
Criti
al Noise Levels for LDPC de
odingJ. van Mourik and D. SaadThe Neural Computing Resear
h Group, Aston University, Birmingham B4 7ET, United KingdomY. KabashimaDepartment of Computational Intelligen
e and Systems S
ien
e,Tokyo Institute of Te
hnology, Yokohama 2268502, JapanWe determine the 
riti
al noise level for de
oding low density parity 
he
k error 
orre
ting 
odesbased on the magnetization enumerator (M), rather than on the weight enumerator (W) employedin the information theory literature. The interpretation of our method is appealingly simple, andthe relation between the di�erent de
oding s
hemes su
h as typi
al pairs de
oding, MAP, and �nitetemperature de
oding (MPM) be
omes 
lear. In addition, our analysis provides an explanationfor the di�eren
e in performan
e between MN and Gallager 
odes. Our results are more optimisti
than those derived via the methods of information theory and are in ex
ellent agreement with re
entresults from another statisti
al physi
s approa
h.PACS numbers: 89.70+
,89.90+n,05.50+qI. INTRODUCTIONThe theory of error-
orre
ting 
odes is based on the eÆ
ient introdu
tion of redundan
y to given messages forprote
ting the information 
ontent against 
orruption. The theoreti
al foundations of this area were laid by Shannon'sseminal work [1℄ and have been developing ever sin
e. One of the main results obtained in this �eld is the 
elebrated
hannel 
oding theorem stating that there exists a 
ode su
h that the average message error probability PE , whenmaximum likelihood de
oding is used, 
an be made arbitrarily small for suÆ
iently long messages below the 
hannel
apa
ity; and will approa
h 1 above it. The 
hannel 
oding theorem is based on unstru
tured random 
odes andimpra
ti
al de
oders su
h as maximum likelihood [2℄ and typi
al set de
oding [3℄. In the 
ase of stru
tured 
odes,the 
riti
al 
ode rate R (message information 
ontent/length of the en
oded transmission) may lie below the 
hannel
apa
ity, 
ommonly termed Shannon's bound, even if optimal (and typi
ally impra
ti
al) de
oding methods are beingused. The proximity of the 
riti
al 
ode rate to Shannon's limit provides an indi
ation to the theoreti
al limitationsof a given 
ode.In 1963 Gallager [4℄ proposed a 
oding s
heme whi
h involves sparse linear transformations of binary messages thatwas forgotten soon after, in part due to the su

ess of 
onvolutional 
odes [2℄ and the 
omputational limitations ofthe time. Gallager 
odes have been re
ently redis
overed by Ma
Kay and Neal (MN), that independently proposed a
losely related 
ode [5℄. Variations of this family of 
odes, known as Low Density Parity Che
k (LDPC) 
odes, havedisplayed performan
e 
omparable (and sometimes superior) to other state-of-the-art 
odes. This family of 
odes hasbeen thoroughly investigated in the information theory (IT) literature (e.g., [3, 5, 6℄), providing a range of signi�
anttheoreti
al and pra
ti
al results.In parallel to studies 
arried out in the IT 
ommunity, a di�erent approa
h has been used to study LDPC 
odes,using the established methods of statisti
al physi
s (SP). This analysis, relying mainly on the repli
a symmetri
analysis of diluted systems [7, 8℄, o�ers an alternative to information theory methods and has yielded some newresults and insights [9, 11, 12℄. Due to the growing interest in LDPC 
odes and their su

essful analysis via themethods of statisti
al physi
s, there is growing interest in the relationship between IT and SP methods. As the two
ommunities investigate similar problems, one may expe
t that standard te
hniques known in one framework wouldbring about new developments in the other, and vi
e versa. Here we present a dire
t SP method to determine the
riti
al noise level of Gallager and MN error 
orre
ting 
odes, whi
h allows us to fo
us on the di�eren
es between thevarious de
oding 
riteria and their use for de�ning the 
riti
al noise level for whi
h de
oding is theoreti
ally feasible.The paper is organized as follows: In se
tion II we introdu
e the general framework, notation and the quantitieswe fo
us on, while in se
tion III we will brie
y des
ribe the SP 
al
ulation. Se
tion IV des
ribes qualitatively theemerging pi
ture of the main quantities 
al
ulated for Gallager's 
ode while the 
orresponding pi
ture for MN 
odeswill be des
ribed in se
tion V. Quantitative results for the 
riti
al noise level will be presented in se
tion VI followedby 
on
lusions.



