done in breaking contact is to be

calculated (O or -10);
C(21 ) Normal plastic contact force at the transition point from loading to
unloading. P*;

Ci22) Equivalent particle radius, Rp:
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C(23): Equivalent elastic contact force determining contact radius. P,

without adhesion and P, with adhesion:

C(24): Contact radius at initial yield. a;

25 ) Normal displacement at recontact point. o

C(26): Code indicating the direction of loading in the JKR curve (lLor-1):
C(27 Link to the address of next contact.

An explanation of the variables partitioned in C( 21 ) to C( 26 ) will be given in the next

section.

7.3 Incorporation of plastic deformation using DEM
7.3.1 System evolution

Newton's equations are applied in TRUBAL to govern the motion and displacement of
particles in the simulated assembly, where the related parameters such as displacements (
o(t), 8(t) ), velocities ( V(t), ®(t) ), and contact forces ( P(t), T(t) ) are time dependent.
Using the Distinct Element Method the evolution of a dynamic process consists of a series of
calculation cycles in which the state of the particle system is advanced over a small increment
of time At. For the finite difference method the out-of-balance force and acceleration of the

particle are assumed to be constant during the given interval of time.

According to Newton's second law we have

V,(t+At)+V,(t) Vi (i AL )= N5 () .
Folt)+ mgy-PB, - =m e (7.7)

o (t+A)+o () ®,(t+A) - (t)
M (1) - B, ———— —— = [ —— (78)

from which the new velocity components of the particle are obtained

to
=)
(]



ml/At—-0 /2

VI(I+AI)=——-—_H_£3L__V‘(IJ+ Fp +mgr (? 9)
m/At+f /2 mlAt+p, /2 ’
I/1At-0 /2

a),.(t+Ar)=_______ﬁﬂ M (7.10)

@,(1)+ ——t—
1/At+B, /2 I7At+p, 12
where At is the time step; I is the moment of inertia of the sphere: B, 1s the coefficient of

global damping; i = 1,2,3 indicates the three directions in x. y. z coordinate system
respectively; F; and M; are the components of the out-of-balance force and momentum

respectively while g; are the components of gravity.

A 3(2)

n
2(y)
&
( T
I Zp
bz
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XA ’ s yB )
ra rd
Xp L{x)

Fig. 7.4 Two contacting spheres in a 3-D Cartesian coordinate system.

If a pair of spheres A and B are in contact, as shown in Fig. 7.4, the relative normal

displacement increment at the contact during a small time step is given by

B A
where \r’-,B and ViA are the linear velocities of sphere A and B respectively: n; are the
direction cosines of the unit vector normal to the contact plane and with a direction from

sphere A to sphere B. For elastic spheres with adhesion ( the no adhesion case corresponds

to ['=0, P, =0). the normal force increment is given by
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AP =k Ao, (7.12)

where
3-3Ja./ P =
k;:QEta___ic_a: 25*3M (7.13)
3-a./a 3J/P,- /P,
and
P, =P +2P_+ V4PP_+4P> . T’E* / 4G* (7.14)

which is the effective Hertzian force. In the case of no adhesion both the pull-off force P,

and the contents in the square root in ( 7.14 ) are set to zero although the tangential force T is

not zero during oblique loading. The new normal contact force is therefore given by
P(t+At)=P(t)+AP=P(t) +k, A ¢ TERY

and the contact radius is updated using

3 [3R* A
a(t+At)=\/ REBlodt) (7.16)

4E*

In a three dimensional space the tangential displacement components are calculated from

B A A A

B B
— (@ Nisa— O Niy ) RpAt (7.17)

where R, and Ry are the radii of the two contacting spheres. The updated tangential
displacement components are

3. (t+At)=3,(t)+ A3, (7.18)
and the resultant tangential displacement is given as

5 (t+A)=sign[8(t+At)]sign[8 (t+A)AS VS (t+A) (7.19)

However. the Mindlin and Deresiewicz ( 1953 ) tangential force-displacement relationship is
non-linear and loading history dependent. Consequently the new tangential force can not be
obtained by updating the tangential force components. Therefore. having obtaining the new

tangential displacement ( 7.19 ) the resultant displacement increment is obtained from

.
]
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Ad=0(t+At)-8(t) (7.20)
and the resultant tangential force increment is given by

AT =k, A8 131 5

where, using the updated normal contact force and contact radius. the tangential contact

stiffness is
k,=8G*a@+uAP(1-0)/Ad C7.22)
with
OL =[1-(T+pAP)/(P) 113 (7.23)
@U:[1—(T*—T+2u&P)![2pP)]”3 (7.24)
E)R:[1-—(T—T**+2u£&P):’(2].1P)]”3 (7.258)

The subscripts L, U and R in ( 7.23 ) to ( 7.25 ) refer to loading, unloading and reloading
respectively. The negative sign in ( 7.22 ) is only invoked during unloading. The
parameters T* and T** define the load reversal points and need to be continuously updated (

T* =T* + u AP and T** = T** — 1 AP ) to allow for the effect of varying the normal force.

[t should be noted that P and AP are the actual contact force and force increment respectively

rather than their effective elastic counterparts P. and APe.

The resultant updated tangential force is calculated using

T(t+At)=T(t)+AT (7.26)

and the new tangential force components are obtained from

8, (t+At)
T;(t+AM)=T(t+AM)— (7.27)
|5 (t+a0)]
In the presence of adhesion the initial tangential stiffness is obtained by setting © = 1 in (
7.22 ) until the tangential force obtains the critical value
16G* [P(t+ )P +P]]
TL.(t+Al)=v T r—— ( 7.28 )
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When the peeling process is complete, at which point the content of the square root in ( 7.14
) is set to zero. A flag is then set to indicate that the initial contact peeling is complete and
subsequent tangential force increments are calculated using ( 7.22 ) to ( 7.25 ). Finally. a
check is made if the tangential force at the end of peeling is greater than that necessary for
sliding. The normal contact force is compared with the value defined in ( 2.35 ) to determince

whether or not the sliding criterion of ( 2.35 ) should be used.

7.3.2 Plastic deformation without adhesion

If the elastic yield limit is exceeded then, according to the theory presented in Chapter 3, the

initial yield force and the normal contact stiffness during plastic loading are calculated from

3 2 3
n R* o, ;
PL= e ( 7.29 )
p 7.30

k‘I’I =1'[R*0‘y ( )
Therefore, during a time step the new plastic contact force P is obtained from

P(t+At)=P(t)+AP=P(t)+TER*O‘YAOt (7.31)
and the contact radius is updated using

2P(t+At)+Py
a(t+At)= (7.32)
2rt0y

Unloading in the normal direction is assumed to be elastic but it is necessary to allow for the
reduced contact curvature resulting from plastic deformation of the contact patch. Therefore.
at the transition point from loading to unloading it is necessary to store the maximum normal

force P* and to calculate the " effective radius " R using

4E* 2P +P, M2
Ry =3+ (- Y)

(7.33)
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During unloading the normal contact force is obtained from ( 7.15 ) and the new contact
radius is calculated according to ( 7.16 ) but with R, substituted for R*. If reloading occurs
before the contact breaks then the contact force and contact radius are updated using ( 7.15 )
and (7.16 ) but with R* = Ry until P > P*. When P > P* further plastic deformation occurs

and ( 7.31 ) and ( 7.32 ) are used.

When contact force reduces to zero the contact is considered to be broken although there

is a residual apparent overlap o, ( see Fig. 3.3 ) which is stored in the contact data array for

use in possible reloading. The other contents of the contact data array are set to zero except

for P¥, ay and the links C(5), C(6) and C(27). When o < 0 all the parameters in the contact

data array are set to zero and the contact is deleted from the link list.

As explained in Chapter 4, it is assumed that the Mindlin and Deresiewicz ( 1953 )
tangential force-displacement relationship is applicable to both elastic and plastic behaviour.
Consequently, having updated the normal contact force and contact radius using ( 7.31 ) and

(7.32), the tangential contact force is updated using ( 7.21 ) to ( 7.27 ).

