Semi-Supervised Learning of Hierarchical Latent Trait Models for Data Visualisation

Yi Sun Peter Tiño
Neural Computing Research Group
Aston University, Birmingham, B4 7ET, UK
suny,tinop@aston.ac.uk

Ata Kabán
Department of Information Systems
Eötvös Loránd University,
Budapest, Hungary
ata@ullman.inf.elte.hu

Ian Nabney
Neural Computing Research Group
Aston University, Birmingham, B4 7ET, UK
nabneyit@aston.ac.uk

Abstract

An interactive hierarchical Generative Topographic Mapping (HGTM) [14] has been developed to visualise complex data sets. In this paper, we build a more general visualisation system by extending the HGTM visualisation system in 3 directions: (1) We generalize HGTM to noise models from the exponential family of distributions. The basic building block is the Latent Trait Model (LTM) developed in [9]. (2) We give the user a choice of initializing the child plots of the current plot in either interactive, or automatic mode. In the interactive mode the user interactively selects “regions of in-
terest” as in [14], whereas in the automatic mode an unsupervised minimum message length (MML)-driven construction of a mixture of LTM$s is employed.

(3) We derive general formulas for magnification factors in latent trait models. Magnification factors are a useful tool to improve our understanding of the visualisation plots, since they can highlight the boundaries between data clusters.

The unsupervised construction is particularly useful when high-level plots are covered with dense clusters of highly overlapping data projections, making it difficult to use the interactive mode. Such a situation often arises when visualizing large data sets. We illustrate our approach on a toy example and apply our system to three more complex real data sets.

1 Introduction

Topographic visualisation of multi-dimensional data has been an important method of data analysis and data mining [4, 10]. In a complex setting, however, a single two-dimensional projection of high-dimensional data may not be sufficient to capture all of the interesting aspects of the data. Therefore, hierarchical extensions of visualisation methods [6, 12] have been developed. Recently, we have developed a principled approach to interactive construction of non-linear visualisation hierarchies [14], the basic building block of which is the Generative Topographic Mapping (GTM) [4], a non-linear latent variable model with a Gaussian noise model.

Here we extend the hierarchical GTM (HGTM) visualisation system to noise models from the exponential family of distributions by employing the more general Latent Trait Model (LTM) developed in [9] as a starting point. In addition, we provide the user with a choice of initializing the child plots of the current plot in either interactive, or automatic manner within the same principled probabilistic framework. In the interactive mode, employed also in [14], the sub-plots (“child plots”) must be initialised interactively by the user; they decide which subsets of the data are interesting enough to be visualized in a greater detail in sub-plots [14]. The automatic mode is a new feature incorporated now into the system, which allows us to determine both the number and the position of children LTM$s in an unsupervised manner using the minimum message length (MML) methodology. This is particularly valuable when dealing with large quantities of data that make visualisation
plots at higher levels complex and difficult to deal with in an interactive manner.

An intuitively simple but flawed approach would be to use a data partitioning technique (e.g. [13]) for segmenting the data set, followed by constructing visualisation plots in the individual compartments. Clearly, in this case there would be no direct connection between the criterion for choosing the quantization regions and that of making the local low-dimensional projections. By employing LTM, however, such a connection can be established in a principled manner. This is achieved by exploiting this model as a generative probabilistic model, which enables us to use a principled minimum message length (MML)-based learning of mixture models with an embedded model selection criterion [8]. Hence, given a parent LTM, the number and position of its children is based on the modelling properties of the children themselves – without any ad-hoc criteria which would be exterior to the model.

Previous experience has indicated that magnification factors may provide a potentially valuable additional information to our understanding of the visualisation plots, since they can highlight the boundaries between data clusters. In [5], formulas for magnification factors were only derived for the GTM. In this paper, we derive formulas for magnification factors in full generality for latent trait models.

In the next section we briefly review the latent trait model. In Section 3, the hierarchical extension of this model is provided. Section 4 presents the model selection criterion based on minimum message length that we apply to mixtures of LTMs. Section 5 presents and discusses experimental results. We derive a general formula for magnification factors in LTMs in Section 6. Finally, Section 7 summarizes the key contributions of the paper.

2 The Latent Trait Model (LTM)

Latent trait models [9] are generative models which provide powerful and principled tools of data analysis and visualisation. Being a generalisation of the Generative Topographic Mapping (GTM) [4], the latent trait model family [9] offers the formal treatment which includes the definition of the appropriate probability models for the cases of discrete observations.