2II. REGULAR GALLAGER AND MN CODESIn a general s
enario, the N dimensional Boolean message ~so 2 f0; 1gN is en
oded to the M(> N) dimensionalBoolean ve
tor ~to, and transmitted via a noisy 
hannel, whi
h is taken here to be a Binary Symmetri
 Channel (BSC)
hara
terized by an independent 
ip probability p per bit; other transmission 
hannels may also be examined withina similar framework. At the other end of the 
hannel, the 
orrupted 
odeword is de
oded utilizing the stru
tured
odeword redundan
y.The �rst type of error 
orre
ting 
ode that we fo
us on here, is Gallager's linear 
ode [4℄. Gallager's 
ode is alow density parity 
he
k 
ode de�ned by the a binary (M�N)�M matrix A = [C1jC2℄, 
on
atenating two verysparse matri
es known to both sender and re
eiver, with the (M�N)�(M�N) matrix C2 being invertible. Thematrix A has K non-zero elements per row and C per 
olumn, and the 
ode rate is given by R=1�C=K=1�N=M .En
oding refers to multiplying the original message ~so with the (M�N) matrix GT (where G=[ N jC�12 ℄), yieldingthe transmitted ve
tor ~to. Note that all operations are 
arried out in (mod 2) arithmeti
. Upon sending ~to throughthe binary symmetri
 
hannel (BSC) with noise level p, the ve
tor ~r = ~to+~no is re
eived, where ~no is the true noise.De
oding is 
arried out by multiplying ~r by A to produ
e the syndrome ve
tor ~z=A~r (= A~no, sin
e AGT = 0).In order to re
onstru
t the original message ~so, one has to obtain an estimate ~n for the true noise ~no. First we sele
tall ~n that satisfy the parity 
he
ks A~n = A~no:Ip
(A; ~no) � f~n j A~n = ~zg; and Irp
(A; ~no) � f~n 2 Ip
(A; ~no) j ~n 6= ~nog; (1)the (restri
ted) parity 
he
k set.The se
ond type of error 
orre
ting 
ode that we fo
us on here is the Ma
Kay-Neal (MN) 
ode [5℄. An MN 
odeis a low density parity 
he
k 
ode de�ned by a binary M�(N+M) matrix A = [CsjCn℄, 
on
atenating two verysparse matri
es known to both sender and re
eiver, with the M�M matrix Cn being invertible. The M�N matrixCs has K non-zero elements per row and C per 
olumn, while Cn has L non-zero elements per row and 
olumn. The
ode rate is given by R=K=C=N=M . En
oding refers to multiplying the original message ~so by the (M�N) densegenerator matrix G=C�1n Cs, yielding the transmitted ve
tor ~to. Note that all operations are 
arried out in (mod2)arithmeti
. Upon sending ~to through the binary symmetri
 
hannel (BSC) with noise level p, the ve
tor ~r = ~to+~nois re
eived, where ~no is the true noise.De
oding is 
arried out by multiplying ~r by Cn to produ
e the syndrome ve
tor ~z=Cs~so+Cn~no � A~
o, where ~
 isthe 
on
atenated ve
tor (~s; ~n). In order to re
onstru
t the original message ~so, one has to obtain estimates ~
 for thetrue signal and noise ~
o. First we sele
t all 
ombinations of signal and noise ~
 that satisfy the parity 
he
ks A~
 = A~
o:Ip
(A;~
o) � f~
 j A~
 = ~zg; and Irp
(A;~
o) � f~
 2 Ip
(A;~
o) j ~
 6= ~
og; (2)the (restri
ted) parity 
he
k set.To unify notation for Gallager and MN 
odes, we will adopt the notation ~
o for the original noise (and signal)ve
tor, and ~
 for the estimate of the noise (and signal) ve
tor. Any general de
oding s
heme then 
onsists of sele
tinga ve
tor ~
� from Ip
(A;~
o), on the basis of some noise (and signal) statisti
s 
riterion. Upon su