7.3.3 Plastic deformation with adhesion

Before initial yield occurs, the normal contact force and contact radius are updated using (
7.12 ) and ( 7.16 ). Using the updated contact radius, the initial yield state is identified by

testing the validity of the equation

S!E’*‘ay (21"}5* 1/2

o, = ) (7.34)

b onR* may
Having determined a, in this way, the normal contact stiffness is calculated. see (5.24),

from

3/2
Ap 3mRo -2E*a (a./a)

(7.35)

n IR e
P Ax 3-(acfa)m
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During plastic indentation, both the plastic contact force and the equivalent elastic force are
updated using
P(t+A)=P(t)+AP=P(t)+kyAa ( 7.36)

and

Po(t+At)=P(t)+AP,=P,(t)+k! At (7.37)

where the elastic contact stiffness k," is defined by ( 7.13 ). The updated contact radius i

calculated using

3 3R*P, (t+At)
a (t+m)=~—ﬁ*—— (7.38)

where

Py (t+A)=P(t+A)+2P, + V 4P+ At JP,+4P2- T2 EXAG*

(7.39)
is the effective Hertzian force. If, however, the following condition is true
W/ 2
T(t)24V[PP.(t+At)+ P, ]1G*/E* (7.40)
then the effective Hertzian force is calculated from
P, (t+At)=P,(t+At)+2P, (7.41)

Having updated the normal contact force, the equivalent elastic normal force, the effective
Hertzian force and the contact radius, the tangential contact force is updated using ( 7.21 ) to

(727 )

During elastic unloading the modified radius of contact curvature is calculated from

. R*P*,
P (7.42)
P +V 4P_P* - TE*/A4G*

where

pr =P+ + 2P + V 4P* P + 4P’ - TE*/4G* (7.43)

is the effective Hertzian force and P* is the plastic contact force at the point of unloading.

However. as can be seen from inspection of ( 7.42 ). a problem exits if
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16G*P_P, (1)
> [ |
T““)‘\/ E* (7.44)

in which case the radius of contact curvature is calculated using

R*P* |
Rp=—pt (743)

Having calculated Rp, the normal contact stiffness is obtained from

g, 33 (ag/a)”?
3-(ag/a)”? ity

The updated contact force is given by
P(t+At)=P(t)+AP=P (t)+k;Aa (7.47)

and the contact radius is updated using
a3(t+At):3RpP;é,:+m) (7.48)

In the above equation

P (t+At)=P(t+At)+2P,+ABC V4P (t+Al)P, +4P>- T’E*/4G*

(7.49)
and

P.=

a

R, (7.50 )

(SR

which is the pull-off force under a changed radius of contact curvature. According to the
JKR theory, as shown in Fig. 7.7, when the contact force P reaches its lowest value at -P,
we have o = o; the contact breaks at -5/9P, when o = a,,. If the contact is re-established
this will occur at o = oty with an initial value of P = -8/9P,. It is necessary, therefore. to
store 0, in the contact array for use in possible reloading. If the contact is broken it is
necessary to continue to calculate a. If -0, < ot < o, the contact force and contact radius are
sct to zero so that the program recognises that there is no contact although an overlap 1s
identified. Other parameters such as P*. RP. oy and a, are retained in the memory array for

use if the contact is re-established. If o < . then all the contact data. including the links.

2.0



are deleted. The parameter ABC in ( 7.49 ) indicates the sign of the normal stiffness. During
loading ABC = 1. During unloading ABC = 1 if o > ;. but ABC = -1 if a < a. If
reloading occurs before contact is broken then ( 7.47 ) and ( 7.48 ) are used to update the

normal contact force and contact radius until P > P* after which (7.35)to(7.38 ) are used.

P
l:"“e
\
1
]
1
R — _..__:m
o :
I
C(p :
-0 !
[ d :
\-J:__,,__L *
1 -8/9 P, o o
& g

Fig. 7.7 Force-displacement curve of plastic deformation with adhesion.

7.4 Application of TRUBAL to single particle impacts and agglomerate/

wall collisions

7.4.1 Time step

In an assembly of granular material the majority of the energy transmission between
individual particles is carried by Rayleigh waves which travel along the surface of the solids.
For one single particle there is a time during which a force is transmitted from onc contact
point to another point along the particle surface. The criterion for specifying the time step in

computer simulations of granular media using DEM i« that the time step for calculating the
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incremental forces and displacements is less than the time it takes for the wave to transverse

the minimum sized particle in the assembly.

On application of a force to an elastic body the Rayleigh surface waves are propagated

with a velocity

VR=T| — (?,5] )
V. p

where G and p are the shear modulus and density of the particle material; 1 is a parameter

dependent on Poisson's ratio and can be approximately given as

N =0.1631v + 0.876605 {752

The critical time step is therefore given by

(1337

Qe

where R, is the radius of the smallest particle in the assembly. It is here assumed that the
properties of all constituent particles are the same. For an assembly consisting of different
material types the critical time step should be the lowest among those determined by different

material properties.

The actual time step used in TRUBAL is a specified fraction of the Rayleigh critical time
step given in ( 7.53 ). By using a smaller time step a greater degree of accuracy is obtained
but more computational cycles are needed to achieve desired particle movements. The time
step is also related to numerical stability, especially for the dynamic process of agglomerate
collisions. Because the relative movements between spheres are not considered in the
propagation of Rayleigh waves the time step may not be small enough (o guarantee
numerical stability. Since the relative velocities between individual particles may be very
high the critical time step of real Rayleigh wave transmission is much smaller. During
simulation of dynamic particle systems if numerical instability occurs the time step should be

reduced further.

1
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7.4.2 Damping

In the TRUBAL program, the granular assembly is treated as a system in which two energy
dissipation mechanisms, plastic deformation and frictional dissipation through interfacial
sliding, are incorporated in the theoretical contact interaction laws. Two additional energy
dissipation mechanisms are available in the program by incorporating viscous dash-pots.
The first type of viscous damping is referred to as contact damping in which the damping
force is proportional to the normal and tangential contact velocities or strain rates. After
updating the contact forces the damping forces are calculated and added to the contact forces
to provide damping contributions to the out-of-balance forces and moments of each
individual particle. This form of damping is essential and its importance has been
demonstrated by considering an elastic oblique impact with surface adhesion ( see Figs. 6.8
and 6.9 ). If the impact velocity is below the critical sticking velocity and there is no contact
damping then the contact forces oscillate indefinitely and a state of equilibrium can never be

achieved.

The second type of viscous damping is described as global damping or mass
proportional damping. The global damping can be envisaged as dash-pots that connect all the
individual particles to the reference axes of the simulated system. The damping effect is to
add a resistance force to the out-of-balance force and moment of each particle, which govern
the motion of the particle. Unlike the contact damping which is related to the contact
velocities or strain rates, the magnitude of the global damping force is proportional to the
absolute ( both transitional and angular ) velocity of the particle, but with a direction which is
opposite to the velocity vector. The mechanism of the mass proportional damping is like
immersing the system of particles in a viscous liquid, for instance, simulation of particle
flow in a viscous medium. Although global damping is not normally used for the simulated
tests of agglomerate impact fracture / fragmentation and quasi-static shear deformation of

oranular media it is useful to dissipate kinetic energy during the preparation of an assembly.



7.4.3 Input commands

TRUBAL uses operative commands which have various functions such as file handling.
program execution and control, defining material properties and constants. etc. The format
of all input commands is a word followed, in most cases, by a number of parameters. some
of which may be words themselves. Although the computer program only detects the first
three letters of the first word of a given optional command the user may sometimes find it
useful to write out the full word for the understanding of its physical meaning. The
parameters may be separated by any number of spaces or commas since multiple separators
are treated as one. Integers may be entered as real numbers, but not vice versa. The
advantage of introducing operative commands is that the user can apply TRUBAL to handle
different problems without modifying the program. New commands can be added when new

problems arise; at the same time the function of old commands is still retained.

The complete command list used in the current version of TRUBAL is given by Lian et
al ( 1993 ). The first command on entering TRUBAL must be STArt or REStart. The next
input command line can consist of any message. In the modified version of TRUBAL with
plastic deformation a command YIEId has been added into the program. For two material

types of particles in contact with elastic yield stress 6, and G, respectively we can input a

pair of commands into the program
YIEWd oy ITYP(1)
YIEMd oy, ITYP(2)

The smaller value of 6, and G, will be automatically chosen by the program as the elastic
yield stress for plastic deformation calculation. If either of the two commands is omitted a

very large yield stress will be set for that material type: if both commands are omitted the

contact is treated as purely elastic.

