
Equilibration through lo
al information ex
hange in networksK. Y. Mi
hael Wong1 and David Saad21Department of Physi
s, The Hong Kong University of S
ien
e and Te
hnology, Clear Water Bay, Hong Kong, China. and2The Neural Computing Resear
h Group, Aston University, Birmingham B4 7ET, UK.(Dated: November 28, 2005)We study the equilibrium states of energy fun
tions involving a large set of real variables, de�nedon the links of sparsely 
onne
ted networks, and intera
ting at the network nodes, using the 
avityor repli
a methods. When applied to the representative problem of network resour
e allo
ation,an eÆ
ient distributed algorithm is devised, with simulations showing full agreement with theory.S
aling properties with the network 
onne
tivity and the resour
e availability are found.PACS numbers: 02.50.-r, 02.70.-
, 89.20.-aMany theoreti
ally 
hallenging and pra
ti
ally impor-tant problems involve intera
ting variables 
onne
ted bynetwork stru
tures [1℄. Statisti
al me
hani
s of disor-dered systems makes 
ontributions towards the under-standing of su
h systems at two levels. Ma
ros
opi
ally,it des
ribes the typi
al behaviour of the networks, usingestablished te
hniques su
h as the repli
a method. Mi-
ros
opi
ally, it analyses the relation between the vari-ables, using te
hniques su
h as the 
avity method, thatgive rise to eÆ
ient 
omputational algorithms, su
h asthose reminis
ent of the belief propagation algorithm ininformation pro
essing [2, 3℄.Most studies so far have fo
used on 
ases of dis
retevariables. On the other hand, networks of 
ontinuousvariables were mu
h less explored. There have been re-
ent attempts for message passing of 
ontinuous variableslo
alized on nodes [4℄, but many typi
al problems, su
has network resour
e allo
ation, involve 
urrent variablesde�ned on links between nodes.For optimization on networks, the traditional approa
his to adopt global optimization te
hniques, su
h as lin-ear or quadarti
 programming [5℄. In 
ontrast, message-passing approa
hes have the potential to solve global op-timization problems via lo
al updates, thereby redu
ingthe 
omputational 
omplexity. An even more importantadvantge, relevant to pra
ti
al implementation, is its dis-tributive nature. Sin
e it does not require a global op-timizer, it is parti
ularly suitable for distributive 
ontrolin large or evolving networks.In this paper we study a system with real variablesthat 
an be mapped onto a sparse graph and suggest aneÆ
ient message passing approximation method. Afterformulating the problem at a general temperature, wefo
us on a prototype for optimization, termed resour
eallo
ation and well known in the areas of 
omputer s
i-en
e and operations management [6, 7℄.We 
onsider a sparse network with N nodes, labelledi = 1; : : : ; N . Ea
h node i is randomly 
onne
ted to
 other nodes. The 
onne
tivity matrix is given byAij = 1; 0 for 
onne
ted and un
onne
ted node pairsrespe
tively. A link variable yij is de�ned on ea
h 
on-ne
ted link from j to i. We 
onsider an energy fun
tion(
ost) E = P(ij) Aij�(yij) +Pi  (xi; fyij jAij = 1g),where xi is a quen
hed variable de�ned on node i. In

the 
ontext of probabilisti
 inferen
e, yij may representthe 
oupling between observables in nodes j and i, �(yij)may 
orrespond to the logarithm of the prior distributionof yij , and  (xi; fyij jAij = 1g) the logarithm of the like-lihood of the observables xi. In the 
ontext of resour
eallo
ation, yij � �yji may represent the 
urrent fromnode j to i, �(yij) may 
orrespond to the transporta-tion 
ost, and  (xi; fyij jAij = 1g) the performan