essful de
oding~
o will be sele
ted, while a de
oding error is de
lared when a ve
tor ~
� 2 Irp
(A;~
o) is sele
ted. For ea
h de
odings
heme, the average blo
k error probability [16℄Pe(ps; p) = 
� � a ve
tor ~
 2 Irp
(A;~
o) is sele
ted � �A;~
o (3)
an be de�ned as a measure of error 
orre
ting ability for a given 
ode ensemble, where �(�) is an indi
ator fun
tionreturning 1 if the proposition of the argument is true and 0, otherwise. For BSC, only the number of non-zero
omponents 
hara
terizes the statisti
s of the noise. On the other hand, the signal bits in general have an equalprobability for being 0 and 1 (i.e. ps = 12 ), whi
h implies that they have no useful prior information for the estimation.In the following, we therefore fo
us on de
oding s
hemes based on the weight of a ve
tor whi
h is the average sum ofthe noise 
omponents w(~
) � 1M PMj=1 nj . To obtain the error probability, one averages the indi
ator fun
tion overall ~
o ve
tors drawn from some distribution and the 
ode ensemble A as denoted by h:iA;~
o .Unfortunately, 
arrying out averages over the indi
ator fun
tion is diÆ
ult. Therefore, the error probability (3) isusually upper-bounded by averaging over the number of ve
tors ~n obeying a 
ertain 
ondition on the weight w(~n)whi
h 
hara
terizes the employed de
oding s
heme. Alternatively, one 
an �nd the average number of ve
tors with agiven weight value w from whi
h one 
an 
onstru
t a 
omplete weight distribution of noise ve
tors ~n in Irp
(A;~
o).From this distribution one 
an, in prin
iple, 
al
ulate a bound for Pe and derive 
riti
al noise values above whi
hsu

essful de
oding 
annot be 
arried out.A natural and dire
t measure for the average number of states is the entropy of a system under the restri
tionsdes
ribed above, that 
an be 
al
ulated via the methods of statisti
al physi
s.



3It was previously shown (see e.g. [9℄ for te
hni
al details) that this problem 
an be 
ast into a statisti
al me
hani
sformulation, by repla
ing the �eld (f0; 1g;+mod(2)) by (f1;�1g;�), and by adapting the parity 
he
ks 
orrespond-ingly. The statisti
s of a noise ve
tor ~n is now des
ribed by its magnetization m(~n) � 1M PMj=1 nj , (m(~n) 2 [1;�1℄),whi
h is inversely linked to the ve
tor weight in the [0; 1℄ representation. Similarly, the statisti
s of a signal ve
tor~s is now des
ribed by its magnetization ms(~s) � 1M PMj=1 sj , (ms(~s) 2 [1;�1℄). With this in mind, we introdu
ethe 
onditioned magnetization enumerator, for a given 
ode and noise, measuring the noise ve
tor magnetizationdistribution in Irp
(A; ~no) MA;~no(m) � 1M ln" Tr~n2Irp
(A;~no) Æ(m(~n)�m)# : (4)To obtain the magnetization enumerator M(m)M(m) = D MA;~
o(m) EA;~
o ; (5)whi
h is the entropy of the noise ve
tors in Irp
(A; ~n0) with a given m, one 
arries out uniform expli
it averages overall 
odes A with given parameters K;C (and L), and the weighted average over all possible noise ve
tors generatedby the BSC, (and all possible signal ve
tors) i.e.,P (~no) = MYj �(1�p) Æ(noj�1) + p Æ(noj+1)� ; (6)P (~so) = NYj �(1�ps) Æ(soj�1) + ps Æ(soj+1)� ; (7)with ps = 12 . It is important to note that, in 
al
ulating the entropy, the average quantity of interest is the magne-tization enumerator rather than the a
tual number of states. As physi
ists, this is the natural way to 
arry out theaverages for three main reasons: a) The entropy obtained in this way is believed to be self-averaging, i.e., its averagevalue (over the disorder) 
oin
ides with its typi
al value. b) This quantity is extensive and grows linearly with thesystem size. 
) This averaging distinguishes between annealed variables that are averaged or summed for a given setof quen
hed variables, that are averaged over later on. In this parti
ular 
ase, summation over all ~
 ve
tors is 
arriedfor a �xed 
hoi
e of 
ode A and ve
tor ~
o; averages over these variables are 
arried out at the next level.One should point out that in somewhat similar 
al
ulations, we showed that this method of 
arrying out the averagesprovides more a