When performing a simulation test the user can input all the command lines required by
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the test one by one or compile them as an input command file. Due to its efficiency and
flexibility the input file is commonly used in the computer simulated experiments. The
sample input files used this study for single particle impacts and agglomerate/wall collisions

are provided in Appendix B.
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Chapter 8 Impact fracture / fragmentation of

small agglomerates

8.1 Introduction

The understanding of the degradation of particulate material during handling and processing
is of interest in many fields of engineering and technology. In the nuclear industry the gas-
born U504 agglomerates degrade into fragments cither by turbulent shear or upon impact
with a surface. The process of fragmentation and the resulting size distribution. therefore,
need to be examined in order to predict the flowability of fractured fragments, of which the
primary particles may become resuspended in the flow field. By incorporating the
information of agglomerate fragmentation and suitable criteria for bounce into numerical
simulations of particle transport in turbulent flows comparisons then can be made of
theoretical predictions for deposition with the measurements of particle suspension and

deposition in straight pipes and bends of the transport rig.

The impact test is one of the most simple and direct methods to quantify and measure the
agglomerate strength, which is related to attrition and breakage of the primary particles
within the agglomerate. However, in real experiments. it is difficult to obtain the internal
parameters describing the packing structure of the agglomerates. especially the interparticle
contact forces. Computer simulation based on the Distinct Element Method ( DEM )
developed by Cundall ( 1971 ) can provide a detailed examination of the micromechanics of
the particle system. The computer program adapted from the 2D program BALL. Cundall
and Strack ( 1979 ). and 3D program TRUBAL. Cundall ( 1988 ) modcls the particle

interactions as a dynamic process which involves energy dissipation due to interparticle



sliding. In all Aston versions of BALL and TRUBAL. incorporation of surface adhesion
makes the simulation of agglomerate impact become possible. Two-dimensional simulations
of a monodisperse 1000 particle agglomerate against a wall were carried out by Yin ( 1992)
in order to clearly illustrate the internal agglomerate damage processes. Recently Thornton
and Kafui ( 1992 ), Kafui and Thornton ( 1993, 1994 ) presented a series of 3D simulations
in which a monodisperse spherical agglomerate consisting of 7912 primary particles in face-
centred cubic arrangement was impacted against a wall. The effects of impact velocity. bond

strength and primary particle size on the fracture / fragmentation were examined.

In this Chapter computer simulations of two randomly generated agglomerates, ( one
monodisperse and one polydisperse ) each consisting of 50 primary particles impacting with
a wall are presented. The fragmentation behaviour is first illustrated by the computer
graphics in which the primary particles are colour coded according to the size of the cluster
that they belong to. Impact damage behaviour and the effects of impact angle, impact
velocity, the local structural arrangements close to the impact point. and plastic deformation

at the contacts on agglomerate fragmentation are then discussed.

8.2 Sample preparation

The creation of all types of granules and lumps consisting of smaller primary particles can,
in general, be termed as agglomeration. The possible bonding mechanisms between the
primary particles include solid bridges, interfacial forces and capillary pressure in mobile
liquid bridges, adhesion and other forces of attraction between the solid particles. These
mechanisms together with the material properties and particle size distribution may contribute

to variations in agglomerate behaviour.

In computer simulated experiments of agglomeration a number of primary particles are

randomly generated within a spherical region and the agglomerate 1s formed by imposing a



centripetal gravity field to bring the particles together. In order to achieve a dense
agglomerate an artificially high particle density ( ~107 ) can be used. This method also can
lead to a significant reduction in computing time. When a compact assembly of particles has
been formed and the number of established contacts has reached a constant value. surface

energy is introduced and the particle density is then reduced in very small increments to the

normal level.

In reality the attraction force between the solid particles is very small and the centripetal
gravity field needs to be transformed to a one dimensional gravity field. If the impact is to be
simulated in the x-direction, for instance, the x-component of gravity should be -9.81 m/s?,
while the other two components, y and z, are then zeroed. The wall of an agglomerate-wall
collision system is first created and then moved to a new location within a very small
distance from the agglomerate. The gap between the wall and the agglomerate is so small that
the effect of velocity increase due to the gravity can be ignored. Before the impact velocity is
specified sufficient computational cycles must be carried out so that the kinetic energy of
primary particles is gradually dissipated by introducing global damping, allowing the
agglomerate to reach a static equilibrium state. However, it is impossible to reach an
absolutely equilibrium state at which all the particles have uniform or zero velocities. Within
the randomly generated agglomerate the individual particle always have different velocities,

though very small.

Two agglomerates consisting of 50 U;Og primary particles have been generated in the
way described above. The particle properties p = 8.3 Mg/m? E =215 GPa.v=0.3. u =
0.35, and y = 0.1 J/m2 were used in both cases. It should be noted that for contact betwcen
two surfaces with surface energies 7Y;, ¥, and interface energy v,,. the Dupre cnergy of
adhesion is I' =7, + ¥ + ¥;». In this study, due to y; =y, =Y and ¥,> = 0 we therefore have
I" = 2y. The monodisperse agglomerate with particle radius R =10 um had 111 contacts
initially and a porosity of 0.5291. The size distribution in the polvdisperse sample is

approximately Gaussian with a mean particle radius of 7 um as shown in Table 8.1. The



wall properties are the same as those for particles except p = 7.8 Mg/m3 was used. The
initial number of contacts before collision was 131 and the porosity was 0.4162. which i
significantly lower than the value for the monodisperse agglomerate. The coordination
number, which represents the average number of contacts within the assembly. was 4,44
and 5.23 for the monodisperse and polydisperse agglomerate respectively. The values of
both coordination number and porosity are affected by the final size of an agglomerate and

are significantly affected when the agglomerate is small.

Particle radius ( pm) | Particle number
R=10 7
R=38 11
R=7 14
R=6 11
R=4 7

Table 8.1 Particle size distribution for the polydisperse agglomerate

8.3 Visual observation

A series of 3D simulations of agglomerate-wall collisions has been conducted at impact
velocities of 0.2, 0.5, 1.0, and 3.0 m/s. Both the randomly generated monodisperse and
polydisperse agglomerates were used to examine the contacts broken and fragmentation
during the impact processes. Using computer graphics the fragmentation was observed by
colour coding the primary particles according to the size of the cluster that they belonged to.
For normal collisions. the fragmentation behaviour for both cases 1s illustrated in Fig. 8.1

and Fig. 8.2 respectively. At an impact velocity of 3.0 m/s the monodisperse agglomerate
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was fractured into singlets and all the contacts were broken; but for the polydisperse
assembly two doublets survived after the impact. At a low impact velocity of 0.2 m/s for
both assemblies only a few singlets and doublets were broken off although a substantial
number of broken contacts was observed. Comparing these two assemblies the agglomerate
strength of the polydisperse sample, in terms of contacts broken, is stronger than that for
the monodisperse one. The reason for this is that, considering the density dependent
agglomerate strength, the lower value of porosity for the polydisperse agglomerate
indicates higher density of the assembly. The smaller particles provide more interlocking

within the assembly which will also increase the agglomerate strength.

(a)

Impact velocity: 0.2 m/s
Contacts broken: 57

Time: 0.645 ps

(b)

Impact velocity: 0.5 m/s
Contacts broken: 91

Time: 0.43 pus
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(¢)

Impact velocity: 1.0 m/s
Contacts broken: 114

Time: 0.43 ps

(d)

Impact velocity: 3.0 m/s
Contacts broken: 129

Time: 0.323 ps

Fig. 8.1 Visual observation of fragmentation for the polydisperse agglomerate:
blue - singlets; yellow - doublets; green - clusters contain 3-5 particles; pink - cluster

of 11-20 particles; purple - cluster of 21-30 particles; red - cluster of 31-50 particles.

