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Abstract

Digital watermarking aims at embedding informa-
tion in digital data. The watermark is usually re-
quired to be imperceptible, unremovable and to
have a high information content. Unfortunately,
these three requirements are contradicting. For
example, having a more robust watermark makes
it either more perceptible or/and less informative.
This paper investigates the relationship between
the watermark information content and the induced
distortion due to quantisation, such as lossy com-
pression.

1 Introduction

Digital media have become very popular over the
last decade. The development of efficient compres-
sion algorithms, such as MPEG [5], JPEG [7], or
JPEG2000 [1] has made it easy to distribute data
over the Internet but also increased their vulner-
ability to illicit distribution or retailing. Interest
in watermarking techniques has grown significantly
in the past few years, mainly due to the need to
protect, intellectual property rights of these prod-
ucts [3]. In this paper, we investigate the relation
between the maximum information content that
can be embedded and successfully retrieved after
being transmitted over a quantised channel (an at-
tack). Such a channel is typically encountered in
lossy compression (JPEG, MPEG) methods, which
are an essential tool in the transmission of digital
media. Without loss of generality, here, the anal-
ysis is carried out over JPEG compression for im-
ages.

2 Watermarking Communica-
tion Channel

The basic problem of watermarking, is how to em-
bed information, usually termed a watermark, in
the data [3], with an imperceptible loss of quality
and such that common processing will not remove
the embedded watermark. Quantisation is essential
for lossy compression, and for the transmission and
storage of digital data. In this paper, the influence
of quantisation on the watermarking transmission
rate is investigated. Figure 1 depicts the commu-
nication channel studied (termed channel with side
information in the information theory literature),
where X is the original data, M the message to be
embedded, X the watermarked data, QF the com-
pression quality factor, Y the quantised data and

M the message estimate after an attack.
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Figure 1: Watermarking communication channel.

2.1 Lossy Compression and Water-

marking

Recent research has focused on evaluating the ca-
pacity of the watermarking channel [4, 6]. Typi-
cally, all processes studied so far are modelled using
simple distributions, mostly Gaussian. However,



this modelling may be misleading for determinis-
tic attacks, such as lossy compression. The stan-
dard deviation values used to model the quantisa-
tion noise lead to very low information transmis-
sion rate. Among other results, the present work
will show the discrepancy between the transmis-
sion rate obtained using the Gaussian model and
the true transmission rate.

In the present paper, quantisation, which is the
heart of all lossy compression methods, is consid-
ered as a deterministic process. Quantisation re-
duces all states of the data within a quantisation
bin to a unique state named the quantised state.
This reduces the number of possible states for the
data, watermarked or not, and therefore bounds the
achievable information rate (IR) of the watermark-
ing scheme. For a given allowed induced distortion,
the maximum number of informative bits that can
be encoded, when subject to such an attack is there-
fore given by the number of quantised states within
the radius defined by the allowed distortion.

An illustration is given in Fig. 2, where ‘+’ repre-
sent the quantised points and ‘X’ the original data
point, the area associated with each quantised point
is marked by plain lines. Each quantised point is as-
sociated with a certain information represented by
the letters ‘A’ to ‘D’. Therefore, in order to encode
the letter, the induced distortion will be charac-
terised by ‘C1’, ‘C2’, 0, and ‘C3’ respectively. So,
given a quantisation step (width of the quantisa-
tion bin) §, one can derive a relation between the
IR and the induced distortion K.
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Figure 2: Quantisation and watermark.

In the following, the distortion cost K of trans-
mitting information over a known uniform quan-
tised channel is investigated. A mean square error

metric in the image space is used to measure the
latter cost, MSE = 337, (Xi; — Xi;)?, where
h is the height of the image, w the width of the
image, ¢ the vertical index of the pixel, and j the
horizontal index of the pixel.

2.2 Lossy Compression: JPEG

In this section, a brief presentation of the JPEG
standard, on which the analysis is based, is given.
More details can be found in [7].
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Figure 3: JPEG Lossy Compression Block Dia-
gram.

Figure 3 depicts JPEG compression for still im-
ages. First, the image is divided into contiguous
patches of 8 x 8 pixels. The DCT of all patches
is taken, the obtained coefficients are quantised ac-
cording to

X = Qu(X,5) = P} 5, (1)

1)
where X is the quantised data X, 4 is the quantisa-
tion step and where ‘[ . ]’ stands for the fiz rounding
operator (rounding towards ‘0’).

The quantisation step ¢ is computed from the
JPEG quality factor parameter QF (Eq. 2 and 3)
and the predefined quantisation table @ (Ap-
pendix, Fig. 9), which provides the different values
for each coefficient in a patch. Finally, the quan-
tised coefficients are encoded using a lossless com-
pressor.

5 = kQ, (2)
g = [SYQF L ifQF<50, o
T 2Rl it QF > 50 .