urate results in 
omparison to averaging over both sets of variables simultaneously [14℄.A positive magnetization enumerator, M(m)>0 indi
ates that there is an exponential number of solutions (in M)with magnetization m, for typi
ally 
hosen A and ~
o, whileM(m)!0 indi
ates that this number vanishes as M!1(note that negative entropy is unphysi
al in dis
rete systems).Another important indi
ator for su

essful de
oding is the overlap ! between the sele
ted estimate ~n�, and the truenoise ~no: !(~n; ~no) � 1M PMj=1 njnoj , (!(~n; ~no) 2 [�1; 1℄), with ! = 1 for su

essful (perfe
t) de
oding. However, thisquantity 
annot be used for de
oding as ~no is unknown to the re
eiver. The (
ode and noise dependent) noise overlapenumerator is now de�ned as: WA;~
o(!) � 1M ln" Tr~
2Irp
(A;~
o) Æ(!(~n; ~no)�!)# ; (8)and the average quantity being W(!) = DWA;~
o(!)EA;~
o : (9)This measure is dire
tly linked to the weight enumerator [3℄, although a

ording to our notation, averages are 
ar-ried out distinguishing between annealed and quen
hed variables unlike the 
ommon de�nition in the IT literature.However, as we will show below, the two types of averages provide identi
al results in this parti
ular 
ase.Similarly, for MN-
odes one de�nes the signal magnetization and weight enumerators asMs(ms) � 1N *ln" Tr~
2Irp
(A;~
o) Æ(m(~s)�ms)#+A;~
o (10)Ws(!s) � 1N *ln" Tr~
2Irp
(A;~
o) Æ(!(~s;~so)�!s)#+A;~
o (11)



