Equilibration through local information exchange in networks
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We study the equilibrium states of energy functions involving a large set of real variables, defined
on the links of sparsely connected networks, and interacting at the network nodes, using the cavity
or replica methods. When applied to the representative problem of network resource allocation,
an efficient distributed algorithm is devised, with simulations showing full agreement with theory.
Scaling properties with the network connectivity and the resource availability are found.
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Many theoretically challenging and practically impor-
tant problems involve interacting variables connected by
network structures [1]. Statistical mechanics of disor-
dered systems makes contributions towards the under-
standing of such systems at two levels. Macroscopically,
it describes the typical behaviour of the networks, using
established techniques such as the replica method. Mi-
croscopically, it analyses the relation between the vari-
ables, using techniques such as the cavity method, that
give rise to efficient computational algorithms, such as
those reminiscent of the belief propagation algorithm in
information processing [2, 3].

Most studies so far have focused on cases of discrete
variables. On the other hand, networks of continuous
variables were much less explored. There have been re-
cent attempts for message passing of continuous variables
localized on nodes [4], but many typical problems, such
as network resource allocation, involve current, variables
defined on links between nodes.

For optimization on networks, the traditional approach
is to adopt global optimization techniques, such as lin-
ear or quadartic programming [5]. In contrast, message-
passing approaches have the potential to solve global op-
timization problems via local updates, thereby reducing
the computational complexity. An even more important
advantge, relevant to practical implementation, is its dis-
tributive nature. Since it does not require a global op-
timizer, it is particularly suitable for distributive control
in large or evolving networks.

In this paper we study a system with real variables
that can be mapped onto a sparse graph and suggest an
efficient message passing approximation method. After
formulating the problem at a general temperature, we
focus on a prototype for optimization, termed resource
allocation and well known in the areas of computer sci-
ence and operations management [6, 7].

We consider a sparse network with N nodes, labelled

i = 1,...,N. Each node 7 is randomly connected to
¢ other nodes. The connectivity matrix is given by
A;; = 1,0 for connected and unconnected node pairs

respectively. A link variable y;; is defined on each con-
nected link from j to i. We consider an energy function
(cost) B = > Aijd(yiz) + X, (@i {yi| Ay = 13),

where z; is a quenched variable defined on node i. In

the context of probabilistic inference, y;; may represent
the coupling between observables in nodes j and ¢, ¢(y;;)
may correspond to the logarithm of the prior distribution
of y;;, and ¢(z4, {yij|Ai; = 1}) the logarithm of the like-
lihood of the observables z;. In the context of resource
allocation, y;; = —y;; may represent the current from
node j to i, ¢(y;;) may correspond to the transporta-
tion cost, and ¢ (z;, {y;j|Aij = 1}) the performance cost
of the allocation task on node i, dependent on the node
capacity z;.

We are interested in the case of intensive connectivity
¢ ~ O(1) < N. Since the probability of finding a loop
of finite length on the nework is low, the cavity method
well describes the local environment of a node. A node
is connected to ¢ branches in a tree structure, and the
correlations among the branches of the tree are neglected.
In each branch, nodes are arranged in generations. A
node is connected to an ancestor node of the previous
generation, and another ¢ — 1 descendent nodes of the
next generation. Considering node i as the ancestor of
node j, the descendents of node j form a tree structure
T with ¢ — 1 branches, labelled by & # i for A;;, = 1.
At a temperature T = 37!, the free energy F(y;;|T) can
be expressed in terms of the free energies F'(y;x|Tx) of
its descendents. The free energy can be considered as the
sum of two parts, F(y|T) = Nt F,y+ Fy (y|T), where Nt
is the number of nodes in the tree T, F,, is the average
free energy per node, and Fy (y|T) is referred to as the
vertex free energy. This leads to the recursion relation
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represents the average over the distribution of z.