e 
ostof the allo
ation task on node i, dependent on the node
apa
ity xi.We are interested in the 
ase of intensive 
onne
tivity
 � O(1) � N . Sin
e the probability of �nding a loopof �nite length on the nework is low, the 
avity methodwell des
ribes the lo
al environment of a node. A nodeis 
onne
ted to 
 bran
hes in a tree stru
ture, and the
orrelations among the bran
hes of the tree are negle
ted.In ea
h bran
h, nodes are arranged in generations. Anode is 
onne
ted to an an
estor node of the previousgeneration, and another 
 � 1 des
endent nodes of thenext generation. Considering node i as the an
estor ofnode j, the des
endents of node j form a tree stru
tureT with 
 � 1 bran
hes, labelled by k 6= i for Ajk = 1.At a temperature T � ��1, the free energy F (yij jT) 
anbe expressed in terms of the free energies F (yjkjTk) ofits des
endents. The free energy 
an be 
onsidered as thesum of two parts, F (yjT) = NTFav+FV (yjT), whereNTis the number of nodes in the tree T, Fav is the averagefree energy per node, and FV (yjT) is referred to as thevertex free energy. This leads to the re
ursion relationFV (yij jT) = �T ln(Yk 6=i�Z dyjk� exp��� (xj ; fyjkg)��Xk 6=i (FV (yjk jTk) + �(yjk))�)�����Ajk=1 � Fav; (1)Fav = �T*ln(Yk �Z dyjk� exp��� (xj ; fyjkg)��Xk (FV (yjkjTk) + �(yjk))�)�����Ajk=1+x; (2)where Tk is the tree terminated at node k, and h: : : ix



2represents the average over the distribution of x.For more 
on
rete dis
ussions, we fo
us on the resour
eallo
ation problem, whi
h is appli
able to typi
al situ-ations where a large number of nodes are required tobalan
e loads/resour
es, su
h as redu
ing internet traÆ

ongestion and streamlining network 
ows of 
ommodi-ties [8℄. In 
omputer s
ien
e, many pra
ti
al solutionsare usually heuristi
 and fo
us on pra
ti
al aspe
ts (e.g.,
ommuni
ation proto
ols). Here we study a more generi
version of the problem. In the 
ontext of 
omputer net-works, it is represented by nodes of some 
omputationalpower that should 
arry out tasks. Both 
omputationalpowers and tasks will be 
hosen at random from somearbitrary distribution. The nodes are lo
ated on a ran-domly 
hosen sparse network of some 
onne
tivity. Thegoal is to allo
ate tasks on the network su
h that de-mands will be satis�ed while the migration of (sub-)tasksis minimised.We fo
us here on the satis�able 
ase where the to-tal 
omputing power is greater than the demand, andwhere the number of nodes involved is very large. Thisis of interest to physi
ists due to the appli
ability of thete
hniques we introdu
e to the analysis of sparsely 
on-ne
ted systems with real variables. Ea
h node on thenetwork has a 
apa
ity (
omputational 
apability minusallo
ated tasks) xi randomly drawn from a distribution�(xi). (The algorithms presented later 
an easily a

om-modate any 
onne
tivity pro�le within the same frame-work.) With the aim to satisfy the 
apa
ity 
onstraints,we have  (xi; fyij jAij = 1g) = ln[�(Pj Aijyij+xi)+ �℄,where � ! 0. The problem redu
es to the load bal-an
ing task of minimizing the energy fun
tion (
ost)E =P(ij) Aij�(yij), subje
t to the 
apa
ity 
onstraints.When �(y) is a general even fun
tion of the 
urrent y,we may also derive Eq. (1) using the repli
a method. We�rst introdu
e the 
hemi
al potentials �i of nodes i, andapproximate the 
urrent yij as driven by the potentialdi�eren
es between nodes yij = �j � �i. Sin
e sparsenetworks are lo
ally tree-like, the probability of �ndingshort loops is vanishing in large networks, and the ap-proximation works well.Considering the optimization problem in the spa