4In what follows, we perform all 
al
ulations as if both m and ! (and ms and !s for MN-
odes), are 
onstrained toparti
ular values. As we will show, omitting a 
onstraint in the �nal expressions 
an then easily be done by assigningthe zero value to the 
orresponding Lagrange multiplier.III. THE STATISTICAL PHYSICS APPROACHQuantities of the type Q(
) = hQy(
)iy, with Qy(
) = 1M ln [Zy(
)℄ and Zy(
) � Tr x Æ(
(x; y)�M
), are very
ommon in the SP of disordered systems; the ma
ros
opi
 order parameter 
(x; y) is �xed to a spe
i�
 value andmay depend both on the disorder y and on the mi
ros
opi
 variables x. Although we will not prove this here, su
ha quantity is generally believed to be self-averaging in the large system limit, i.e., obeying a probability distributionP (Qy(
)) = Æ(Qy(
)�Q(
))). The dire
t 
al
ulation of Q(
) is known as a quen
hed average over the disorder, butis typi
ally hard to 
arry out and requires using the repli
a method [8℄. The repli
a method makes use of the identityhlnZi = h limn!0[Zn�1℄=n i, by 
al
ulating averages over a produ
t of partition fun
tion repli
as. Employingassumptions about repli
a symmetries and analyti
ally 
ontinuing the variable n to zero, one obtains solutions whi
henable one to determine the state of the system.To simplify the 
al
ulation, one often employs the so-
alled annealed approximation, whi
h 
onsists of performing anaverage over Qy(
) �rst, followed by the logarithm operation. This avoids the repli
a method and provides (throughthe 
onvexity of the logarithm fun
tion) an upper bound to the quen
hed quantity:Qa(
) � 1M ln[hZy(
)iy℄ � Qq(
) � 1M hln[Zy(
)℄iy = limn!0 
Zny (
)�y�1nM : (12)The te
hni
al details of the 
al
ulation are similar to those in [9℄. It turns out that it is useful to perform thegauge transformation 
j!
j
oj , su
h that the averages over the 
ode A and noise/signal ~
o 
an be separated, WA;~
obe
omes independent of ~
o, leading to an equality between the quen
hed and annealed results,W(m) =Ma(m)jp=0 =Mq(m)jp=0. For any �nite noise value p one should multiply exp[W(!)℄ by the probability that a state obeys all parity
he
ks exp[�K(!; p)℄ given an overlap ! and a noise level p [3℄. In 
al
ulating W(!) and Ma=q(m), the Æ-fun
tions�xing m and !, are enfor
ed by introdu
ing Lagrange multipliers m̂ and !̂.Carrying out the averages expli
itly one then employs the saddle point method to extremize the averaged quantitywith respe
t to the parameters introdu
ed while 
arrying out the 
al
ulation. These lead, in both quen
hed andannealed 
al
ulations, to a set of saddle point equations that are solved either analyti
ally or numeri
ally to obtainthe �nal expression for the averaged quantity (entropy).The �nal expressions for the annealed entropy per noise degree of freedom for Gallager 
odes, under both overlap(!) and magnetization (m) 
onstraints, are of the form:Qa = �CK �ln(2)+(K�1) ln[1+
K1 ℄�+ln� Trn=�1 exp(n(!̂+m̂no))(1+n
K�11 )C�no � (!̂!+m̂m) ; (13)where 
1 has to be obtained from the saddle point equation �Qa�
1 = 0. Similarly, the �nal expression in the quen
hed
al
ulation, employing the simplest repli
a symmetry assumption [8℄, is of the form:Qq = �CZ dxdx̂ �(x)�̂(x̂) ln[1+xx̂℄+ CK Z ( KYk=1 dxk�(xk)) ln"12  1+ KYk=1xk!#+Z ( CY
=1 dx̂
�̂(x̂
))*ln " Trn=�1 exp(n(!̂+m̂no)) CY
=1(1+nx̂
)#+no � (!̂!+m̂m) : (14)The probability distributions �(x) and �̂(x̂) emerge from the 
al
ulation; the former represents a probability distribu-tion with respe
t to the noise ve
tor lo
al magnetization [15℄, while the latter relates to a �eld of 
onjugate variableswhi
h emerge from the introdu
tion of Æ-fun
tions while 
arrying out the averages (for details see [9℄). Their expli
itforms are obtained from the fun
tional saddle point equations ÆQqÆ�(x) , ÆQqÆ�̂(x̂) = 0, and all integrals are from�1 to 1.The �nal expressions for the annealed entropy per noise degree of freedom for MN-
odes, under both signal andnoise overlap (!; !s) and magnetization (m;ms) 
onstraints, are of the form:Qa = � �log(2)+(K+L�1) ln[1 + 
K1 dL1 ℄��R(m̂sms+!̂s!s)� (m̂m+!̂!)+R ln� Trs=�1 exp (s(!̂s + m̂s so)) (1 + s
̂1)C�so + ln� Trn=�1 exp (n(!̂ + m̂ no)) (1 + nd̂1)L�no (15)



5where 
1; d1 have to be obtained from the saddle point equations �Qa�
1 ; �Qa�d1 = 0. Similarly, the �nal expression in thequen
hed 
al
ulation, employing the simplest repli
a symmetry assumption [8℄, is of the form:Qq = Z KYk=1 dxk �(xk) LYl=1 dyl �(yl) ln"12  1+ KYk=1xk LYl=1 yl!#�R(m̂sms+!̂s!s)� (m̂m+!̂!)�K Z dxdx̂ �(x)�̂(x̂) ln[1+xx̂℄ +R Z CY
=1 dx̂
 �̂(x̂
)*ln" Trs=�1 exp(s(!̂s + m̂sso)) CY
=1(1+sx̂
)#+so�L Z dydŷ �(y)�̂(ŷ) ln[1+yŷ℄ + Z LYl=1 dŷl �̂(ŷl) *ln" Trn=�1 exp(n(!̂ + m̂ no) LYl=1(1+nŷl )#+no (16)The probability distributions �(x); �(y) and �̂(x̂); �̂(ŷ) emerge from the 
al
ulation; the former represent probabilitydistributions with respe
t to the signal/noise ve
tor lo
al magnetizations [15℄, while the latter relate to �elds of
onjugate variables whi
h emerge from the introdu
tion of Æ-fun
tions while 
arrying out the averages (for detailssee [9℄). Their expli
it forms are obtained from the fun
tional saddle point equations ÆQqÆ�(x) ; ÆQqÆ�̂(x̂) ; ÆQqÆ�(y) ; ÆQqÆ�̂(ŷ) = 0, andall integrals are from�1 to 1.Enfor
ing a Æ-fun
tion 
orresponds to taking !̂; m̂; !̂s; m̂s su
h that �Qa=q�!̂ ; �Qa=q�m̂ ; �Qa=q�!̂s ; �Qa=q�m̂s = 0, while notenfor
ing it 
orresponds to putting !̂; m̂; !̂s; m̂s to 0. Sin
e !;m; !s;ms, follow from �Qa=q�!̂ ; �Qa=q�m̂ ; �Qa=q�!̂s ; �Qa=q�m̂s =0,all the relevant quantities 
an be re
overed with appropriate 
hoi
es of !̂; m̂; !̂s; m̂s.a) p<p
 M(m)
m m+(p)�1 1

