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tDigital watermarking aims at embedding informa-tion in digital data. The watermark is usually re-quired to be imper
eptible, unremovable and tohave a high information 
ontent. Unfortunately,these three requirements are 
ontradi
ting. Forexample, having a more robust watermark makesit either more per
eptible or/and less informative.This paper investigates the relationship betweenthe watermark information 
ontent and the indu
eddistortion due to quantisation, su
h as lossy 
om-pression.1 Introdu
tionDigital media have be
ome very popular over thelast de
ade. The development of eÆ
ient 
ompres-sion algorithms, su
h as MPEG [5℄, JPEG [7℄, orJPEG2000 [1℄ has made it easy to distribute dataover the Internet but also in
reased their vulner-ability to illi
it distribution or retailing. Interestin watermarking te
hniques has grown signi�
antlyin the past few years, mainly due to the need toprote
t intelle
tual property rights of these prod-u
ts [3℄. In this paper, we investigate the relationbetween the maximum information 
ontent that
an be embedded and su

essfully retrieved afterbeing transmitted over a quantised 
hannel (an at-ta
k). Su
h a 
hannel is typi
ally en
ountered inlossy 
ompression (JPEG, MPEG) methods, whi
hare an essential tool in the transmission of digitalmedia. Without loss of generality, here, the anal-ysis is 
arried out over JPEG 
ompression for im-ages.

2 Watermarking Communi
a-tion ChannelThe basi
 problem of watermarking, is how to em-bed information, usually termed a watermark, inthe data [3℄, with an imper
eptible loss of qualityand su
h that 
ommon pro
essing will not removethe embedded watermark. Quantisation is essentialfor lossy 
ompression, and for the transmission andstorage of digital data. In this paper, the in
uen
eof quantisation on the watermarking transmissionrate is investigated. Figure 1 depi
ts the 
ommu-ni
ation 
hannel studied (termed 
hannel with sideinformation in the information theory literature),where X is the original data, M the message to beembedded, X̂ the watermarked data, QF the 
om-pression quality fa
tor, Y the quantised data andM̂ the message estimate after an atta
k.
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Figure 1: Watermarking 
ommuni
ation 
hannel.2.1 Lossy Compression and Water-markingRe
ent resear
h has fo
used on evaluating the 
a-pa
ity of the watermarking 
hannel [4, 6℄. Typi-
ally, all pro
esses studied so far are modelled usingsimple distributions, mostly Gaussian. However,1



this modelling may be misleading for determinis-ti
 atta
ks, su
h as lossy 
ompression. The stan-dard deviation values used to model the quantisa-tion noise lead to very low information transmis-sion rate. Among other results, the present workwill show the dis
repan
y between the transmis-sion rate obtained using the Gaussian model andthe true transmission rate.In the present paper, quantisation, whi
h is theheart of all lossy 
ompression methods, is 
onsid-ered as a deterministi
 pro
ess. Quantisation re-du
es all states of the data within a quantisationbin to a unique state named the quantised state.This redu
es the number of possible states for thedata, watermarked or not, and therefore bounds thea
hievable information rate (IR) of the watermark-ing s
heme. For a given allowed indu
ed distortion,the maximum number of informative bits that 
anbe en
oded, when subje
t to su
h an atta
k is there-fore given by the number of quantised states withinthe radius de�ned by the allowed distortion.An illustration is given in Fig. 2, where `+' repre-sent the quantised points and `X' the original datapoint, the area asso
iated with ea
h quantised pointis marked by plain lines. Ea
h quantised point is as-so
iated with a 
ertain information represented bythe letters `A' to `D'. Therefore, in order to en
odethe letter, the indu
ed distortion will be 
hara
-terised by `C1', `C2', 0, and `C3' respe
tively. So,given a quantisation step (width of the quantisa-tion bin) Æ, one 
an derive a relation between theIR and the indu
ed distortion K.
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Figure 2: Quantisation and watermark.In the following, the distortion 
ost K of trans-mitting information over a known uniform quan-tised 
hannel is investigated. A mean square error

metri
 in the image spa
e is used to measure thelatter 
ost, MSE = 1hwPi;j(Xij � X̂i;j)2, whereh is the height of the image, w the width of theimage, i the verti
al index of the pixel, and j thehorizontal index of the pixel.2.2 Lossy Compression: JPEGIn this se
tion, a brief presentation of the JPEGstandard, on whi
h the analysis is based, is given.More details 
an be found in [7℄.
Quantizer