Consider an L-dimensional latent space \mathcal{H}, which, for visualisation purposes is typically a bounded 2-D Euclidean domain, e.g. $[-1, 1] \times [-1, 1]$. The aim is to
represent multi-dimensional data vectors \(\{t_n\}_{n=1,...,N} \) using the latent space so that ‘important’ structural characteristics are revealed. A non-linear relation is allowed between the latent space and the data space \(D = \mathbb{R}^D \). The latent plane becomes a (non-linear) 2-D manifold in the high dimensional data space.

For tractability, in practice the latent space is discretised by introducing a regular array (grid) of \(K \) latent points \(x_k \in \mathcal{H}, k = 1, \ldots, K \) (which are analogous to the nodes of the SOM [10]). A uniform prior is imposed over the latent points \(x_k \), leading to \(p(t) = \sum_{k=1}^{K} p(t|x_k)p(x_k) = K^{-1} \sum_{k=1}^{K} p(t|x_k) \).

The conditional data distribution, \(p(t|x_k) \), is modelled as a member of the exponential family in a parameterised functional form [2]

\[
p_B(t_n, x_k, \Theta) = \exp \left\{ f_\Theta(x_k)t_n - B(f_\Theta(x_k)) \right\} p_0(t_n).
\]

Here \(B(f_\Theta(x_k)) = \ln \int \exp(f_\Theta(x_k)t_n)p_0(t_n)dt \) denotes the cumulant generating function of \(p(t|x_k) \), \(p_0(t_n) \) is a factor independent of the parameter \(\Theta \), \(t_n \in \mathbb{R}^D \) denotes the \(n \)-th observed datum, \(n = 1, \ldots, N \), \(x_k \in \mathcal{H} \) is the \(k \)-th latent space point, and the nonlinearity \(f(\cdot) \) is, for convenience, of the form \(f_\Theta(x_k) = \Theta \phi(x_k) \), where \(\Theta \in \mathbb{R}^{D \times M} \) is a parameter matrix and \(\phi(\cdot) = (\phi_1(\cdot), \ldots, \phi_M(\cdot))^T, \phi_m(\cdot): \mathcal{H} \to \mathbb{R}, \) is a fixed set of \(M \) non-parametric nonlinear basis functions. These could be any smooth functions; typically Gaussian radial basis functions are employed. A linear basis function \(\phi_0(x) = 1, \forall x \), may be included to account for the bias term. The notation \(\phi_k = \phi(x_k) \) will be used as a shorthand.

LTMs are trained to maximize the likelihood of the training set \(\{t_1, \ldots, t_N\} \) via an EM algorithm [9], the M-step of which consists of solving

\[
TR^T\Phi^T = b(\Theta\Phi)G\Phi^T,
\]

where the function \(b(\cdot) \) denotes the derivative of the cumulant function \(B(\cdot) \), \(\Phi \) is an \(M \times K \) matrix with \(\phi_k \) in its \(k \)-th column, \(T \) is the data matrix including \(N \) data vectors \(\{t_n\} \) as columns, \(R = (R_{kn})_{k=1,...,K,n=1,...,N} \) and \(G \) is a diagonal matrix with elements \(g_{kk} = \sum_{n=1}^{N} R_{kn} \), where \(R_{kn} \), computed via Bayes’ theorem in the E-step,

\[
R_{kn} = p(x_k|t_n) = \frac{p(t_n|x_k, \Theta)p(x_k)}{\sum_{k'}^{K} p(t_n|x_{k'}, \Theta)p(x_{k'})},
\]

is the ‘responsibility’ of the latent point \(x_k \) for generating \(t_n \).

\(^{1} \) it is the inverse link function [11] of the noise distribution.
For visualisation purposes, the latent space representation of a point \(t_n \) is taken to be the mean of the posterior distribution \(p(x_k | t_n) \) over the latent space points.

Note that the generative latent trait model defines a density in the data space, using a smooth mapping from the latent space to the data space,

\[
 z : \mathcal{H} \to \mathbb{R}^D, z(x_k) = b(\Theta \Phi(x_k)). \tag{4}
\]

We refer to the manifold \(z(\mathcal{H}) \) as the projection manifold of the LTM.

3 General Framework for Hierarchical Latent Trait Models

When dealing with large and complex data sets, a single global visualisation plot is often not sufficient. To be able to capture the interesting intrinsic information when visualizing complex data sets as much as possible, hierarchical visualisation systems have been proposed and developed in the literature, [6], [14]. In [6], a locally linear hierarchical visualisation system is introduced. We have recently extended this system to non-linear GTM projection manifolds in [14]. In this section we provide a general formulation of hierarchical latent trait mixture models.

The hierarchical LTM arranges a set of LTM\(s \) and their corresponding plots in a tree structure \(\mathcal{T} \). The Root is at level 1, children of level-\(\ell \) models are at level \(\ell + 1 \).