3 Information Rate and In-
duced Distortion

In this section, we investigate the maximum in-
duced distortion required to achieve a certain in-



formation rate for a given level of quantisation (at-
tack) at the encoder. A general analysis will be car-
ried out, followed by a particular example (JPEG).

3.1 Analysis

Assume n parallel channels, subject to a quantisa-
tion attack, as defined in Eq. 1, with different quan-
tisation levels d; (¢ = 1...n). In the worst case, the
induced distortion K can be expressed as follows

K=Y 2275 with N=Y n;, (4)

iln; >0
where NNV is the number of bits we want to embed, n;
is the number of bits encoded using the ith channel
coefficient (e.g. DCT coefficient).

Our aim is therefore to find the best distribution
of n;, which minimises K for a given N. By intro-
ducing a Lagrange multiplier in Eq. 4 and solving
the system of equations given by the first order con-
dition of optimality, we get

Nl Zlog2 d; —log, d; .
J

= + - (5)
Then, the validity of the obtained solutions n; has
to be verified for each of the channels. For instance,
each n; has to be a positive integer. If not, it means
that the solution lies on the system boundaries.
The problem can also be overcome using classical
methods, for example a Langrange multiplier for
each non verified constraint changing them into an
equality if needed.

3.2 Gaussian Model Analysis

In this section, we present a short analysis on the
Gaussian model mentioned earlier and as it is usu-
ally presented in the literature. In this framework,
the quantisation noise is modelled by a centred
Gaussian noise. Its standard deviation is estimated
from the distortion introduced by the quantisation.
Assuming a flat distribution for the source to be
quantised, the standard deviation of the noise is
o = §//12. Furthermore, for a channel with addi-
tive Gaussian noise, the capacity is given by [2, 4]

1 o2
3 log, (1 + a—g’) )

1 1202
= ElogQ (1—!— 52“’),

c = (6)

(7)

where o,, is the standard deviation of the intro-
duced watermark. In our problem, n parallel chan-
nels, indexed by 4, are considered, and for these the
best distribution has to be found for a given infor-
mation rate and set of attack strengths é;. This
gives rise to a similar optimisation problem as in

Sec. 3.1, with
Kg = 20121” )
i

to be used as a cost to minimise under the con-
straint

(8)

1 T
N:ZCi:§log2<l+Uz>. (9)

(3

The problem is solved in the same way. The opti-
mal alloment is then given by

2_1 2N 2% 2
i =592 1;[5j —62% ., (10)

then the validity of the solution has to be verified
with respect to the positivity condition.

3.3 Practical Case

In this section, a JPEG attack is assumed and pre-
sented as a case study. A brief description of the
algorithm used in a practical case is also given. In
Sec. 3.1, we presented and solved the problem for
the worst-case source data. In practice, the orig-
inal value of the source data is of high relevance
as it has a significant influence on the introduced
distortion for low information rate. Furthermore,
it is important to notice that the quantisation bin
centred around 0 is double the size of all others,
(Eq. 1).

A simple way to tackle the problem is to use a
greedy algorithm. The latter searches for the low-
est distortion to embed one more bit per iteration.
This basically means that the number of reacheable
states with the allowed distortion has to double for
one of the parallel channels considered at each iter-
ation. The channel with the lower cost is selected
and the cost associated to it is added to the total
distortion cost at the previous iteration. Then, the
cost related to further use of the selected channel is
updated. The description of the algorithm is given
by the following steps.



1. The distortion C; for first use of each of the
channels is evaluated by

o (51 — 7“1')2 if ¢; =0,
Ci= { min(r?, (§; — r;)?) if ¢; # 0, (1)
Ci
q; = |:§—:| s and ry = Ci — (Jzisz ) (12)

where ¢; is the original (real) value of the
source, the original costs are also referred to
as O;.

2. The lower distortion is selected and added to
the previous distortion.

K=K+minC;, and n; =n; +1. (13)

3. The selected marginal distortion C; for the se-
lected channel is then updated using

(27i6; — 0;)* — C;,

O = if |gi| —ni <0 ;
v ((2”" - 1)52’ + 02)2 -C;,

(14)
4. Steps 2 and 3 are repeated until N = )", n;.

3.4 Experiments

Following, the previous analysis in Sec. 3, we im-
plement an algorithm evaluating the maximum dis-
tortion introduced in order to transmit an N bit
message, when the watermarked data is subject to
a quantisation attack (lossy compression) of known
strength at the encoder. The results are shown for
the JPEG standard for different strengths. The
experiments are given for the worst host data
(monochrome black picture) and for a practical
case using the well-known Lena picture. For the lat-
ter, only the average maximum distortion induced
is reported for different quantisation strengths.