Entropy
DCT Encoder

8x8 blocks

Specifications
TableQuantization

Table
Compressed
Image Data

Source
Image DataFigure 3: JPEG Lossy Compression Blo
k Dia-gram.Figure 3 depi
ts JPEG 
ompression for still im-ages. First, the image is divided into 
ontiguouspat
hes of 8 � 8 pixels. The DCT of all pat
hesis taken, the obtained 
oeÆ
ients are quantised a
-
ording to X̂ = Qu(X; Æ) = �XÆ �Æ ; (1)where X̂ is the quantised data X , Æ is the quantisa-tion step and where `[ : ℄' stands for the �x roundingoperator (rounding towards `0').The quantisation step Æ is 
omputed from theJPEG quality fa
tor parameter QF (Eq. 2 and 3)and the prede�ned quantisation table Q (Ap-pendix, Fig. 9), whi
h provides the di�erent valuesfor ea
h 
oeÆ
ient in a pat
h. Finally, the quan-tised 
oeÆ
ients are en
oded using a lossless 
om-pressor.Æ = k Q ; (2)k = � 50=QF if QF < 50 ,(200�2QF )100 if QF � 50 . (3)3 Information Rate and In-du
ed DistortionIn this se
tion, we investigate the maximum in-du
ed distortion required to a
hieve a 
ertain in-2



formation rate for a given level of quantisation (at-ta
k) at the en
oder. A general analysis will be 
ar-ried out, followed by a parti
ular example (JPEG).3.1 AnalysisAssume n parallel 
hannels, subje
t to a quantisa-tion atta
k, as de�ned in Eq. 1, with di�erent quan-tisation levels Æi (i = 1 : : : n). In the worst 
ase, theindu
ed distortion K 
an be expressed as followsK = Xijni>0 22(ni�1)Æ2i ; with N =Xi ni ; (4)whereN is the number of bits we want to embed, niis the number of bits en
oded using the ith 
hannel
oeÆ
ient (e.g. DCT 
oeÆ
ient).Our aim is therefore to �nd the best distributionof ni, whi
h minimises K for a given N . By intro-du
ing a Lagrange multiplier in Eq. 4 and solvingthe system of equations given by the �rst order 
on-dition of optimality, we getni = Nn + 1nXj log2 Æj � log2 Æi : (5)Then, the validity of the obtained solutions ni hasto be veri�ed for ea
h of the 
hannels. For instan
e,ea
h ni has to be a positive integer. If not, it meansthat the solution lies on the system boundaries.The problem 
an also be over
ome using 
lassi
almethods, for example a Langrange multiplier forea
h non veri�ed 
onstraint 
hanging them into anequality if needed.3.2 Gaussian Model AnalysisIn this se
tion, we present a short analysis on theGaussian model mentioned earlier and as it is usu-ally presented in the literature. In this framework,the quantisation noise is modelled by a 
entredGaussian noise. Its standard deviation is estimatedfrom the distortion introdu
ed by the quantisation.Assuming a 
at distribution for the sour
e to bequantised, the standard deviation of the noise is� = Æ=p12. Furthermore, for a 
hannel with addi-tive Gaussian noise, the 
apa
ity is given by [2, 4℄C = 12 log2�1 + �2w�2 � ; (6)= 12 log2�1 + 12�2wÆ2 � ; (7)