(a)

Impact velocity: 0.2 m/s
Contacts broken: 59

Time: 1.075 ps
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(b)

Impact velocity: 0.5 m/s

Contacts broken: 81

Time: 0.753 ps

(c)

Impact velocity: 1.0 m/s
Contacts broken: 99

Time: 0.591 ps

(d)

Impact velocity: 3.0 m/s
Contacts broken: 111

Time: 0.43 ps

Fig. 8.2 Visual observation of fragmentation for the monodisperse agglomerate:
blue - singlets; yellow - doublets; green - clusters contain 3-5 particles; white - cluster
of 6-10 particles; pink - cluster of 11-20 particles; red - cluster of 31-50 particles.
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8.4 Damage assessment

To examine the change of microscopic structure of particulate material resulting from
agglomerate collisions a damage ratio D is defined as the ratio of the number of contacts
broken to the total number of contacts existing prior to the impact. Before investigating the
impact velocity dependent damage ratio we first examine variations of the wall force. kinetic
energy, and the contact breakage during the process of an agglomerate impact. At an impact
velocity of 0.5 m/s for the polydisperse agglomerate, Fig. 8.3 (a). (b )and (¢ ) show the
evolution of the force on the target wall, the total kinetic energy of the particle system and the
damage sustained by the agglomerate respectively. The trends illustrated in the figures are
typical of all the simulated impacts, 2D or 3D, large agglomerates or small ones. according
to the previous work carried out at Aston. It is seen that there is an initial period during
which the wall force rises quickly to about 50 % of the maximum value, the kinetic energy
starts to fall slowly but little damage of the agglomerate is observed. The same behaviour
was reported by Yin ( 1992 ) and Kafui and Thornton ( 1994 ). The evolution of the force
on the wall is approximately symmetric. It is seen from Fig. 8.3 (a ) and ( b ) that the kinetic
energy reaches a minimum value when the force on the wall is approaching its maximum
value. During unloading only part of the initial kinetic energy 1s recovered. Although each
individual particle undergoes loading and unloading at different times Fig. 8.3 (b )
statistically represents the evolution of kinetic energy for the whole particle system. The
unrecovered energy has been dissipated through interparticle sliding, contact breaking and
contact damping. Once the wall force reaches near-zero the kinetic energy is approaching a

steady state but, due to the effect of gravity, the kinetic energy decreases again with a very

slow pace.

From Fig. 8.3 (¢ ). it is seen that after the initial no damage period the damage ratio
increases monotonically with impact duration until a constant value is reached. It is clear that
the process of contact breaking continues after the force on the wall reaches zero. When a

constant value of damage ratio is obtained. a new cquilibrium state of the particle system iy
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temporarily reached. The constant value shown in Fig. 8.3 ( ¢ ) is considered to be the
damage caused by the initial impact and can be used to quantify the damuge corresponding to
the impact velocity. The effect of further collisions on the agglomerate impact damage is

ignored in this study.

It was reported by Yin ( 1992 ) the relationship between the damage ratio and the impact

velocity can be approximated by the simple equation
D=olIn(V/Vy) (8.1)

where o is a constant and Vj, is the threshold velocity below which no significant damage
occurs. However, as recognised by Yin ( 1992 ), deviations from the simple relationship
occur: a ) at high damage ratios because even very high impact velocities are unlikely to
produce singlets only, and b) at low impact velocities a few primary particles can be broken
off over a range of velocities. Results presented by Kafui and Thornton ( 1993 ) for a large

3D agglomerate confirm that the relationship is more complex than that suggested by ( 8.1 ).

The actual damage and fragmentation resulting from an agglomerate impact, especially
for the small assemblies, may depend on which part of the agglomerate makes contact with
the target wall and the local structural arrangement close to the wall. In order to investigate
this, the agglomerate was surrounded by six walls arranged to form a cube and the
agglomerate was impacted orthogonally with each wall in turn. The results are shown in
Figs. 8.4 (a) and ( b ) for the monodisperse and polydisperse systems respectively. In the
figures, for a 3D coordinate system, the notation x-z wall ( -) indicates that the target surtace
is located on the x-z plane below the agglomerate, x-z wall (+) indicates that the wall is
above the agglomerate. For each set of simulations the gravity field is rotated to coincide
with the initial impact velocity direction. It is observed from Fig. 8.4 (a ) and (b)) that the
results for the six sets of impacts are reasonably consistent for both agglomerates. It is,
therefore. concluded that the damage ratio is not significantly affected by the local structural

arrangement close to the point of impact for small agglomerates.
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From Fig. 8.4 it can be seen that, for the polydisperse agglomerate. the simple
relationship of ( 8.1 ) gives a good fit to the data for 0.1 < D < 0.9. However. for the
monodisperse agglomerate the data only satisfies the simple relationship in the range of 0.4
<D <0.9. Itis of interest to note that, as shown in Fig. 8.4 ( ¢ ). the damage ratio resulting
from the agglomerate impact for the polydisperse assembly is always lower than that for the
monodisperse one. This means a higher agglomerate strength for the polydisperse assembly
and the same behaviour has been illustrated in the previous section. For the monodisperse
agglomerate there is a very distinct threshold velocity below which no damage is sustained
by the agglomerate. For impact velocities only slightly above this value there is a significant
number of contacts which have been broken within the assembly. The significant difference
in the damage ratio between the two agglomerates at low impact velocities is perhaps due to
the difference in the contact density and structural arrangement. However, further work is
needed to clarify this. When the damage ratio reaches 0.9 which corresponds to the impact
velocity of 1.0 m/s the simple relationship is not applicable for both cases. since u few

contacts still remain unbroken even at very high impact velocities.
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Oblique impact simulations were also performed on the polydisperse agglomerate for one
wall. In order to check the effect of the local structural arrangement four directions of impact
were employed, as shown in Fig. 8.5, where the target surface is located on the x-z plane.
Direction x-y ( + ) is the direction in which the colliding agglomerate is moving in a x-v
plane with a positive component of impact speed in the x direction: direction x-y ( - )
indicates that the velocity component in the x direction is negative. For a constant impact
speed of 0.5 m/s, Fig. 8.6 shows the variations of damage ratio with impact angle. It is seen
that the simulated data is reasonably consistent irrespective of impact direction. With the
increase of impact angle the damage monotonically decreases and is approaching zero when
the limiting angle of 90° is reached. The explanation for this is that the normal component of
impact speed decreases with an increase of impact angle. In Fig. 8.7 the average damage
ratio obtained for each angle of impact is compared with the damage ratio resulting from a
normal impact at a velocity corresponding to the normal component of impact speed for the
oblique collision. From the close agreement between the two sets of data it is evident that the
normal component of impact speed is the dominant factor in determining the degree of

damage resulting from an agglomerate impact.
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Fig. 8.5 Diagram for oblique impacts.
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8.5 Fragmentation

The damage ratio presented by computer simulation provides an absolute quantification of
agglomerate breakage. However, it is not possible, in real experiments. to accurately
measure the number of bonds broken within the particle system since the total number
includes the internal bonds within the fragmentation clusters. In the cooling system of a
transport rig at a nuclear plant the gas-born U304 agglomerates may be broken up into
fragments either by turbulent shear or upon impact with the rig surface. This fragmentation
will result a size distribution of smaller particles or agglomerates and the flow behaviour is
therefore significantly affected. Although the final damage and fragmentation would be
dependent on the initial impact and further collisions, for the convenience of analysis, the

effects of further collisions were ignored in this study.

As reported by Arbiter et al ( 1969 ) the fragments resulting from an impact can be
classified into three categories: the coarse fragments ( residue ), the fine fragments (
complement ) and the * dust ”. In a double logarithmic plot of the cumulative percentage ( by
weight ) of undersize fragments against fragment size, each category of fragments is
represented by one of three straight lines for a given impact velocity. In computer simulated
experiments the same behaviour was observed by Thornton and Kafui ( 1992 ), who used a
monodisperse agglomerate consisting of approximately 8000 primary particles in a face-
centred cubic packing. The cluster size was normalised by the ratio of the number of
particles in a cluster to the number of particles in the initial agglomerate. There are alternative
ways to characterise the fragment size, for instance, by the radius of the smallest sphere
which circumscribes the cluster or by the radius of an equivalent sphere which has the same
solid volume as the cluster. The use of circumscribing sphere radius was reported by
Thornton and Kafui ( 1993 ). who observed that the power law relationship between the
cumulative percentage mass of material undersize and the normalised cluster size has an
cxponent between 0.22 to 0.-47. Considering the flowability of U;Og agglomerates in the

transport rig the circumscribing sphere radius seems to be a reasonable choice. However.



due to the significant effect of cluster shape, especially for the clusters consisting of only 2 -

4 primary particles, the fragment size defined in this way may not be appropriate for an

agglomerate with only 50 primary particles.