e of
hemi
al potentials, we 
al
ulate the repli
ated partitionfun
tion hZniA;x averaged over the 
onne
tivity matrixand the 
apa
ity distribution, and take the limit n! 0.Assuming repli
a symmetry, the saddle point equationsof the repli
a method yields a re
ursion relation for a two-
omponent fun
tion R dependent on the tree stru
tureT, given byR(z; �jT) = 1D 
�1Yk=1 �Z d�kR(�; �kjTk)�� 
�1Xk=1 �k�
�+z+xV (T)! exp ���2 �2 � � 
�1Xk=1 �(�� �k)!;(3)where D is a 
onstant, Tk represents the tree terminatedat the kth des
endent, and xV (T) is the 
apa
ity of the

vertex of the tree T. The term ���2=2, with � ! 0,is introdu
ed to break the translational symmetry of the
hemi
al potentials, sin
e the energy fun
tion is invariantunder the addition of an arbitrary global 
onstant to all
hemi
al potentials.Eq. (3) expresses R(z; �jT) in terms of 
� 1 fun
-tions R(�; �kjTk) (k = 1; ::; 
 � 1), a 
hara
teristi
 ofthe tree stru
ture. Furthermore, ex
ept for the fa
torexp(����2=2), R is a fun
tion of y � � � z, whi
h isinterpreted as the 
urrent drawn from a node with 
hem-i
al potential � by its an
estor with 
hemi
al potential z.One 
an then express the fun
tion R as the produ
t ofa vertex partition fun
tion ZV and a normalization fa
-tor W , that is, R(z; �jT) =W (�)ZV (yjT). In the limitn!0, the dependen
e on � and y de
ouples, enabling oneto derive a re
ursion relation for the vertex free energyFV (yjT)��T lnZV (yjT) and arrive at Eq. (3).The 
urrent distribution and the average free en-ergy per link 
an be derived by integrating the 
ur-rent y0 in a link from one vertex to another, fed bythe trees T1 and T2, respe
tively; the obtained expres-sions are P (y) = hÆ(y � y0)i? and hEi = h�(y0)i? whereh�i? = 
R dy0 exp [��E(y0)℄ (�)= R dy0 exp [��E(y0)℄�x ;and E(y0) = FV (y0jT1) + FV (�y0jT2) + �(y0).The solution of Eq. (1) 
an be obtained numeri
allyfor optimization (T = 0). Sin
e the vertex free energy ofa node depends on its own 
apa
ity and the disordered
on�guration of its des
endents, we generate 1000 nodesat ea
h iteration of Eq. (1), with 
apa
ities randomlydrawn from the distribution �(x), and ea
h being fed by
� 1 nodes randomly drawn from the previous iteration.We have dis
retized the vertex free energy fun
tion intoa ve
tor, whose ith 
omponent is the value FV (yijT). Tospeed up the optimization sear
h at ea
h node, we �rst�nd the vertex saturation 
urrent drawn from a node su
hthat: (a) the 
apa
ity of the node is just used up; (b) the
urrent drawn by ea
h of its des
endant nodes is justenough to saturate its own 
apa
ity 
onstraint. At thissaturation point, we 
an separately optimize the 
urrentdrawn by ea
h des
endant node, providing a 
onvenientstarting point for sear
hing the optimal solutions.Figure 1(a) shows the results of iteration for a Gaus-sian 
apa
ity distribution �(x) with varian
e 1 and aver-age hxi. Ea
h iteration 
orresponds to adding one extrageneration to the tree stru
ture, su
h that the iterativepro
ess 
orresponds to approximating the network by anin
reasingly extensive tree. We observe that after an ini-tial rise with iteration steps, the average energies 
on-verge to steady-state values, at a rate whi
h in
reaseswith the average 
apa
ity.To study the 
onvergen
e rate of the iterations, we�t the average energy at iteration step t using hE(t)�E(1)i � exp(�
t) in the asymptoti
 regime. As shownin the inset of Fig. 1(a), the relaxation rate 
 in
reaseswith the average 
apa
ity. A 
usp appears at the aver-age 
apa
ity of about 0.45, below whi
h 
onvergen