Each model \(\mathcal{M} \) in the hierarchy, except for Root, has an associated parent-conditional mixture coefficient, or prior, \(\pi(\mathcal{M} | \text{Parent}(\mathcal{M})) \). The priors are non-negative and satisfy the consistency condition: \(\sum_{\mathcal{M} \in \text{Children}(\mathcal{N})} \pi(\mathcal{M}, \mathcal{N}) = 1 \). Unconditional priors for the models are recursively calculated as follows: \(\pi(\text{Root}) = 1 \), and for all other models

\[
 \pi(\mathcal{M}) = \prod_{i=2}^{\text{Level}(\mathcal{M})} \pi(\text{Path}(\mathcal{M})_i | \text{Path}(\mathcal{M})_{i-1}), \tag{5}
\]

where \(\text{Path}(\mathcal{M}) = (\text{Root}, \ldots, \mathcal{M}) \) is the \(\mathcal{P} \)-tuple of nodes defining the path of length \(\mathcal{P} \) in \(\mathcal{T} \) from Root to \(\mathcal{M} \).

The distribution given by the hierarchical model is a mixture of leaves\(^2 \) of \(\mathcal{T} \)

\[
 P(t | \mathcal{T}) = \sum_{\mathcal{M} \in \text{Leaves}(\mathcal{T})} \pi(\mathcal{M}) P(t | \mathcal{M}). \tag{6}
\]

\(^2\text{Leaves}(\mathcal{T}) \) is the set of nodes of \(\mathcal{T} \) without children.
Non-leaf models not only play their role in the process of creating the hierarchical model, but in the context of data visualisation can be useful for determining the relationship between sub-plots in the hierarchy.

3.1 Training

The hierarchical LTM is trained using EM to maximize its likelihood with respect to the data sample \(\{ t_1, t_2, \ldots, t_N \} \). Training of a hierarchy of LMTs proceeds in a recursive fashion. First, the Root LTM is trained and used to visualize the data. Then the user identifies interesting regions on the visualisation plot that they would like to model in a greater detail\(^3\).

Having trained models \(\mathcal{N} \) at level \(\ell \), the expectation of the complete data likelihood of level-(\(\ell + 1 \)) is

\[
< L_{\text{comp}}^{\ell+1} > = \sum_{n=1}^{N} \sum_{\mathcal{N} \in \text{Nodes}(l)} P(\mathcal{N}, t_n) \sum_{\mathcal{M} \in \text{Children}(\mathcal{N})} P(\mathcal{M}|\mathcal{N}, t_n) \sum_{k=1}^{K_M} R_{kn}^M \ln \{ \pi(\mathcal{N}) \pi(\mathcal{M}|\mathcal{N}) P(t_n, x_k^M) \} \tag{7}
\]

3.1.1 E-step

In the E-step, we estimate the posterior distribution of all hidden variables, using the “old” values of LTM parameters. Given a data point \(t_n \), we compute the model responsibilities corresponding to the competition among models belonging to the same parent as

\[
P(\mathcal{M}|\text{Parent} (\mathcal{M}), t_n) = \frac{\pi(\mathcal{M}|\text{Parent} (\mathcal{M})) P(t_n|\mathcal{M})}{\sum_{\mathcal{M}' \in [\mathcal{M}]} \pi(\mathcal{M}'|\text{Parent} (\mathcal{M})) P(t_n|\mathcal{M}')} , \tag{8}
\]

where

\[
[\mathcal{M}] = \text{Children}(\text{Parent} (\mathcal{M})). \tag{9}
\]

Imposing \(P(\text{Root}|t_n) = 1 \), the unconditional (on parent) model responsibilities are recursively determined by

\[
P(\mathcal{M}|t_n) = P(\mathcal{M}|\text{Parent} (\mathcal{M}), t_n) P(\text{Parent} (\mathcal{M})|t_n). \tag{10}
\]

\(^3\)We will describe the sub-model initialisation in section 3.2.
Responsibilities of the latent space centres \mathbf{x}_k^M, $k = 1, 2, ..., K_M$, corresponding to the competition among the latent space centres in each model \mathcal{M}, are calculated using (3).

3.1.2 M-step

In the M-step, we estimate the parameters using the posterior over hidden variables computed in the E-step.