For more concrete discussions, we focus on the resource
allocation problem, which is applicable to typical situ-
ations where a large number of nodes are required to
balance loads/resources, such as reducing internet traffic
congestion and streamlining network flows of commodi-
ties [8]. In computer science, many practical solutions
are usually heuristic and focus on practical aspects (e.g.,
communication protocols). Here we study a more generic
version of the problem. In the context of computer net-
works, it is represented by nodes of some computational
power that should carry out tasks. Both computational
powers and tasks will be chosen at random from some
arbitrary distribution. The nodes are located on a ran-
domly chosen sparse network of some connectivity. The
goal is to allocate tasks on the network such that de-
mands will be satisfied while the migration of (sub-)tasks
is minimised.

We focus here on the satisfiable case where the to-
tal computing power is greater than the demand, and
where the number of nodes involved is very large. This
is of interest to physicists due to the applicability of the
techniques we introduce to the analysis of sparsely con-
nected systems with real variables. Each node on the
network has a capacity (computational capability minus
allocated tasks) x; randomly drawn from a distribution
p(z;). (The algorithms presented later can easily accom-
modate any connectivity profile within the same frame-
work.) With the aim to satisfy the capacity constraints,
we have ’QZJ(CUZ, {y”‘A” = 1}) = ID[G(ZJ Ai]’yi]’ +CUZ') +€],
where ¢ — 0. The problem reduces to the load bal-
ancing task of minimizing the energy function (cost)
E= Z(ij) A;jd(yij), subject to the capacity constraints.

When ¢(y) is a general even function of the current y,
we may also derive Eq. (1) using the replica method. We
first introduce the chemical potentials p; of nodes i, and
approximate the current y;; as driven by the potential
differences between nodes y;; = p; — p;. Since sparse
networks are locally tree-like, the probability of finding
short loops is vanishing in large networks, and the ap-
proximation works well.

Considering the optimization problem in the space of
chemical potentials, we calculate the replicated partition
function (Z™) 4, averaged over the connectivity matrix
and the capacity distribution, and take the limit n — 0.
Assuming replica symmetry, the saddle point equations
of the replica method yields a recursion relation for a two-
component function R dependent on the tree structure
T, given by

R(z,p|T) = % 1:[ (/ dﬂkR(Naﬂk|Tk)> (9(2 [k
k=1 k=1

c—1
—CM+Z+$V(T)> exp (—%lf -B> pln— Mk)) ,(3)
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where D is a constant, T} represents the tree terminated
at the k'" descendent, and Ty (T) is the capacity of the

vertex of the tree T. The term Beu?/2, with € — 0,
is introduced to break the translational symmetry of the
chemical potentials, since the energy function is invariant
under the addition of an arbitrary global constant to all
chemical potentials.

Eq. (3) expresses R(z,u|T) in terms of ¢—1 func-
tions R(u, ux|Tk) (k = 1,..,¢ — 1), a characteristic of
the tree structure. Furthermore, except for the factor
exp(—Beu®/2), R is a function of y = pu — 2, which is
interpreted as the current drawn from a node with chem-
ical potential p by its ancestor with chemical potential z.
One can then express the function R as the product of
a vertex partition function Zy and a normalization fac-
tor W, that is, R(z, p|T) =W (u)Zy (y|T). In the limit
n— 0, the dependence on u and y decouples, enabling one
to derive a recursion relation for the vertexr free energy
Fy(y|T)=-T1n Zy(y|T) and arrive at Eq. (3).

The current distribution and the average free en-
ergy per link can be derived by integrating the cur-
rent y' in a link from one vertex to another, fed by
the trees Ty and T, respectively; the obtained expres-
sions are P(y) = (0(y — ¥'))x and (E) = (¢(y'))» where
(0)s = ([dy' exp[-BE(y")](e)/ [ dy' exp[-BE(")]),
and E(y') = Fy (y'|T1) + Fv (—y'|T2) + ¢(y').