In order to characterise the computer simulated data it was decided to define the size of u
fragment by the particle number and then normalise it by the number in the initial
agglomerate. For the two randomly generated agglomerates the normalised fragment size is
plotted against the fraction undersize in Fig. 8.8 (a ) and ( b)) for a range of impact
velocities. Although the structure of the agglomerates were different, it is seen that the
fragmentation pattern is similar for both assemblies and for each impact velocity the grading
curve may be approximated by a straight line. The figure also shows that the power law
exponent decreases with increase in impact velocity. At an impact velocity of 0.1 m/s, for the
polydisperse agglomerate, 31 contacts were broken but there was no fragmentation resulting
from the collision; for the monodisperse assembly, the number of broken contacts was 64
and there was one singlet produced. In this study we have only examined the impact fracture

/ fragmentation behaviour for small U;O4 agglomerates. The effect of surface energy has

been investigated by Thornton and Kafui ( 1993 ).

Figure 8.9 shows the variations of the fraction of singlets produced after impact with
impact velocity. It is seen that, for both assemblies, the fraction of singlets increases with an
increases in impact velocity. Although the data curve for the monodisperse agglomerate is
more scattered, it is observed that, for each impact velocity, the fraction of singlets produced
for the monodisperse sample is higher than its counterpart. The normalised cluster size for
the largest cluster resulting from an impact is plotted against impact velocity in Fig. 8.10. It
is generally true that the particle number of the biggest cluster for the polydisperse one 15
larger than that for the monodisperse assembly. further evidence which demonstrates the
difference in strength between these two types of agglomerates. The fragmentation

behaviour obtained by computer simulation may be used for numerical modelling of particle

and agglomerate transport in the cooling system.
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8.6 Effect of plastic deformation on agglomerate impact

During the process of an agglomerate collision with a target surface the initial kinetic energy
of the particle system is responsible for breaking the contacting bonds within the
agglomerate. It is expected that the level of damage and fragmentation resulting from an
impact will be reduced if plastic deformation occurs between the individual particles. Part of
the initial kinetic energy of the particle system goes into irreversible work deforming the
surfaces in the contact region and finally this lost energy is transformed into heat or other

forms of energy.

The previous computer simulated experiments were carried out using the old version of
TRUBAL, which only deals with elastic deformation at the contact. Because the contact data
array C( N, ), see Chapter 7, has been extended in order to incorporate plastic
deformation into the code the originally generated two assemblies could not be used for
simulations using the new code. Due to the randomly generated particle connections within
the assemblies, it is impossible to obtain exactly the same agglomerate as achieved before.
Fortunately for a small agglomerate consisting of only 50 primary particles we can use the
CREATE command to form a new agglomerate with the same coordinates of the primary
particles as the original agglomerate. For the new polydisperse agglomerate the initial contact
number of 131 has been achieved by generating each primary particle according to its
previous initial location. It should be noted that the strength of the newly formed
agglomerate and the damage ratio may differ from the old sample because a) for each particle
position the coordinates are not absolutely the same as those for the previous assembly and b

) all the particle velocities within the new agglomerate are zero, but for the old assembly they

are not.

For the newly generated polydisperse agglomerate the effect of plastic deformation on

the damage ratio is shown in Fig. 8.11, where the number of broken contacts increases with



increase of impact velocity. The results for elastic primary particles were obtained by using a
very large yield stress to assure that no plastic deformation occurred at the contacts. For the
yield stress of U3Og material, 3.04 GPa suggested by Nuclear Electric, the corresponding
yield velocity in the presence of surface adhesion is 0.615. It is seen that for an U;Oy
agglomerate there is no significant difference in the damage ratio between elastic and plastic
impacts. At an impact velocity of 1.0 m/s, which causes shattering of the agglomerate, the
normal coefficient of restitution for a single particle is about 0.962 and only 7.46 % of initial
kinetic energy will be lost in terms of plastic deformation. The small difference between the
two curves justifies our simulations of U304 agglomerates using the old version of
TRUBAL which neglects plastic deformation at the contacts. It is also seen from Fig. 8.11
that the difference in contact breakage increases when the yield stress is reduced becausce

more initial kinetic energy is lost during impact.
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Fig. 8.11 Effect of plastic deformation on the damage ratio resulting from an

polydisperse agglomerate collision with a wall.
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8.7 Summary

Computer simulations of agglomerate-wall collisions have been carried out. in which a
randomly generated monodisperse agglomerate and a polydisperse agglomerate both
consisting of 50 primary particles were used. Concerning the evolution of the wall force.
kinetic energy of the particle system, and the damage ratio during the process of an
agglomerate-wall collision the trends observed in this study are in good agreement with
previous simulations of 2D and 3D, large and small agglomerates carried out at Aston. The
simulated data generally agrees with the simple relationship between the damage ratio and the
impact velocity reported by Yin ( 1992 ), except for very high and low impact velocities. It
has been demonstrated that the polydisperse agglomerate is stronger than the monodisperse
one, due to the difference in contact density and structural arrangement between the two

assemblies.

It has been shown in this study that agglomerate damage resulting from an oblique
impact is determined by the normal velocity component rather than the impact speed. The
damage caused by shearing during collision can be reasonably ignored. This observation, of
course, was based on a very small agglomerate sample and more investigations of shear
induced damage and fragmentation should be conducted for large agglomerates to confirm
this behaviour. In order to check the effect of the local structural arrangement close to the
impact point, six different wall positions for normal impacts and four directions of the
agglomerate impacting to the target surface for oblique collisions were employed. The
computer simulated data were found to be consistent irrespective of the impact directions and
wall positions. Therefore, it is concluded that, for small agglomerates, the effect of the local
structural arrangement on the damage ratio is not significant and the randomly generated

agglomerates can be approximately regarded as isotropic solids.

For an agglomerate consisting of only 50 primary particles it is difficult to define, in an

unambiguous way, the size distribution of the clusters resulting from the agelomerate-wall
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impact. Defining the size of a fragment by the particle number and then normalising it by the
number in the initial agglomerate, it is observed that the grading curve is similar for both
assemblies and, for each impact velocity, approximately corresponds to a straight line. For
practical use in the numerical modelling of particle and agglomerate transport in turbulent
flow fields the fracture / fragmentation behaviour illustrated by the computer graphics
should be consulted. Finally the effect of plastic deformation at the contacts on the damage
ratio was examined. For small U;Og4 agglomerates there is no significant difference in the
damage ratio between elastic and plastic impacts. By reducing the elastic yield stress.
however, it has been shown that the number of contacts broken is significantly reduced

because of the additional energy dissipated.
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Chapter 9  Conclusions

Since the establishment of classical elastic contact mechanics by Hertz ( 1882 ) considerable
advances have been achieved in the theoretical understanding of the impact mechanisms and
the experimental observations of the behaviour of particle-particle or particle-wall collisions.
However, none of the current theoretical models can fully answer the question of capture
and rebound of single particles colliding with a target surface, especially with variations of
impact obliquity. The research project, supported by Nuclear Electric plc, Berkeley
Laboratories, is related to surface deposition of aerosol particles which is a major concern
for the maintenance, safety assessment and efficiency of the plant. This thesis presents
theoretical investigations and computer simulations of single gas-born U3Og particles

impacting with the in-reactor surface and fragmentation of small agglomerates.

The major discoveries and achievements of this research project together with some

suggestions for possible future study are described in this chapter.