Parent-conditional mixture coefficients are determined by

$$
\pi(\mathcal{M}|\text{Parent}(\mathcal{M})) = \frac{\sum_{n=1}^N P(\mathcal{M}|\mathbf{t}_n)}{\sum_{n=1}^N P(\text{Parent}(\mathcal{M})|\mathbf{t}_n)}. \tag{11}
$$

Parameters $\Theta^{(\mathcal{M})}$ of the LTM \mathcal{M} are calculated by solving

$$
\mathbf{TR}^{(\mathcal{M})T}\Phi^T = \mathbf{b}(\Theta^{(\mathcal{M})}\Phi)\mathbf{G}^{(\mathcal{M})}\Phi^T \tag{12}
$$

where $\mathbf{R}^{(\mathcal{M})} = (R_{kn}^M)_{k=1,\ldots,K_\mathcal{M},n=1,\ldots,N}$. R_{kn}^M are scaled (by (10)) responsibilities (3), $R_{kn}^M = P(\mathcal{M}|\mathbf{t}_n)R_{kn}$; $\mathbf{G}^{(\mathcal{M})}$ is a diagonal matrix with elements $g_{kk}^M = \sum_{n=1}^N R_{kn}^M$.

When solving (12), if the link function $\mathbf{b}(\cdot)$ is the identity, one gets the closed form M-step of HGTMs [14], but in general a non-linear optimization algorithm is required. In the simplest case, we may employ a gradient inner loop M-step4:

$$
\Delta\Theta^{(\mathcal{M})} \propto \left\{ \mathbf{TR}^{(\mathcal{M})T} - \mathbf{b}(\Theta^{(\mathcal{M})}\Phi)\mathbf{G}^{(\mathcal{M})} \right\}\Phi^T. \tag{13}
$$

3.2 Model initialization

When initializing sub-models there are two things to determine: the number of sub-models and the initial parameters of the sub-models. We view the problem of initializing sub-model parameters primarily as one of locating which region each sub-model should be responsible for. To do this, regions of interest are defined by the user in the latent (visualisation) space. The points \mathbf{c}_i selected in the latent space \mathcal{H} correspond to the “centres” of these regions.

The “regions of interest” are transformed into the data space as Voronoi compartments [1] defined by the mapped points $\mathbf{z}(\mathbf{c}_i) \in \mathcal{D}$, where \mathbf{z} is the map (4) of the corresponding LTM. In the case of a Gaussian noise model, the child LTMs are

4In this partial M-step we could alternatively use iterative reweighted least squares [16].
initialized by local PCA in the corresponding Voronoi compartments [14]. When using other noise models such as Bernoulli or multinomial distributions, the PCA-initialised LTMs are in addition individually trained (section 2) in the corresponding Voronoi compartments for 1 EM iteration. The EM iteration “settles” the component LTMs to their corresponding modelling regions. Empirically, this initialisation strategy works very well. We perform the additional initialization step when the PCA initialisation alone does not “match” the noise distribution well, e.g. when the noise distribution is non-symmetric and data space is discrete.

After the initialisation, a full hierarchical training described in section 3.1 is used.

4 Unsupervised learning of mixtures of LTMs

So far, we have developed a general framework for a visualisation hierarchy. The user selects the ‘regions of interest’ to refine the visualisation model. This method is powerful when the clusters are separated clearly in the 2-D latent space. On the other hand, when facing a “messy” plot like that in Figure 1, where thousands of data points are shown (with densely clustered and overlapping projections), the user may be unable to determine where sub-models should be placed. In order to resolve this problem, we extend our current algorithm by providing an automated technique for deciding the number of sub-models and initialising their location.
Note that in this section we will just focus on the algorithm for mixture models.

4.1 MML formulation for unsupervised learning of mixture models

Given a set $\zeta = \{t_1, t_2, ..., t_N\}$ of data points, minimum message length (MML) strategies select, among the models inferred from ζ, the one which minimizes length of the message transmitting ζ [15]. Given that the data is modeled by a parametric probabilistic model $P(\zeta | \theta)$, the message consists of two parts — one specifying the model parameters, the other specifying the data given the model: $\text{Length}(\theta, \zeta) = \text{Length}(\theta) + \text{Length}(\zeta | \theta)$.

Recently, Figueiredo and Jain [8] extended the MML framework to unsupervised learning of mixture models; the algorithm selects the “appropriate” number of components while the parameters of each model are estimated in the usual way. The novelty of their proposed approach is that parameter estimation and model selection are integrated in a single algorithm, rather than using a model selection criterion on a set of pre-estimated candidate models.

The particular form of MML criterion adopted in [8] is of the form $\hat{\theta} = \arg\min_{\theta} \mathcal{L}(\theta, \zeta)$, where

$$
\mathcal{L}(\theta, \zeta) = - \log P(\theta) - \log P(\zeta | \theta) + \frac{1}{2} \log |\mathbf{I}(\theta)| + \frac{c}{2} \left(1 + \log \frac{1}{12}\right),
$$

(14)

where $\mathbf{I}(\theta)$ is the expected Fisher information matrix, $|\mathbf{I}(\theta)|$ is its determinant, and c is the dimension of θ.