The solution of Eq. (1) can be obtained numerically
for optimization (T = 0). Since the vertex free energy of
a node depends on its own capacity and the disordered
configuration of its descendents, we generate 1000 nodes
at each iteration of Eq. (1), with capacities randomly
drawn from the distribution p(z), and each being fed by
¢ — 1 nodes randomly drawn from the previous iteration.

We have discretized the vertex free energy function into
a vector, whose i*? component is the value Fy (y;|T). To
speed up the optimization search at each node, we first
find the vertez saturation current drawn from a node such
that: (a) the capacity of the node is just used up; (b) the
current drawn by each of its descendant nodes is just
enough to saturate its own capacity constraint. At this
saturation point, we can separately optimize the current
drawn by each descendant node, providing a convenient
starting point for searching the optimal solutions.

Figure 1(a) shows the results of iteration for a Gaus-
sian capacity distribution p(z) with variance 1 and aver-
age (x). Each iteration corresponds to adding one extra
generation to the tree structure, such that the iterative
process corresponds to approximating the network by an
increasingly extensive tree. We observe that after an ini-
tial rise with iteration steps, the average energies con-
verge to steady-state values, at a rate which increases
with the average capacity.

To study the convergence rate of the iterations, we
fit the average energy at iteration step ¢ using (E(t)—
E(o0)) ~exp(—yt) in the asymptotic regime. As shown
in the inset of Fig. 1(a), the relaxation rate v increases
with the average capacity. A cusp appears at the aver-
age capacity of about 0.45, below which convergence is
slow due to a plateau that develops in the average en-
ergy curve before the final stage. The slowdown is prob-
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FIG. 1: Results for N = 1000 and ¢(y) = y?/2. (a) (E)
obtained by iterating Eq. (1) as a function of ¢ for (z)=0.1,
0.2, 0.4, 0.6, 0.8 (top to bottom) and ¢=3. Dashed line: The
asymptotic (E) for (z) =0.1. Inset: 7 as a function of (z).
(b) K2(E) as a function of (z) for ¢ = 3 (Q), 4 (O), 5 (0),
large K (line). Inset: K?(E) as a function of time for random
sequential update of Egs. (4-6). Symbols: same as (a).

ably due to the appearance of increasingly large clusters
of nodes with negative capacities, which draw currents
from increasingly extensive regions of nodes with excess
capacities to satisfy the demand.

The local nature of the recursion relation (1) points
to the possibility that the network optimization can be
solved by message passing approaches, However, in con-
trast to other message passing algorithms which pass con-
ditional probability estimates of discrete values to the
neighboring nodes, the messages in the present context
are more complex, since they are functions Fy (y|T) of
the current y. We simplify the message to 2 parameters,
namely, the first and second derivatives of the vertex free
energies. For the quadratic load balancing task, it can
be shown that a self-consistent solution of the recursion
relation Eq. (1) consists of vertex free energies which are
piecewise quadratic with continuous slopes. This makes
the 2-parameter message a very precise approximation.

Let (A, Bij) = (0Fv (yi;|T;)/0yij, 0> Fv (yi1T )/ 0y3;)
be the message passed from node j to i. Using Eq. (1),
the recursion relations lead to the forward message
(Aij, Bij) from node j to i, followed by the backward
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FIG. 2. Results for N = 1000 and ¢(y) = %*>/2. (a) The
current distribution P(Ky)/K for (z) = 0.02,0.5,1, and ¢ = 3
(solid lines), 4 (dotted lines), 5 (dot-dashed lines), large K
(long dashed lines). Inset: P(y=0) as a function of (z) for
c=3 (0), 4 (O), 5 (), large K (line). (b) The resource
distribution P(r) for (z) = 0.02,0.1,0.5, large K. Symbols:
same as (a). Inset: P(r>0) as a function of (z). Symbols:
same as (a) inset.

message y;i from node j to k,
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with ¢, and ¢, representing the first and second deriva-
tives of ¢(y) at y = y;x respectively.