9.1 Impact of non-adhesive spheres

A theoretical model for elasto-plastic spheres has been developed. The initial. pre-yield.
behaviour is described by Hertzian classical theory. Assuming the absence of strain
hardening or strain rate effects, the post-yield behaviour is described by modifying the
Hertzian pressure distribution to account for the limiting normal pressure, .. due to plastic

deformation at the contact. The modified Hertzian theory was then used to obtain analytical
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expressions for the coefficient of restitution, the contact force evolution and the contact

duration. The relationship between impact velocity and the normal coefficient of restitution

was obtained as

108 V,/Vy
en=[ 73 =

n

1/4 1.V, .2 1/2
(Vyfvni)'{'z g'g(vy’(vni) 1

(9.1)
or for Vy <<V,

V., . 14
6n=1.185(-v—;) (92)

which indicates that the coefficient of restitution is not a material property. but depends upon
the severity of impact indentation. The power law relationship of -1/4 is in agreement with
previous models reported by Johnson ( 1985 ) and Stronge ( 1994b ), a feature which is
supported by experimental measurements. From the experimental point of view, ( 9.1 )
contains the form of the yield velocity V, rather than the yield stress which is difficult to
measure. Consequently, in order to verify the theory the impact model presented in this

study can avoid the difficulties in measuring the yield stress.

Based on the theory, the total contact time including plastic loading time t; and elastic

recovery or unloading duration ty; is given as

p 1/2
t=t +ty=nR (1 +V5/4 e,) (—) (93)
30
y

The force-time relationship qualitatively agrees with the experimental measurements by

Andrews ( 1930, 1931 ). The fraction of the initial kinetic energy lost is

3
w Gy 30,12 4 1
Wh= e n () (+45¢) (9.4)

2 3
7MY hi P2Co 404

For U;0yg particles striking a steel plate, at impact velocities of V; = 1.0. 10 and 100 m/s.

the percentage energy loss W* is 0.818, 1.07 and 1.564 % respectively. It is therefore
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concluded that the energy lost in terms of elastic wave propagation during elastic and elasto-

plastic impacts can be reasonably ignored.

In order to investigate collisions of elasto-plastic spheres. the new theory has been
incorporated into the computer code TRUBAL which uses the Distinct Element Method to
numerically simulate experiments. For normal impacts, the computer simulated results match
the theoretical predictions of the coefficient of restitution and contact duration very well. For
oblique collisions, results have been presented to illustrate the tangential force-displacement
relationships and the evolution of contact forces and energy components over the impact
duration. The effects of two material properties, interfacial friction and Poisson's ratio, on
particle bounce behaviour have been examined for variations of impact conditions ( impact
angle, impact velocity, initial particle rotation ). The results obtained were then compared
with experimental measurements and theoretical predictions provided by the impulse
equations based on Newton’s laws. Good agreement between the computer simulated results
and experimental data reported by Maw et al ( 1976, 1981 ) was obtained for elastic impacts.
Although different material properties were used, the results of elasto-plastic impacts
presented in this study show an encouraging agreement with the real experimental results of

Brauer ( 1980 ).

It has been demonstrated that if contact sliding occurs throughout the impact duration
analytical solutions are available to define the complete post-impact conditions. It also has
been found that, for any impact angle, an additional initial angular velocity affects the
collisional behaviour in a way that corresponds to an equivalent impact angle. If contact
sliding does not occur throughout the impact process the particle rebound behaviour is more
complex. It has been shown that the parameter y = AtanB/pL. suggested by Maw et al (
1976, 1981 ), provides the scaling rule for interparticle friction but not for the elastic
properties of the particle/target interface characterised by A = 2(1-v)/(2-v). It has also been
shown how the scverity of plastic indentation, defined by the normal coefficient of

restitution e, affects the rebound behaviour. However, for impact angles which do not



satisfy the criterion of gross sliding, curve fitting techniques have to be used to predict the
rebound condition for specified values of v and e, . according to the computer simulated data

obtained.

9.2 Impact of adhesive spheres

For adhesive elastic spheres, using the JKR theory, a criterion which determines whether the
particle bounces or adheres with the target surface has been established. The critical sticking

velocity and the normal coefficient of restitution are obtained as

5
1.84 r 116
V= )
3 (95)
cos 6 P|E*2R5
Vv 1/2
en=[1-()'] (9.6)
ni

where 0 is the impact angle. Computer simulation results show a very good agreement with
the analytical solution. It has been demonstrated that the critical parameter is the normal
component of the impact velocity. The impact velocity which initiates plastic deformation 1s
examined and a criterion governing the onset of plastic yield has been obtained. It has been
found that the yield velocity decreases with an increase of surface energy as well as yield
stress. Consequently, the yield velocity obtained in this study is less than that in the case of

no adhesion estimated by Davies ( 1949 ).

For adhesive elasto-plastic spheres a new mathematical model, which is an extension to
the JKR model of adhesion, has been developed to deal with the capture and rebound of
small particles from surfaces. The normal coefficient of restitution is based on the normal
force-displacement relationship during loading and unloading with consideration of the
flatting of the contact surfaces due to plastic deformation. The effects of interface energy and
yicld stress on particle bouncing have been investigated. It has been analytically and

numerically demonstrated that, at relatively high impact velocities. the effect of surface



adhesion is not significant and the impact behaviour can therefore be described by the
equations without adhesion. Computer simulated impacts of hard spheres of U.0g have
been shown to provide sensible results in terms of the effect of velocity on the coefficient of
restitution. For soft, micron-sized particles of ammonium fluorescein impacting a silicon
target it was found that it was necessary to introduce the concept of a velocity dependent
dynamic yield stress in order to obtain computer simulated results which are in agreement

with the real experimental data of Wall et al ( 1989, 1990 ).

For oblique impact of elastic adhesive spheres, the effects of initial particie rotation.
friction and impact velocity on particle bounce were examined. It was found that the surface
adhesive peeling process is one of the most influential factors affecting the bounce behaviour
and the transition of the peeling failure from unloading to loading leads to a significant
change in the magnitude of the bouncing parameters. It has been demonstrated that, using
the same normalisation techniques as for non-adhesive particles, scaling rules are available in
order to account for the variations in initial particle rotation and friction. However, for the

effect of impact velocity, further investigation is needed.

9.3 Fracture / fragmentation of small agglomerates

The process of fragmentation and the resulting size distribution needs to be examined in
order to predict the flowability of fractured fragments which may become resuspended in the
flow field. Computer simulations of agglomerate-wall collisions have been carried out, in
which a randomly generated monodisperse agglomerate and a polydisperse agglomerate both
consisting of 50 primary particles were used. Concerning the evolution of the wall force.
kinetic energy of the particle system, and the damage ratio during the process of an
agglomerate-wall collision the trends observed in this study are in good agreement with
previous simulations of 2D and 3D, large and small agglomerates carried out at Aston. The
simulated data generally agree with the simple relationship between the damage ratio and the

impact velocity reported by Yin ( 1992). except for very high and low impact velocities. It
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has been demonstrated that the polydisperse agglomerate is stronger than the monodisperse
one, due to the difference in contact density and structural arrangement between the two

assemblies.

It has been shown in this study that agglomerate damage resulting from an oblique
impact is determined by the normal velocity component rather than the impact speed. The
damage caused by shearing during collision can be reasonably ignored. In order to check the
effect of the local structural arrangement close to the impact point. six different wall
positions for normal impacts and four directions of the agglomerate impacting to the target
surface for oblique collisions were employed. The computer simulated data were found to be
consistent irrespective of the impact directions and wall positions. Therefore. it is concluded
that, for small agglomerates, the effect of the local structural arrangement on the damage
ratio is not significant and the randomly generated agglomerates, in terms of impact damage,

can be approximately regarded as isotropic solids.

Defining the size of a fragment by the particle number and then normalising it by the
number in the initial agglomerate, it was observed that the grading curve is similar for both
assemblies and, for each impact velocity, approximately corresponds to a straight line. The
effect of plastic deformation at the contacts on the damage ratio was examined. For small
U,0y agglomerates there is no significant difference in the damage ratio between elastic and
plastic impacts. By reducing the elastic yield stress, however, it has been shown that the

number of contacts broken is significantly reduced because of the additional energ)

dissipated.

9.4 Limitations and future work

In this study. it is assumed that initial yield condition is only determined by the normal
impact indentation. However, as shown by Brauer ( 1980 ) ( Fig. 4.41 ). the normal

coefficient of restitution remains approximately constant until 8 = 60 and then increases
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with an increase of impact angle before unity is approached. This means that the initiul vield
condition could also depend on the tangential force at the contact. Our simplified theoretical
model can not explain this behaviour. In the literature. there seems to be no publications

about the effect of tangential force on plastic yield. Possible future investigations of

collisions should take into account this effect.