where �w is the standard deviation of the intro-du
ed watermark. In our problem, n parallel 
han-nels, indexed by i, are 
onsidered, and for these thebest distribution has to be found for a given infor-mation rate and set of atta
k strengths Æi. Thisgives rise to a similar optimisation problem as inSe
. 3.1, with Kg =Xi �2wi ; (8)to be used as a 
ost to minimise under the 
on-straint N =Xi Ci = 12 log2�1 + �2wi�2i � : (9)The problem is solved in the same way. The opti-mal alloment is then given by�2wi = 112�2 2Nn �Yj Æ2j� 1n � Æ2i� ; (10)then the validity of the solution has to be veri�edwith respe
t to the positivity 
ondition.3.3 Pra
ti
al CaseIn this se
tion, a JPEG atta
k is assumed and pre-sented as a 
ase study. A brief des
ription of thealgorithm used in a pra
ti
al 
ase is also given. InSe
. 3.1, we presented and solved the problem forthe worst-
ase sour
e data. In pra
ti
e, the orig-inal value of the sour
e data is of high relevan
eas it has a signi�
ant in
uen
e on the introdu
eddistortion for low information rate. Furthermore,it is important to noti
e that the quantisation bin
entred around 0 is double the size of all others,(Eq. 1).A simple way to ta
kle the problem is to use agreedy algorithm. The latter sear
hes for the low-est distortion to embed one more bit per iteration.This basi
ally means that the number of rea
heablestates with the allowed distortion has to double forone of the parallel 
hannels 
onsidered at ea
h iter-ation. The 
hannel with the lower 
ost is sele
tedand the 
ost asso
iated to it is added to the totaldistortion 
ost at the previous iteration. Then, the
ost related to further use of the sele
ted 
hannel isupdated. The des
ription of the algorithm is givenby the following steps.3



1. The distortion Ci for �rst use of ea
h of the
hannels is evaluated byCi = � (Æi � ri)2 if qi = 0,min(r2i ; (Æi � ri)2) if qi 6= 0, (11)qi = �
iÆi � ; and ri = 
i � qiÆi ; (12)where 
i is the original (real) value of thesour
e, the original 
osts are also referred toas Oi.2. The lower distortion is sele
ted and added tothe previous distortion.K = K +mini Ci ; and ni = ni + 1 : (13)3. The sele
ted marginal distortion Ci for the se-le
ted 
hannel is then updated usingCi = 8>><>>: (2niÆi �Oi)2 � Ci ;if jqij � ni < 0 ;((2ni � 1)Æi +Oi)2 � Ci ;if jqij � ni � 0 . (14)4. Steps 2 and 3 are repeated until N =Pi ni.3.4 ExperimentsFollowing, the previous analysis in Se
. 3, we im-plement an algorithm evaluating the maximum dis-tortion introdu
ed in order to transmit an N bitmessage, when the watermarked data is subje
t toa quantisation atta
k (lossy 
ompression) of knownstrength at the en
oder. The results are shown forthe JPEG standard for di�erent strengths. Theexperiments are given for the worst host data(mono
hrome bla
k pi
ture) and for a pra
ti
al
ase using the well-known Lena pi
ture. For the lat-ter, only the average maximum distortion indu
edis reported for di�erent quantisation strengths.3.5 ResultsFigure 4 represents the distortion introdu
ed to en-
ode N bits given a QF in a bla
k image (worst
ase), while Fig. 5 is the average 
ost of en
odingN bits per pat
h of 8�8 pixels in the Lena pi
ture.In both plots, quantisation is treated as a determin-isti
 pro
ess. While, Fig. 6 represents the distortion
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k for a known QF.
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Figure 5: Distortion versus IR for a JPEG atta
kfor a known QF.introdu
ed by en
oding N bits given QF in a bla
kimage modelling quantisation as a Gaussian noise.The results show that Gaussian modelling overes-timates the distortion needed in all studied rangesof quantisation strength and transmitted numberof bits. This also explains why some s
hemes inthe literature using the Gaussian model, designedwith the full knowledge of the 
ompression stan-dard, a
hieve better results than expe
ted. In ouranalysis the quantisation strength is assumed tobe known at the en
oder, whi
h might not be the
ase in most pra
ti
al 
ases. When quantisationis treated as a deterministi
 pro
ess as above, one
an easily show that if the atta
k has not the ex-pe
ted strength, even if weaker, this may introdu
e4
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k for a known QF, modelled as an additiveGaussian noise.signi�
ant errors in the de
oding. When Gaussianmodelling is used, the reported distortion is stillvalid if the real quantisation strength is not greaterthan the one for the informed 
ase. In the follow-ing se
tion, we dis
uss the amendment needed toour approa
h, when the maximum strength of theatta
k is only known at the en
oder.4 Unknown Quality Fa
torIn this se
tion, the Æ is assumed to be unknown atthe en
oder but bounded from above by Æm whi
h isknown. We are interested in the relation betweenthe IR and the distortion to introdu
e to a
hieveit. Results obtained in Se
. 3 where for the 
ase ofknown Æ at the en
oder.4.1 Ambiguity ProblemIn the 
ase des
ribed in Se
. 3, embedding someinformation only requires moving the data to the
orre
t hyper
ube. However, when Æ is unknown,the problem lies in the un
ertainty introdu
ed byoverlapping bins, when di�erent Æ values 
an beused. The problem is explained in Fig. 7. En
od-ing a given letter refers to moving the data to theappropriate bin, assuming a quantisation strengthof Æm (Fig. 7, line 1). If the quantisation atta
kresults in Æ = a (Fig. 7, line 2); a re
eived dataY = a 
an 
ome from intervals asso
iated with ei-