b) p=p
 M(m)
m m+(p)�1 1
) p>p
 M(m)

m m+(p)�1 1

m0(p) m0(p)
m0(p)

FIG. 1: The qualitative pi
ture ofM(m)�0 (solid lines) for di�erent values of p. For MAP, MPM and typi
al set de
oding, onlythe relative values of m+(p) and m0(p) determine the 
riti
al noise level. Dashed lines 
orrespond to the energy 
ontribution of��F at Nishimori's 
ondition (� = 1). The states with the lowest free energy are indi
ated by a point �. a) Sub-
riti
al noiselevels p<p
, where m+(p)<m0(p), there are no solutions with higher magnetization than m0(p), and the 
orre
t solution hasthe lowest free energy. b) Criti
al noise level p=p
, where m+(p)=m0(p). The minimum of the free energy of the sub-optimalsolutions is equal to that of the 
orre
t solution at Nishimori's 
ondition. 
) Over-
riti
al noise levels p > p
 where manysolutions have a higher magnetization than the true typi
al one. The minimum of the free energy of the sub-optimal solutionsis lower than that of the 
orre
t solution.



6IV. QUALITATIVE PICTUREWe now dis
uss the qualitative behaviour of M(m), and the interpretation of the various de
oding s
hemes. Toobtain separate results for M(m) and W(m) we 
al
ulate the results of Eqs.(13) and (14) (and Eqs. (15) and (16)),
orresponding to the annealed and quen
hed 
ases respe
tively, setting !̂ = 0 to obtain M(m) and m̂=0 to obtainW(!) (that be
omes M(m)jp=0 after gauging). In Fig. 1, we have qualitatively plotted the resulting fun
tion M(m)for relevant values of p. M(m) (solid line) only takes positive values in the interval [m�(p);m+(p)℄; for even K,M(m)is an even fun
tion of m and m�(p) = �m+(p). The maximum value of M(m) is always (1�R) ln(2) for Gallager
odes, and R ln(2) for MN 
odes. The true noise ~no has (with probability 1) the typi
al magnetization of the BSC:m(~no)=m0(p)=1�2p (dashed-dotted line).The various de
oding s
hemes 
an be summarized as follows:� Maximum likelihood (MAP) de
oding - minimizes the blo
k error probability [16℄ and 
onsists of sele
tingthe ~n from Ip
(A; ~n0) with the highest magnetization. Sin
e the probability of error below m+(p) vanishes,P (9~n 2 Irp
 : m(~n)>m+(p))=0, and sin
e P (m(~no)=m0(p))=1, the 
riti
al noise level p
 is determined by the
ondition m+(p
)=m0(p
). The sele
tion pro
ess is explained in Fig.1(a)-(
).� Typi
al pairs de
oding - is based on randomly sele
ting a ~n from Ip
 with m(~n) = m0(p) [3℄; an error isde
lared when ~n0 is not the only element of Ip
. For the same reason as above, the 
riti
al noise level p
 isdetermined by the 
ondition m+(p
)=m0(p
).� Finite temperature (MPM) de
oding - An energy �Fm(~n) (with F = 12 ln( 1�pp )) a