By imposing a non-informative Jeffreys’ prior [3] on both the vector of mixing coefficients $\{\pi(M)\}$ and the parameters $\Theta^{(M)}$ of individual mixture components [8], the equation (14) becomes

$$
\mathcal{L}(\theta, \zeta) = \frac{Q}{2} \sum_{\pi(M) > 0} \log \left(\frac{N \cdot \pi(M)}{12}\right) + \frac{A}{2} \log \frac{N}{12} + \frac{A(Q + 1)}{2} - \log P(\zeta | \theta),
$$

(15)

where A is the number of mixture components with positive prior $\pi(M) > 0$ and Q is the number of free parameters of each individual mixture component.

Minimizing (15) with respect to $\pi(M)$ under the constraint that the priors $\pi(M)$
sum to 1, the following re-estimation formulas are obtained [8]:

\[
\pi(M) = \frac{\max \left\{ 0, -\frac{D}{2} + \sum_{n=1}^{N} P(M|t_n) \right\}}{\sum_{M'} \max \left\{ 0, -\frac{D}{2} + \sum_{n=1}^{N} P(M'|t_n) \right\}},
\]

where component responsibilities \(P(M|t_n) \) are determined by

\[
P(M|t_n) = \frac{\pi(M)P(t_n|M)}{\sum_{M'} \pi(M')P(t_n|M')}, \tag{17}
\]

\[
\pi(M) = \frac{\sum_{n=1}^{N} P(t_n|M)}{\sum_{M'=1}^{A} \sum_{n=1}^{N} P(t_n|M')} \tag{18}
\]

Free parameters of the individual LTMs are fitted to the data \(\zeta \) using the EM algorithm outlined in section 3 applied to mixtures of LTMs\(^5\). Note that LTMs corresponding to zero \(\pi(M) \) become irrelevant and so (16) effectively performs component annihilation [8].

4.2 The algorithm

Given the training data \(\zeta = \{ t_1, t_2, ..., t_N \} \), we use the MML approach to find the “appropriate” number of mixture component LTMs that “explain” \(\zeta \) in a probabilistic manner. LTMs that are good probabilistic generating models of the data capture the data distribution well and hence yield “good” visualisation plots\(^6\). To start the training process, we choose the maximum number of components \(A_{max} \) we are willing to consider. Then, we initiate the component LTMs using the method described in section 3.2.

As in [8], we adopt the component-wise EM (CEM) algorithm [7], i.e. rather than simultaneously updating all the LTMs, we first update the parameters \(\Theta^{(1)} \) of the first LTM (12), while parameters of the remaining LTMs are fixed, then we recompute the component responsibilities \(\{ P(M|t_n) \} \) (17) and mixture coefficients \(\{ \pi(M) \} \) (16) for all components in the mixture. After this, we move to the second

\(^5\)A mixture of LTMs can be considered a two-level hierarchical LTM. Mixture components are children of the mot.

\(^6\)This is a tricky issue, since while we can measure the quality of probabilistic models e.g. via likelihood, there is no universal quality measure for visualisation plots. But intuitively, good probabilistic properties of a LTM mean that the projection manifold follows closely the data distribution and so the visualisation plot is a “good” representation of the data distribution.
component, update $\Theta^{(2)}$ in the same way, and recompute \{\(P(M|t_n)\), \{\(\hat{\pi}(M)\), etc., looping through all mixture components. If one of the component LTM's dies \((\hat{\pi}(M) = 0)\), redistribution of its probability mass to the remaining components increases their chance of survival. After convergence of CEM, we still have to check whether a shorter message length can be achieved by having a smaller number of mixture LTM's (down to \(A = 1\)).\(^7\) This is achieved by iteratively killing off the weakest LTM (with the smallest $\hat{\pi}(M)$) and re-running CEM until convergence. Finally, the winning mixture of LTM's is the one that leads to the shortest message length $\mathcal{L}(\theta, \zeta)$ (15).

To demonstrate this algorithm, we did an experiment on a toy data set of 800 points $t = (t_1, t_2, t_3)^T$ lying on four two-dimensional manifolds ("humps") (see Figure 2 (a)). We associated the points in the four "humps" with four different classes, C_i, $i = 1, 2, 3, 4$, having four different labels. After training ($A_{\max} = 10$), a 6-component mixture was constructed. Projection manifolds of the 6 LTM's are shown in Figure 2 (b). Note that 6 child plots provide understandable subgroups of the data; and that the 6 projection manifolds closely approximate the four "humps" of the original generating manifold. The corresponding hierarchy of visualisation plots can be seen in Figure 3.