It is also assumed in this study that Mindlin and Deresiewicz's ( 1953 ) partial-slip
solution is still valid when plastic deformation occurs. After initial yield is exceeded the
actual pressure distribution within the contact area is a Hertzian distribution with a cut-off.
corresponding to the contact yield stress c,. However, a change in normal pressure
distribution after plastic yield will undoubtedly lead to a change in the tangential pressure
distribution and eventually affect tangential loading, unloading and reloading. Future work

should effectively include this effect.

For non-adhesive spheres, when the gross sliding criterion is satisfied, the complete
post-impact behaviour is described by the available analytical equations. Further work is
required to examine the possibility that analytical solutions can be found for the cases when
contact sliding does not occur throughout the whole process of the impact. In the presence of
adhesion, in order to provide scaling rules or possible analytical solutions for impact
velocity, further investigation is needed. for example, to re-examine the impulse equations

by taking into account the effect of surface adhesion.
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Appendix A Energy dissipation in elastic waves

during an elasto-plastic impact

The problem of the response of an isotropic elastic semi-infinite medium to time dependent
surface forces was initially considered by Lamb ( 1904 ) and then by Miller & Pursey (
1954, 1956 ). Based on the results given by Miller & Pursey ( 1954 ) for the normal
displacement of the free surface of a semi-infinite body Hunter ( 1957 ) analysed the energy
dissipated in terms of elastic wave propagation under a uniform periodic surface pressure
acting over a circular area. The Hertzian theory of impact was then used to predict the
fraction of initial kinetic energy loss during a purely elastic impact. The force-time
relationship during plastic impact was proposed by Hutchings ( 1979 ) and a calculation of
the fraction of initial kinetic energy loss was also reported. By using the previous interaction
laws for elastic-plastic impact the force-time relationship during elastic-plastic loading and

elastic recovery was analysed.

According to Hunter ( 1957 ) the total energy loss in elastic wave motion under transient

force of f(t) is given by
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Y=[2(1-v,)/(1-2v,)]'"
where p; and v; are the density and the Poisson's ratio of the semi-infinite body: f(®) ix the
Fourier component of the time dependent force f(t). For v, = 1/4 . the value of B given by

Hunter ( 1957 ) is 0.537 and for v, = 1/3, B = 0.415. Based on Hunter's estimation we
have = 0.488 for v, = 0.3.

From Saint-Venant’s principle the elastic strain field in regions remote from the area of
contact will not be dependent on whether the local deformation around the indenter is elastic
or plastic, but only on the magnitude and the pulse shape of the contact force. We therefore
can still use ( A1) for the present case of elastic-plastic impact. We may also find in 3.5 that
the contact force in both cases of elastic and plastic deformation has the same pulse form of

f(t) = P*sin®@t with variations of the maximum force P* and the response frequency @.

If the transient contact force has the following pulse shape
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which is only related to the density of the substrate.

Referring to Fig. Al the total energy loss can be subdivided into two parts: the energy

loss in the plastic loading process W and the energy loss during elastic recovery W,. The

time dependent contact force during plastic loading is

P*sin® t 0<t<r|:f2mp
f(t) = { ¥ (A9)
t<Oandt>n/20
where the maximum force P* and the respond frequency @, are
204P10y 12 A10
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Fig. Al The force-time relationship for an elastic-plastic impact.
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where p, is the density of the particle and V; is the normal approach velocity. By extending
the right time limit from n/2®, to n/@,, and moving the origin of time forward through

/2, ( A9 ) may be rewritten

P*cosm t l<m/2
{ P P (A12)

f{e) =
| |U21tf2mp

which has the same form of ( A2 ). The energy dissipated in elastic waves under surface

force of ( A12 ) should be twice the energy actually lost during plastic loading. Substituting

(A10)and ( Al11) into ( A7 ) we may have
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The contact force during elastic recovery is

p* -
f(t):{ cos®,(1-20,) n/2@ <t<n(1/28,+1/20,)

(Ald)
for other values of t

By extending the left time limit from n/2@, to /2@, - 1/2@, and then moving the origin of

the time forward through nf2wp, ( Al4 ) becomes

P*cos® t </ 2w,
f(t) = { ( A15)

Ith>m/2@,

where the maximum contact force is given by ( A10 ) due to the physical argument in which
the transition from loading to unloading should be continuous. Hunter ( 1957 ) also worked
out that for a purely elastic impact the displacement-time relationship can be approximately
expressed as

Vic
— ) 0<t<n/®, (A16)
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where V,, is the impact velocity which is less than the yield velocity and ar*, is the maximum

displacement during elastic impact, and

l165]3) R’ -1/5 4;% (A7)

From ( A16 ) the elastic response frequency is
n Vi T® ,Il6E* )2’5 115y, 15

©e=294  ~2.94 "\ T5m ie

€
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where R is the radius of contact curvature.

As demonstrated by Hunter ( 1957 ) and Reed ( 1985 ) the initial kinetic cnergy loss in
clastic wave propagation during pure elastic impacts is not significant and we are justified to

assume that the velocity V,. for calculating the response frequency during elastic recovery is
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approximately equal to the rebound velocity for an elastic-plastic impact. Based on this

assumption we have

Vie= Vae=e€,Vai

(A19)

where e, is the normal coefficient of restitution and

bay

SE*a* ~

/ STtO'yR
SE*a*

( A20)

Due to the flattening of the contact surfaces under plastic deformation the radius of contact

curvature at the transition point from plastic loading to elastic recovery is given by ( 3.27 ).

By ignoring the initial elastic loading before yield we may rewrite ( 3.27 ) as

_ 4B*a*’ _ 4F*a*

pT - ap*

R

311:0y
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where the relationship between the maximum contact radius and the impact velocity is

no

Vni= T{Ey_ 3*2 (A22
Substituting ( A19 ) and ( A21 ) into ( A18 ) we obtain
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Adopting the same method as for obtaining

( 3.67) we have

n

( 3.59 ). we have the first part of ( 3.68 ). From
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which is very close to ( A25 ) when plastic deformation dominates the loading process. If the
impact velocity is below the yield velocity the maximum contact radius produced during

impact is given by

2 2
ISR "mV_. 15

Therefore the elastic response frequency is

4E*a* [5 16E* \25 1515
3m V4 ( 15m ) R™Vie (e
which is very close to that given in ( A18 ). Since Hunter's equation of ( A18 ) is an

approximation for the analytical solution which governs the elastic impact process we are

justified to use

AE*a*
®,= 1/ — (A29)

for the elastic response frequency irrespective of elastic impact or elastic recovery during an

elastic-plastic impact.

It is worth noting that the relationship between the elastic frequency and plastic frequency

has also been investigated by Hutchings ( 1979 ), who simply assumed
B=0,/¢, (A30)

which qualitatively agrees well with ( A26 ). It is clear from both Huchings' assumption and
( A26 ) that the elastic frequency is dependent on the severity of plastic indentation and the
power law relationship has an exponent of 1/4 because @ is a constant. Having the
equations for plastic and elastic frequencies in the loading and unloading processes
respectively, it is now possible to estimate the total energy loss in terms of elastic wave

motion and the fraction of initial kinetic energy loss during the impact process. With respect

to ( A7) the energy loss in the unloading process is
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and the total energy loss is obtained
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Finally the fraction of initial kinetic energy loss is given by
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Fig. A2 Variations of the fraction of initial kinetic energy loss through elastic waves

with impact velocities when an U;Oy particle strikes a steel target surface.
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For U;0g particles striking a steel plate, Figure A2 shows the variations of the fraction
energy loss in elastic wave propagation with the impact velocity. When V,;, = 1.0 m/s, which
is slightly above the yield velocity, the percentage energy loss W* is 0.818%; when V=10
m/s equation ( A33 ) predicts that W* = 1.07%; and at V_; = 100 m/s we have W* =
1.564%. In the previous analysis we assume that there is no effects of dynamic yield stress
during impact. If this factor is going to be included the situation would be much more
complicated. As the fraction of energy loss is very low we are justified to ignore the energy
loss in terms of elastic wave propagation during elastic and elastic-plastic impacts

irrespective of whether or not we take into account the effects of a dynamic yield strength.
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Appendix B Input sample files of commands