ther A or B (Fig. 7, line 1). This 
reates ambiguityin the previous s
heme. To amend it, �rst we no-ti
e that values are always quantised toward thevalue `0', whi
h is the only �xed point. The areasof ambiguity for ea
h bin 
an be found using themaximum remainder over Æ of the Eu
lidean divi-sion of i Æm by Æ (Fig. 7, line 2 to 3, the areas ofambiguity are underlined by arrows), whi
h 
an beexpressed formally as follows, where i 2 N denotesthe index of the bin from the bin 
entre at `0',RÆm(i) = maxÆ i Æm � Æ� i ÆmÆ � ; (15)= iÆmi+ 1 + � ; 0 < �� Æm : (16)The intervals of ambiguity are therefore of the form[iRÆm(i); (i+ 1)RÆm(i)℄.
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Figure 7: Maximum un
ertainty generated by mul-tiple quantisers. En
oding and de
oding strategy.Amending the algorithm involves modifying theboundaries of both en
oding and de
oding bins.The area between a and 2a (Fig. 7, line 2) shouldbe asso
iated with the information B at the de-
oder, but at present data 
an be from either A orB. The en
oder will be modi�ed so that no infor-mation is en
oded in this area. Respe
tively, thearea between 2b and 3b (Fig. 7, line 3) has to be as-so
iated with the information C and so on (Fig. 7,line 5). This also de�nes the bounds for the en
od-ing pro
ess (Fig. 7, line 6); for example to en
odeB, the watermarked data has to lie between Æm and2b (Fig. 7, line 3). If the modi�ed data is below Æm,using a quantiser with Æ = RÆm(1)� �, with an ap-propriate value �, will automati
ally bring it belowa and lead to a bad de
oding. If the data is greaterthan 2b, no quantisation will automati
ally lead toa bad de
oding to C. On
e these boundaries are es-tablished, a similar algorithm to the one des
ribedin Se
. 3.4 
an be applied.5



4.2 Results
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Figure 8: Distortion vs IR for JPEG atta
k for aknown Æm.Figure 8 shows the average 
ost over the pat
hesto transmit N bits per pat
h. As expe
ted the 
ostin
reases signi�
antly only for low IR, sin
e themarginal 
ost remains the same, equal to Æm, forevery 
oeÆ
ient. From Fig. 8, it 
an be seen that
urrent state of the art methods are still far be-low the maximal information rate. For example, ifQFm = 20, and the distortion 
ost allowed is about3, at least 1 bit 
an be embedded reliably per pat
h,whi
h means more than 4096 bits for a 512� 512pixels, Lena pi
ture; this is 4 to 40 times greaterthan the performan
es reported in the literature.5 Con
lusionThis paper provides a 
lear framework for 
omput-ing the relationship between the IR and distortionintrodu
ed by a watermark under a quantisationatta
k. An example on a typi
al pi
ture 
ommonlyused by resear
h 
ommunity is also provided. Theresults show that 
urrent watermarking s
hemesare still far below the maximal IR of this 
hannel.Further resear
h will in
lude evaluation of the IRunder various types of atta
ks.A
knowledgement: Support from EPSRC re-sear
h grant GR/N63178 is a
knowledged.
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