5 Semi-Supervised Learning of Visualisation Hierarchies

The procedure for unsupervised learning of mixture models discussed in section 4 becomes more complex for nodes in hierarchical models at levels > 2. In this case, we should consider model responsibilities of parent nodes for the data points and these are recursively propagated as we incrementally build the hierarchy. So equations (8) and (10) are used in hierarchical models instead of equation (17) used in the simple mixture case. Also equation (5) is applied in place of equation (18).

The proposed system for constructing hierarchies of non-linear visualisation plots is similar to the one described in [14]. The important difference is that now, given a

\(^7\)If we knew that the number of mixture components was no less than some number A_{\min}, we would stop at $A = A_{\min}$ [8].
Figure 2: (a) A two dimensional manifolds in data space; (b) Projection manifolds in data space of the second-level LTM's trained on the toy data.

Figure 3: Visualisation of the toy data constructed in an unsupervised MML way.
parent plot, its children are not always constructed in the interactive way by letting the user identify "regions of interest" for the sub-plots. In densely populated higher-level plots with many overlapping projections, this may not be possible. Instead, we let the user decide whether they want the children to be constructed in an interactive or unsupervised way.

In the unsupervised case, we use the MML technique to decide the "appropriate" number and approximate position of children LTM s. We collect data points from \(\zeta \) for which the parent LTM has responsibility higher than a threshold \(\Delta \) (in our experiments \(\Delta \) was set to 0.9). We then run MML-based learning of mixtures of LTM s (section 4.2) on this reduced data set. The resulting local mixture is viewed as an initialization for the full EM algorithm for training hierarchies of LTM s described in section 3.1. This way, the "appropriate" number of LTM s is determined along with their initial locations.

5.1 Experiments

In this section we illustrate the semi-supervised hierarchical LTM visualisation algorithm on three "real-world" data collections.

Although the algorithm is derived in a general setting in which individual LTM s \(\mathcal{M} \) in the hierarchy can have different sets of latent points \(\mathbf{x}_k^M \), \(k = 1, 2, ..., K_M \), and basis functions \(\phi_j \), \(j = 1, 2, ..., M_M \), in the experiments reported here, we used a common configuration for all models in the hierarchy. In particular, the latent space \(\mathcal{H} \) was taken to be the two-dimensional interval \(\mathcal{H} = [-1, 1] \times [-1, 1] \), the latent points \(\mathbf{x}_k^M \in \mathcal{H} \) were positioned on a regular 15 \(\times \) 15 square grid and there were 16 radial basis functions \(\phi_j \) centered on a regular 4 \(\times \) 4 square grid. The basis functions were spherical Gaussians of the same width \(\sigma = 1.0 \). We account for a bias term by using an additional constant basis function \(\phi_0(\mathbf{x}) = 1 \), for all \(\mathbf{x} \in \mathcal{H} \). If the noise model in LTM is Gaussian, we always consider only spherical Gaussians, as in the original formulation of GTM [4]. Complete training equations for hierarchical GTM can be found in [14].

Note that in the interactive mode, the "centres" of the regions of interest are shown as circles labeled by numbers. These numbers determine the order of the corresponding child LTM subplot s from left to right.
5.1.1 Image segmentation data

As the first example we visualize image segmentation data obtained by randomly sampling patches of 3x3 pixels from a database of outdoor images. The patches are characterized by 18 continuous attributes and are classified into 4 classes: cement + path, brickface + window, grass + foliage and sky (see [14]). The final visualisation plot of hierarchical LTM with Gaussian noise model (Hierarchical GTM [14]) can be seen in Figure 4. The Root plot contains clusters of overlapping projections. Six plots at the second level were constructed using the unsupervised MML technique ($A_{\text{max}} = 10$). Note that the second-level LTMs already separate the four classes fairly well and are readable enough to be analysed further in the interactive mode. For example, we selected two and four “centres” respectively for regions of interest (shown as circles) in the second and fifth level-two plots.

![Image Segmentation Diagram](image.png)

Figure 4: Hierarchical visualisation of the image segmentation data constructed in a semi-interactive way.

5.1.2 Text data set

Since our system is based on the LTM, it can deal with discrete data sets. As an illustration, we tested our system on a text-collection of 8000 documents formed
by 10 topic classes from the newsgroup8 text corpus. The documents were binary encoded over a dictionary of $D = 100$ words. The initial pre-processing, word-stemming and removal of 'stop-words' was done using the Bow toolkit9. To account for binary encoding, the Bernoulli noise model was employed.

The visualisation plot generated in a semi-interactive way is shown in Figure 5. The 'Root' is extremely densely populated with highly overlapping data projections. After using the unsupervised MML technique ($A_{\text{max}} = 10$), a 4-component mixture of LTM's was obtained on the second level. Sub-clusters in these four level-two plots are decipherable. The user can now choose more detailed regions of interest by using the interactive mode.