3.5 Results

Figure 4 represents the distortion introduced to en-
code N bits given a QF in a black image (worst
case), while Fig. 5 is the average cost of encoding
N bits per patch of 8 x 8 pixels in the Lena picture.
In both plots, quantisation is treated as a determin-
istic process. While, Fig. 6 represents the distortion
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Figure 4: Maximum distortion versus IR for a
JPEG attack for a known QF.
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Figure 5: Distortion versus IR for a JPEG attack
for a known QF.

introduced by encoding N bits given QF in a black
image modelling quantisation as a Gaussian noise.

The results show that Gaussian modelling overes-
timates the distortion needed in all studied ranges
of quantisation strength and transmitted number
of bits. This also explains why some schemes in
the literature using the Gaussian model, designed
with the full knowledge of the compression stan-
dard, achieve better results than expected. In our
analysis the quantisation strength is assumed to
be known at the encoder, which might not be the
case in most practical cases. When quantisation
is treated as a deterministic process as above, one
can easily show that if the attack has not the ex-
pected strength, even if weaker, this may introduce
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Figure 6: Maximum distortion versus IR for JPEG
attack for a known QF, modelled as an additive
Gaussian noise.

significant errors in the decoding. When Gaussian
modelling is used, the reported distortion is still
valid if the real quantisation strength is not greater
than the one for the informed case. In the follow-
ing section, we discuss the amendment needed to
our approach, when the maximum strength of the
attack is only known at the encoder.

4 Unknown Quality Factor

In this section, the § is assumed to be unknown at
the encoder but bounded from above by d,,, which is
known. We are interested in the relation between
the IR and the distortion to introduce to achieve
it. Results obtained in Sec. 3 where for the case of
known § at the encoder.

4.1 Ambiguity Problem

In the case described in Sec. 3, embedding some
information only requires moving the data to the
correct hypercube. However, when § is unknown,
the problem lies in the uncertainty introduced by
overlapping bins, when different 4 values can be
used. The problem is explained in Fig. 7. Encod-
ing a given letter refers to moving the data to the
appropriate bin, assuming a quantisation strength
of é,, (Fig. 7, line 1). If the quantisation attack
results in § = a (Fig. 7, line 2); a received data
Y = a can come from intervals associated with ei-

ther A or B (Fig. 7, line 1). This creates ambiguity
in the previous scheme. To amend it, first we no-
tice that values are always quantised toward the
value ‘0’, which is the only fixed point. The areas
of ambiguity for each bin can be found using the
maximum remainder over § of the Euclidean divi-
sion of id,, by ¢ (Fig. 7, line 2 to 3, the areas of
ambiguity are underlined by arrows), which can be
expressed formally as follows, where i € N denotes
the index of the bin from the bin centre at ‘0’,

Rs, (1) = max i Om — 5[%} , (15)
= m +e,0<exd (16)
= iri €, € m -

The intervals of ambiguity are therefore of the form
[iRs,, (i); (i + 1) Rs,,, (i)]-
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Figure 7: Maximum uncertainty generated by mul-
tiple quantisers. Encoding and decoding strategy.

Amending the algorithm involves modifying the
boundaries of both encoding and decoding bins.
The area between a and 2a (Fig. 7, line 2) should
be associated with the information B at the de-
coder, but at present data can be from either A or
B. The encoder will be modified so that no infor-
mation is encoded in this area. Respectively, the
area between 2b and 3b (Fig. 7, line 3) has to be as-
sociated with the information C' and so on (Fig. 7,
line 5). This also defines the bounds for the encod-
ing process (Fig. 7, line 6); for example to encode
B, the watermarked data has to lie between §,, and
2b (Fig. 7, line 3). If the modified data is below 4,
using a quantiser with § = Rs,, (1) — €, with an ap-
propriate value ¢, will automatically bring it below
a and lead to a bad decoding. If the data is greater
than 2b, no quantisation will automatically lead to
a bad decoding to C'. Once these boundaries are es-
tablished, a similar algorithm to the one described
in Sec. 3.4 can be applied.



4.2 Results
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Figure 8: Distortion vs IR for JPEG attack for a
known 6,,.

Figure 8 shows the average cost over the patches
to transmit N bits per patch. As expected the cost
increases significantly only for low IR, since the
marginal cost remains the same, equal to 6,,, for
every coefficient. From Fig. 8, it can be seen that
current state of the art methods are still far be-
low the maximal information rate. For example, if
QF,, = 20, and the distortion cost allowed is about
3, at least 1 bit can be embedded reliably per patch,
which means more than 4096 bits for a 512 x 512
pixels, Lena picture; this is 4 to 40 times greater
than the performances reported in the literature.

5 Conclusion

This paper provides a clear framework for comput-
ing the relationship between the IR and distortion
introduced by a watermark under a quantisation
attack. An example on a typical picture commonly
used by research community is also provided. The
results show that current watermarking schemes
are still far below the maximal IR of this channel.
Further research will include evaluation of the IR
under various types of attacks.
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A JPEG Quantisation Table

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 89 56
14 17 22 29 51 8 80 62

18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
7292 95 98 112 100 103 99

Figure 9: JPEG quantisation table: Q.
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