e isslow due to a plateau that develops in the average en-ergy 
urve before the �nal stage. The slowdown is prob-
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FIG. 1: Results for N = 1000 and �(y) = y2=2. (a) hEiobtained by iterating Eq. (1) as a fun
tion of t for hxi=0.1,0.2, 0.4, 0.6, 0.8 (top to bottom) and 
=3. Dashed line: Theasymptoti
 hEi for hxi= 0:1. Inset: 
 as a fun
tion of hxi.(b) K2hEi as a fun
tion of hxi for 
 = 3 (
), 4 (�), 5 (�),large K (line). Inset: K2hEi as a fun
tion of time for randomsequential update of Eqs. (4-6). Symbols: same as (a).ably due to the appearan
e of in
reasingly large 
lustersof nodes with negative 
apa
ities, whi
h draw 
urrentsfrom in
reasingly extensive regions of nodes with ex
ess
apa
ities to satisfy the demand.The lo
al nature of the re
ursion relation (1) pointsto the possibility that the network optimization 
an besolved by message passing approa
hes, However, in 
on-trast to other message passing algorithms whi
h pass 
on-ditional probability estimates of dis
rete values to theneighboring nodes, the messages in the present 
ontextare more 
omplex, sin
e they are fun
tions FV (yjT) ofthe 
urrent y. We simplify the message to 2 parameters,namely, the �rst and se
ond derivatives of the vertex freeenergies. For the quadrati
 load balan
ing task, it 
anbe shown that a self-
onsistent solution of the re
ursionrelation Eq. (1) 
onsists of vertex free energies whi
h arepie
ewise quadrati
 with 
ontinuous slopes. This makesthe 2-parameter message a very pre
ise approximation.Let (Aij ; Bij) � (�FV (yij jTj)=�yij ; �2FV (yij jTj)=�y2ij)be the message passed from node j to i. Using Eq. (1),the re
ursion relations lead to the forward message(Aij ; Bij) from node j to i, followed by the ba
kward
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FIG. 2: Results for N = 1000 and �(y) = y2=2. (a) The
urrent distribution P (Ky)=K for hxi = 0:02; 0:5; 1, and 
 = 3(solid lines), 4 (dotted lines), 5 (dot-dashed lines), large K(long dashed lines). Inset: P (y= 0) as a fun
tion of hxi for
 = 3 (
), 4 (�), 5 (�), large K (line). (b) The resour
edistribution P (r) for hxi = 0:02; 0:1; 0:5, large K. Symbols:same as (a). Inset: P (r > 0) as a fun
tion of hxi. Symbols:same as (a) inset.message yjk from node j to k,Aij ��ij ; Bij �(��ij + �)Pk 6=iAjk(�00jk +Bjk)�1 ; (4)yjk yjk � �0jk +Ajk + �ij�00jk +Bjk ; (5)�ij=min("Xk 6=iAjk [yjk � (�0jk +Ajk)(�00jk +Bjk)�1℄+�j � yij#"Xk 6=i Ajk(�00jk +Bjk)�1#�1; 0); (6)with �0jk and �00jk representing the �rst and se
ond deriva-tives of �(y) at y = yjk respe
tively.We note that Eqs. (4-6) di�er from 
onventionalmessage-passing algorithms in that ba
kward messagesof the 
urrents are present. As a 
onsequen
e of repre-senting the messages by the �rst and se
ond derivatives,



4the ba
kward messages serve to inform the des
endentnodes the parti
ular arguments they should use in 
al-
ulating the derivatives for sending the next messages.Furthermore, the 
riterion that yij = �yji provides a
he
k for the 
onvergen
e of the algorithm.Another usage of the ba
kward messages is in monitor-ing the optimal 
ost fun
tion during simulations. Thissaves the extra step of 
al
ulating the energy asso
iatedwith a link in the 
onventional Bethe approa
h.For the quadrati
 load balan
ing task 
onsidered here,an independent exa
t optimization is available for 
om-parison. The 
hemi
al potentials turn out to be the La-grange multipliers of the 
apa
ity 
onstraints, and therelation between the 
urrents and the 
hemi
al poten-tials turn out to be exa
t. The K�uhn-Tu
ker 