As in [14], this system also includes the child-modulated ancestor plot technique, which can visualise the regions captured by a particular child LTM M. This is done by modifying all the ancestor plots up to the Root, so that instead of the ancestor responsibilities, the responsibilities of the model M, $P(M \mid t_n)$, are used in every plot on the path from M to Root. This improves the understanding of the relationships among sub-plots in the visualisation hierarchy. In Figure 6, we highlight the visualisation plots which include the data points from the topic 'sci.space', captured by the first model on the 4th-level.

5.1.3 Yeast data set

In the last experiment we visualise a yeast data set10. The 6-dimensional data points11 are classified into 10 classes (as shown in the legend of Figure 7). We demonstrate the application of the unsupervised MML technique at a lower level in the hierarchy.

We trained a four-level hierarchy of LTM's (Gaussian noise model) on the yeast data and the resulting projections are displayed in Figure 7. Again, the Root plot looks 'messy'. Two plots at the second level were constructed using the unsupervised MML technique ($A_{\text{max}} = 10$). The first level-two plot is legible enough for the user

8http://www.cs.cmu.edu/~textlearning
9http://www-2.cs.cmu.edu/~mccallum/bow
10The yeast data set can be downloaded from the UCI Machine Learning page: ftp://ftp.ics.uci.edu/pub/machine-learning-databases/yeast/
11The original data is 8-dimensional. Two of the dimensions are effectively constant and were deleted.
Figure 6: Hierarchical visualization of the document data constructed in a semi-interactive way. The set of points captured by the first ITN at level 4 of the hierarchy is highlighted in the visualization plots of all its ancestors.
to select the ‘centres’ in the interactive mode (as shown in the figure). We used the MML algorithm as an initialisation technique for constructing child plots of the second level-two plot \(A_{\text{max}} = 5 \). Two resulting child plots included readable clusters. Figure 8 is the child-modulated ancestor plot. The data points captured by the fourth model on the 4th-level are highlighted.

6 Local Magnification Factors of the Latent Trait Manifolds

The term ‘magnification factor’ [5] refers to the degree of stretching or compression of the latent space when embedded into the data space. Previous experience has indicated that magnification factors are a useful tool for interpreting 2-D non-linear visualisation plots. For example, projections of well-separated dense clusters of data points will be occupy compressed regions on the visualisation plot (small magnification factors), separated by a band of highly stretched area (high magnification factors).

Let us consider the Cartesian coordinate system defined on the latent space and the mapping of this space to a curvilinear coordinate system defined on the manifold embedded in the data space. It has been shown in [5] that for the original GTM formulation, the local magnification factor corresponding to a point \(\mathbf{x}_0 \) in the latent space, defined as the ratio between the area of an infinitesimal rectangle in the latent Cartesian space and the area generated by mapping it through (4) on the projection manifold, is \(\sqrt{|S(\mathbf{x}_0)|} \), where \(|S(\mathbf{x}_0)| \) is the determinant of the metric tensor \(S = \Gamma^T \Gamma \), where \(\Gamma \) denotes the Jacobian of the mapping (4).

In general,

\[
\Gamma = \frac{\partial z(x_0)}{\partial x} = \frac{\partial b(\Theta \phi(x_0))}{\partial x} = F \Theta V
\]

(19)

where the \(M \times L \) matrix \(V \) is equal to \(\left(\frac{\partial \phi_m(x)}{\partial x_l} \big| x = x_0 \right)_{m=1,\ldots,M, l=1,\ldots,L} \), and the \(D \times D \) matrix \(F = \left(\frac{\partial \phi_m(y)}{\partial y_l} \big| y = \Theta \phi(x_0) \right)_{d=1,\ldots,D, d=1,\ldots,D} \) is the Fisher information matrix of the noise distribution. If Gaussian radial basis functions are utilized as \(\phi(\cdot) \) then the \((l,m)\)-th element of the matrix \(V \) will be \(v_{l,m} = -\phi_m(x_0)(x_l - c_{m,l})\sigma^{-2} \) where \(c_{m,l} \) denotes the \(l \)-th coordinate of the radial basis centre which corresponds to the \(m \)-th basis function.
Figure 7: Hierarchical visualisation of the yeast data constructed in a semi-interactive way.
Figure 8: Hierarchical visualisation of the yeast data constructed in a semi-interactive way. The set of points captured by the fourth LTM at level 4 of the hierarchy is highlighted in the visualisation plots of all its ancestors.
In summary, the magnification factor associated with a point \(\mathbf{x}_0 \) in the latent space is \(\sqrt{\mathbf{V}^T \mathbf{\Theta}^T \mathbf{F}^T \mathbf{F} \mathbf{V}} \).