We note that Eqs. (4-6) differ from conventional
message-passing algorithms in that backward messages
of the currents are present. As a consequence of repre-
senting the messages by the first and second derivatives,




the backward messages serve to inform the descendent
nodes the particular arguments they should use in cal-
culating the derivatives for sending the next messages.
Furthermore, the criterion that y;; = —y;; provides a
check for the convergence of the algorithm.

Another usage of the backward messages is in monitor-
ing the optimal cost function during simulations. This
saves the extra step of calculating the energy associated
with a link in the conventional Bethe approach.

For the quadratic load balancing task considered here,
an independent exact optimization is available for com-
parison. The chemical potentials turn out to be the La-
grange multipliers of the capacity constraints, and the
relation between the currents and the chemical poten-
tials turn out to be exact. The Kiihn-Tucker conditions
for the optimal solution yield

.1
Wi =min | —
c

ZAijﬂj+Ai 01 . (7
J

Like in the message-passing algorithm, this condition also
provides a local iterative solution to the optimization
problem. Simulations show that it yields excellent agree-
ment with Eqs. (1) and (4-6).

To study the dependence on the connectivity, we first
consider the limit of large K = ¢ — 1. In this limit,
Eq. (4) converges to the steady-state results of A;; =
max[K ' 37, . AjkAjx — 7;),0] and Bjj ~ K~'. Then
Zk# Ajr Aj becomes self-averaging and equal to Kma,
where m4 ~ K ! is the mean of the messages A;;. Thus,
yij ~ K™Y, pi ~ K7', and (E) ~ K2 The physical
picture of this scaling behavior is that the total current
required by a node to satisfy its capacity constraint is
shared by the links. After rescaling, the physical quan-
tities such as K2(E), P(Ky)/K and P(Ku)/K become
purely dependent on the average capacity (z).

For increasing finite values of K, Fig. 1(b) shows the
common trend of K?(E) decreasing with (z) exponen-
tially, and gradually approaching the large K limit. The
scaling property extends to the dynamics of optimiza-
tion (Fig. 1(b) inset). As shown in Fig. 2(a), the cur-
rent distribution P(Ky)/K consists of a delta function
component at y =0 and a continuous component, whose
breadth decreases with (z). Remarkably, the distribu-
tions for different connectivities collapse almost perfectly
after the currents are rescaled by K1, with a very mild

dependence on K and gradually approaching the large K
limit. As shown in the inset of Fig. 2(a), the fraction of
idle links increases with (x). Hence the current-carrying
links form a percolating cluster at a low (z), and breaks
into isolated clusters at a high (z). The fraction has a
weak dependence on the connectivity, confirming the al-
most universal distributions rescaled for different K.

Since the current on a link scales as K~!, the allo-
cated resource of a node should have a weak dependence
on the connectivity. Defining the resource at node i by
r; = SCH‘Zj Ajijyi;, the resource distribution P(r) shown
in Fig. 2(b) confirms this behavior even at low connec-
tivities. The fraction of nodes with unsaturated capacity
constraints increases with the average capacity, and is
weakly dependent on the connectivity (Fig. 2(b) inset).
Hence the saturated nodes form a percolating cluster at a
low average capacity, and breaks into isolated clusters at
a high average capacity, It is interesting to note that at
the average capacity of 0.45, below which a plateau starts
to develop in the relaxation rate of the recursion relation,
Eq. (1), the fraction of unsaturated nodes is about 0.53,
close to the percolation threshold of 0.5 for ¢=3.

In summary, using the example of the resource alloca-
tion problem on sparsely connected networks, we have
demonstrated the use of message-passing methods for
equilibration. This extends the conventional usage of
Bayesian message passing for inference in problems with
discrete variables to problems with continuous variables
(such as in optimization), opening up a rich area for
further investigations with many potential applications.
The study also reveals the scaling properties of the re-
source allocation model, showing that the resource dis-
tribution on the nodes depends principally on the net-
workwide availability of resources, and is only weakly
dependent on the connectivity. The links share the task
of resource provision among themselves, leading to cur-
rent distributions that are almost universally dependent
on the resource availability after rescaling.
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