onditionsfor the optimal solution yield�i=min241
 0�Xj Aij�j +�i1A ; 035 : (7)Like in the message-passing algorithm, this 
ondition alsoprovides a lo
al iterative solution to the optimizationproblem. Simulations show that it yields ex
ellent agree-ment with Eqs. (1) and (4-6).To study the dependen
e on the 
onne
tivity, we �rst
onsider the limit of large K � 
 � 1. In this limit,Eq. (4) 
onverges to the steady-state results of Aij =max[K�1Pk 6=iAjkAjk � xj); 0℄ and Bij � K�1. ThenPk 6=iAjkAjk be
omes self-averaging and equal to KmA,wheremA � K�1 is the mean of the messages Aij . Thus,yij � K�1, �i � K�1, and hEi � K�2. The physi
alpi
ture of this s
aling behavior is that the total 
urrentrequired by a node to satisfy its 
apa
ity 
onstraint isshared by the links. After res
aling, the physi
al quan-tities su
h as K2hEi, P (Ky)=K and P (K�)=K be
omepurely dependent on the average 
apa
ity hxi.For in
reasing �nite values of K, Fig. 1(b) shows the
ommon trend of K2hEi de
reasing with hxi exponen-tially, and gradually approa
hing the large K limit. Thes
aling property extends to the dynami
s of optimiza-tion (Fig. 1(b) inset). As shown in Fig. 2(a), the 
ur-rent distribution P (Ky)=K 
onsists of a delta fun
tion
omponent at y=0 and a 
ontinuous 
omponent, whosebreadth de
reases with hxi. Remarkably, the distribu-tions for di�erent 
onne
tivities 
ollapse almost perfe
tlyafter the 
urrents are res
aled by K�1, with a very mild

dependen
e on K and gradually approa
hing the largeKlimit. As shown in the inset of Fig. 2(a), the fra
tion ofidle links in
reases with hxi. Hen
e the 
urrent-
arryinglinks form a per
olating 
luster at a low hxi, and breaksinto isolated 
lusters at a high hxi. The fra
tion has aweak dependen
e on the 
onne
tivity, 
on�rming the al-most universal distributions res
aled for di�erent K.Sin
e the 
urrent on a link s
ales as K�1, the allo-
ated resour
e of a node should have a weak dependen
eon the 
onne
tivity. De�ning the resour
e at node i byri � xi+Pj Aijyij , the resour
e distribution P (r) shownin Fig. 2(b) 
on�rms this behavior even at low 
onne
-tivities. The fra
tion of nodes with unsaturated 
apa
ity
onstraints in
reases with the average 
apa
ity, and isweakly dependent on the 
onne
tivity (Fig. 2(b) inset).Hen
e the saturated nodes form a per
olating 
luster at alow average 
apa
ity, and breaks into isolated 
lusters ata high average 
apa
ity, It is interesting to note that atthe average 
apa
ity of 0.45, below whi
h a plateau startsto develop in the relaxation rate of the re
ursion relation,Eq. (1), the fra
tion of unsaturated nodes is about 0.53,
lose to the per
olation threshold of 0.5 for 
=3.In summary, using the example of the resour
e allo
a-tion problem on sparsely 
onne
ted networks, we havedemonstrated the use of message-passing methods forequilibration. This extends the 
onventional usage ofBayesian message passing for inferen
e in problems withdis
rete variables to problems with 
ontinuous variables(su
h as in optimization), opening up a ri
h area forfurther investigations with many potential appli
ations.The study also reveals the s
aling properties of the re-sour
e allo
ation model, showing that the resour
e dis-tribution on the nodes depends prin
ipally on the net-workwide availability of resour
es, and is only weaklydependent on the 
onne
tivity. The links share the taskof resour
e provision among themselves, leading to 
ur-rent distributions that are almost universally dependenton the resour
e availability after res
aling.A
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