In the case of Gaussian noise models, the matrix \(\mathbf{F}^T \mathbf{F} \) is the identity matrix. Note also that in all independent noise models this matrix will be diagonal; therefore the increase in computational complexity will not be significant. However, this is not the case for the multinomial trait model (as can be seen in appendix A.3).

As an example we show in Figure 9 the magnification factor plots for the projection hierarchy of the text data set in Figure 5. In general, dark bands in the plots indicate well-separated clusters of points in the data space. For example, there is a dark band slightly left of the center of the eleventh level-three model. The band divides different topics in the data space. From the corresponding model in Figure 5, we see that the left region mostly involves topic ‘talk.politics.misc’, and the right region contains a mixture of topics.

For a detailed analysis, we focus on the fourth level-three LTM model in Figure 9. The corresponding projection plot in Figure 5 contained only documents from a single topic, ‘sci.space’. An enlarged (locally scaled) view of the magnification factor plot is presented in Figure 10. It can be seen that there is a dark band around the diagonal line of the plot. Hence, we infer that documents on either side of the band correspond to different clusters and that a change of sub-topic happens.

The list of 5 most probable dictionary words for each latent space centre of the corresponding LTM is shown in Figure 11. With reference to Figure 10, two clusters can be found on each side of the separating band. Key words for each latent space centre inside the region bounded by the solid border are completely the same and have the same ordering. They appear to refer to documents relating to space shuttle launches. While key words inside the region with the dashed border seem likely to be associated with articles concerning space orbits.

7 Conclusion

In this paper we have presented a general system for hierarchical visualisation of large data sets which may be of either continuous or discrete type. We also derived formulas for magnification factors in latent trait models. The proposed system gives the user a choice of initializing the child plots of the current plot in either
Figure 9: Plots of magnification factors (log2 scaled) in the hierarchy of LTM sources fitted on the document data.
interactive, or automatic mode. This latter feature of our system is particularly useful when the user has no idea how to choose the area of interest due to highly overlapping dense data projections. The system can be used in many different fields, such as document data mining, tele-communications, bio-informatics, market-basket analysis or information retrieval.

Acknowledgments

This research has been funded by BBSRC grant 92/BIO12093 and Pfizer Central Research. Ata Kaban has been partially supported by re:source, The Council for Museums, Archives and Libraries, Grant Number RE/092, within the University of Paisley. The experiments were carried out with the Netlab neural network toolbox, available from http://www.ncrg.aston.ac.uk/netlab. Yi Sun would like to thank Mário A. T. Figueiredo for providing his software.

A Quantities required for computing magnification factors in the reported experimental settings

The exact form of the matrices F is dependent on the specific noise-model being employed. These quantities require the computation of the first derivatives of the inverse link function $b()$. In this appendix we will provide the expressions for those members of the exponential model family which have been employed in the reported
Figure 11: The most probable words formed in each of the 15 by 15 latent grid points by the Bernoulli latent trait model obtained in the experiments on text documents.
experimental settings.

A.1 Independent Gaussian noise model

The Gaussian model is the only member of the exponential family of distributions which is characterised by a quadratic cumulant function

$$B_i(y) = \frac{1}{2} y_i^2.$$ \hfill (20)

Therefore, it has a linear inverse-link function and higher derivatives vanish.

$$b_{i'}(y) = y_{i'},$$ \hfill (21)

$$\frac{\partial b_{i'}(y)}{\partial y_i} = 0.$$ \hfill (22)

A.2 Independent Bernoulli noise model

In the case of the Bernoulli model, the cumulant function has the following form:

$$B_i(y) = \log(1 + \exp(y_i)).$$ \hfill (23)

The required derivatives are then computed as follows:

$$b_{i'}(y) = \frac{\exp(y_{i'})}{1 + \exp(y_{i'})},$$ \hfill (24)

$$\frac{\partial b_{i'}(y)}{\partial y_i} = \begin{cases}
0 & t \neq t' \\
 b_i(y)(1 - b_i(y)) & t = t'.
\end{cases}$$ \hfill (25)

It can be seen that for independent noise models, the Fisher information matrix F is diagonal.

A.3 Multinomial noise model

The multinomial distribution is identified by the following cumulant function:

$$B(y) = \log \left(\sum_{t=1}^{T} \exp(y_t) \right).$$ \hfill (26)

Accordingly, the derivatives are given by

$$b_{i'}(y) = \frac{\exp(y_{i'})}{\sum_{i'=1}^{p} \exp(y_{i'})},$$ \hfill (27)
\[
\frac{\partial b_{t'}(y)}{\partial y_t} = \begin{cases}
-b_{t'}(y)b_t(y) & t \neq t' \\
b_{t'}(y)b_t(y) & t = t'.
\end{cases}
\] (28)

References