Operative commands are used in TRUBAL, performing various functions such as file
handling, program execution and control, defining material properties and constants, etc.
The format of all input commands is a word followed, in most cases. by a number of
parameters, some of which may be words themselves. In computer simulated tests. the input
file which contains a series of operative commands is normally used. Only a few commands
are introduced in this Appendix and the whole command list is provided by Lian et al ( 1993

). The first command on entering TRUBAL must be either
STArt lx l}‘ lz Mbox Mhal] Mwa“ [log]

or REStart

where I, 1, 1,, are the components of the three dimensional workspace; My,,, is the number
of the boxes that the workspace can be sub-divided into; M, and M, are the maximum
number of balls and walls that may be required to be generated. The workspace is divided in
TRUBAL into small boxes in a way that the size of a box in each axial direction is the same
and normally we have l,= 1, = 1,. The optional keyword log allows output information to be
written in the output file TRUBAL.OUT. The REStart command is used when it is desired
to continue a run from the point at which a SAVe command was given. It means that

REStart causes a previously-saved problem to be fetched from a restart file.

The next input command line can consist of any message. For the simulated impact of

particles with a wall only one single particle needs to be created. The command to create a

particle in a given position is
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CREate x y z vy vy v, o, O, O, isize mtyp
where X, y, z are the coordinates of the particle centre: Vo Vyo V. @y, @y, ©, are the linear
and angular velocity components; isize and mtyp indicate the particle size type and material

type respectively. For an assembly of granular spheres currently TRUBAL allows 3 size-

type and 5 material-type particles to be generated.

The simulated assembly can either consist of randomly generated particles or have a
regular shape by placing particles together based on a certain rule. In Cundall's 1988 version
of TRUBAL particles are generated in such a way that three random numbers are selected
from the closed intervals of [ 0,1, ], [ 0,1, ], [ O, 1, ] and are assigned as the coordinates of
the centre of the particle. The periodic cell is within the defined workspace. After each new
particle is generated there is check in the program to make sure that the newly gcenerated
particle will not overlap with previously existing particles or otherwise it is deleted. The

process of generation continues until the expected number of particles are generated.

In the present version of TRUBAL particles can be randomly generated either in a
specified spherical region or in a limited periodic cell within the workspace. Up to two
assemblies can be generated in the workspace in order to perform simulated collisions

between agglomerates. The commands for random assembly generation is

DFV stypnagg X; Y¢ Zc I,

GENerate nball isize nagg ntry

where styp indicates the sample type, agglomerate or periodic cell ( agm or per ); nagg is

the number of agglomerates; X, ¥, Z are the coordinates of the agglomerate centre: r, i~ the

radius of the spherical region: nball is the particle number to be generated: isize indicates

the particle size type and ntry is the number of trying to allocate a particle in a random

position. During particle generation both location check and overlap check are carried out to

make sure that all the particles are generated in the defined region and there is no overlup

between the generated particles.



Smooth planar walls are introduced in the current version of TRUBAL. The command

for defining planar walls in a 3-D space is

DWAIl [Pdabc] [Vyv, vy V.1 [M mtyp]

(FPdabcex; x,y,y,z 2] [V vy vy v,]  [M mtyp]

where P defines the position of the wall with the equation ax + by + cz = d: V gives the
translational velocities of the wall ( Vx> Vy» V; ) and M indicates the wall material t ype muyp.
At the moment the program can only handle the walls parallel to one of the three planes x-v.
y-X, and x-z. This means that only one of the parameters a, b, ¢ is non-zero for any wall.
The " finite wall " option FP defines a plane wall with the same equation but limited to the
region defined by the limits ( x;, X, ), (yy, y, ), (2, z, ), with the first value in each pair

being the low limit.

The wall generated previously can be moved to another position or given new parameters

such as velocity and material type. The command for wall alteration is

AWAIl n[Pdabc] [Vvevyv,]  [M mtyp]

[FPdabcx, X,y Y221 2] [V vgvyv,]  [Mmtyp]

where n is the number of the wall which has the new position ( P/FP ), velocity ( V) and

material type (M ).

One sample file used for single particle impact and two files for agglomerate collision are
shown below. Sample file 1 provides the information for a single particle impact in which
the particle with initial angular velocity of 40000 rad/s will move towards to the target wall at
an impact speed of 0.7071 m/s and an impact angle of 45°. The target and particle properties
are also defined in the sample file. The commands for the polydisperse agglomerate collision
are presented in Sample files 2 and 3. For a start run. the particle sizes and distribution are
defined and a centripetal gravity filed is created to bring the particles together. After the

contact number reaches a constant value, the target wall is introduced in the restart run and a



velocity is given to the agglomerate. Finally, all the information of agglomerate

fragmentation after collision is plotted out.

Sample file 1: Command file for single particle impact

START 0.001 0.001 0.001 64 540 4 LOG
Trial single particle impact

*3-D

FRAC 0.01

YMD 2.15E11 1

YMD 2.15E11 2

YIE 3.04E9 1

YIE 3.04E9 2

PRAT 0.3 1

PRAT 0.3 2

DENS 8.3E3 1

DENS 7.8E3 2

GRAV 0.0 -9.81 0.0

coh 0.1 1

coh 0.1 2

fric 0.35 1

fric0.352

rad 1.0e-5 1

creat 0.0005 0.00051000001 0.0005 0.5 -0.5 0.0 0.0 0.0 40000.0 1 1
dwall pos 0.0005 0.0 1.0 0.0 vel 0.0 0.0 0.0 mat 2
sgm on 100 sim, info, ene

cyc 1800

print info

print ball

plot wall ball

sgm off

stop

Sample file 2: Command file for agglomerate collision ( start run )

START .0001 0.0001 0.0001 64 540 4 log

Trial Agglomerate impact
*3-D

FRAC 0.05

YMD 2.15E11 1

YMD 2.15E11 2

YIE 1.9E999 1

YIE 1.9E999 2

PRAT 0.3 1

PRAT 0.3 2



DENS 8.3E10 1

DENS 7.8E10 2

GRAV 9.81 9.81 9.8]1

*coh 0.1 1

*coh 0.1 2

*fric 0.35 1

*fric 0.35 2

damp 0.10.1500 1

rad l.e-5 1

rad 8.e-6 2

rad 7.e-6 3

rad 6.e-6 4

rad 4.e-6 5

dfv agm 1 0.00005 0.00005 0.00005 0.000032
gen 7 11 10000

dfv agm 1 0.00005 0.00005 0.00005 0.000032
gen 112 1 10000

dfv agm 1 0.00005 0.00005 0.00005 0.000032
gen 14 3 1 10000

dfv agm 1 0.00005 0.00005 0.00005 0.000032
gen 114 110000

dfv agm 1 0.00005 0.00005 0.00005 0.000032
gen 7 5 1 10000

sgm on 100 info, ene, str

cyc 100000

print info

cyc 100000

zero

print info

cyc 500

zero

print info

cyc 500

zero

print info

cyc 500

Zero

print info

save

plot circ vel

sgm off

stop

Sample file 3: Command file for agglomerate collision ( restart run )

RESTART
*3-D

FRAC 0.1
YMD 2.15E11 1
YMD 2.15E11 2
YIE 3.04E999 |



YIE 3.04E999 2
PRAT 0.30 1
PRAT 0.30 2
DENS 8.3E3 1
DENS 7.8E3 2
GRAV 0.0 -9.8 0.0
coh0.11

coh 0.1 2

fric0.35 1
fric0.35 2

damp 0.10.1500 1
dwall pos 0.0000226 0.0 1.0 0.0 vel 0.0 0.0 0.0 mat 2
vel 0.0 -0.5 0.0 1
sgm on 50 aim, info, ene, str
cyc 1000

print ball

print cluster

print info

plot cluster 0 0

plot cluster 1 1

plot cluster 2 5

plot cluster 6 9

plot cluster 10 40
plot cluster 41 50
plot cnd

plot wall circ vel
sgm off

save

stop

269