ording to Nishimori's
ondition (
orresponding to the sele
tion of an a

urate prior within the Bayesian framework). is attributed toea
h ~n 2 Ip
, and a solution is 
hosen from those with the magnetization that minimizes the free energy [9℄. Thispro
edure is known to minimize the bit error probability [16℄. Using the thermodynami
 relation F = U � 1�S,� being the inverse temperature (Nishimori's 
ondition 
orresponds to setting � = 1), the free energy of thesub-optimal solutions is given by F(m) =�Fm� 1�M(m) (for M(m)� 0), while that of the 
orre
t solutionis given by �Fm0(p) (its entropy being 0). The sele
tion pro
ess is explained graphi
ally in Fig.1(a)-(
). Thefree energy di�eren
es between sub-optimal solutions relative to that of the 
orre
t solution in the 
urrent plots,are given by the orthogonal distan
e betweenM(m) and the line with slope ��F through the point (m0(p); 0).Solutions with a magnetization m for whi
h M(m) lies above this line, have a lower free energy, while thosefor whi
h M(m) lies below, have a higher free energy. Sin
e negative entropy values are unphysi
al in dis
retesystems, only sub-optimal solutions with M(m) � 0 are 
onsidered. The lowest p value for whi
h there aresub-optimal solutions with a free energy equal to �Fm0(p) is the 
riti
al noise level p
 for MPM de
oding. Infa
t, using the 
onvexity of M(m) and Nishimori's 
ondition, one 
an show that the slope �M(m)=�m>��Ffor any value m<mo(p) and any p, and equals ��F only at m=mo(p); therefore, the 
riti
al noise level forMPM de
oding p=p
 is identi
al to that of MAP, in agreement with results obtained in the information theory
ommunity [17℄.The statisti
al physi
s interpretation of �nite temperature de
oding 
orresponds to making the spe
i�
 
hoi
e forthe Lagrange multiplier m̂=�F and 
onsidering the free energy instead of the entropy. In earlier work on MPMde
oding in the SP framework [9℄, negative entropy values were treated by adopting di�erent repli
a symmetryassumptions, whi
h e�e
tively result in 
hanging the inverse temperature, i.e., the Lagrange multiplier m̂. Thise�e
tively sets m=m+(p), i.e. to the highest value with non-negative entropy. The sub-optimal states with thelowest free energy are then those with m=m+(p).The 
entral point in all de
oding s
hemes, is to sele
t the 
orre
t solution only on the basis of its magnetization.As long as there are no sub-optimal solutions with the same magnetization, this is in prin
iple possible. As shownhere, all three de
oding s
hemes dis
ussed above, manage to do so. To �nd whether at a given p there exists a gapbetween the magnetization of the 
orre
t solution and that of the nearest sub-optimal solution, just requires plottingM(m)(> 0) and m0(p), thus allowing a graphi
al determination of p
. Sin
e MPM de
oding is done at Nishimori'stemperature, the simplest repli
a symmetry assumption is suÆ
ient to des
ribe the thermodynami
ally dominantstate [8℄. At p
 the states with m+(p
)=m0(p
) are thermodynami
ally dominant, and the p
 values that we obtainunder this assumption are exa
t.V. MN CODES - AN ALTERNATIVE VIEWFor MN 
odes there is a way to obtain the exa
t expression for M, in the 
ase of unbiased messages, by employinga single highly plausible assumption. We �rst note that every the parity 
he
k bit z<> = soi1 ::soiKnoj1 ::nojL is made up



7of a 
ombination of K unbiased (i.e. ps = 12 ) signal bits, and L biased (i.e. p 6= 12 ) noise bits. As a result, everysyndrome element z<> is unbiased independently of the noise bit statisti
s. It is therefore plausible to assume thatthe noise bit statisti
s (i.e. p) have no in
uen
e on the distribution of the parity 
he
k bits z<>, and therefore on M(whi
h only depends on the true noise through the z<>). If this assumption is satis�ed, one 
an invoke Nishimori's
ondition to obtain an exa
t expression for M.Independently of the assumption, Nishimori's 
ondition gives the following identity for the thermodynami
ally domi-nant state: �M(m)�m ����m=mo(p) = �F (p) = �12 ln�1�pp � = �12 ln�1+mo1�mo� : (17)Sin
e states 
hara
terized by any magnetization value m < m0(pt) will be
ome dominant for an appropriately 
hosenvalue of p, and sin
e we assume that M is independent of p, the identity�M(m)�m = �12 ln�1+m1�m� ; (18)must hold for any value of m. Furthermore, the maximum of M(m) is rea
hed at m = 0 with M(0) = R ln(2), andwe have that M(m) =M(0)� 12 Z m0 du ln�1+u1�u� = ln(2) �R� 1 +H2�1 +m2 �� ; (19)where H2(p) is the binary entropy per bit for ve
tors with bias p. Hen
e, under this assumption, we do not onlyobtain the exa
t expression forM(m), but we see that the 
riti
al noise level p
 is given by R = 1�H2(p
), saturatingShannon's bound for this type of 
odes!Unfortunately, the assumption 
an not be veri�ed easily without the repli
a method. To verify whether indeed�M(m)�p = 0, we have to take the derivative of expression (16) (setting !̂ = !̂s = m̂s = 0) with respe
t to p. It turnsout that M is only independent of p, when �(ŷ) is an even fun
tion of ŷ, whi
h in turn requires that �(y) and �(x)are even fun
tions of their arguments. Numeri
al analysis shows, that this is the 
ase for any K � 3 or K = 2; L � 3,while not so for K = 1 or K = L = 2. This result is 
onsistent with those reported in [9℄, i.e. that typi
al MN 
odeswith K � 3 or K = 2; L � 3 do saturate Shannon's bound, while those with K = 1 and K = L = 2 do not.Intuitively this result 
an be understood in the following way. There are M parity 
he
k bits and only N(< M)signal bits, su
h that parity 
he
k bits, although individually unbiased, are not un
orrelated. These 
orrelations doseem to have an e�e
t onM(m) for K = 1 and K = L = 2, while for K � 3 and K = 2; L � 3 the signal bits seem tobe \s
rambled" enough in the parity 
he
ks for the 
orrelations to be insigni�
ant. Note that this argument does nothold for Gallager 
odes and MN 
odes with biased messages, where the parity 
he
k bits ex
lusively 
omprise biasedbits, and are therefore biased themselves. They only be
ome unbiased as K !1 for Gallager 
odes (for whi
h it wasalready reported in the literature [5℄ that su
h 
odes 
an saturate Shannon's bound), and for K !1 or L!1 forMN 
odes.In fa
t, numeri
al analysis reveals that for K � 3 and for K = 2; L � 3 we have that �(ŷ) = Æ(ŷ), �(y) = Æ(y),�(x) = Æ(x) at least up to m+(p) = m0(pt) whi
h is independent of p. This allows us to 
al
ulate M analyti
allyfrom expression (16), and we re
over, as expe
ted, the exa
t expression (19).For K = 1 or K = L = 2, like in the 
ase of Gallager 
odes, one 
an only obtain m+(p) numeri
ally. The resultsof this pro
edure are presented in the next se
tion. Furthermore, for K = 1 and for K = L = 2, we �nd thatspontaneously ms 6= 0 for some values of p < p
, when no restri
tion is enfor
ed (i.e. for m̂s = 0). This implies thatone may improve the de
oding performan
e by imposing the 
ondition of unbiased signal (similar to the 
onditionsfor typi
al set de
oding), i.e. by adjusting the Lagrange multiplier m̂s su
h that ms = 0. Unfortunately, this onlyhappens for values of p for whi
h there is an exponential number of sub-optimal solutions ~
 2 Irp
(A;~
o) with the sameweight as ~
o, and imposing this 
onstraint on the signal estimator only redu
es this number, leaving it nevertheless,exponential.It was shown [10℄ that MN 
odes in prin
iple 
ontain suÆ
ient information to saturate Shannon's bound for unbiasedmessages. For 
odes withK = 1, orK = L = 2, some of this information is wasted in a region where errorless de
odingis impossible anyway, su
h that Shannon's bound is not saturated. For 
odes with K � 3, or K = 2; L � 3, ouranalysis indi
ates that all information is used optimally, and that Shannon's bound 
an be theoreti
ally saturated.Our argument also explains the relative importan
e of the parameters K and L for the behaviour of the 
ode in
omparison with C.



8VI. CRITICAL NOISE LEVEL - RESULTSSome general 
omments 
an be made about the 
riti
al MAP (or typi
al set) values obtained via the annealedand quen
hed 
al
ulations. Sin
e Mq(m) �Ma(m) (for given values of K, C (L) and p), we 
an derive the generalinequality p
;q � p
;a. For all K, C (L) values that we have numeri
ally analyzed, for both annealed and quen
hed
ases, m+(p) is a non in
reasing fun
tion of p, and p
 is unique. The estimates of the 
riti
al noise levels p
;a=q, basedon Ma=q , are obtained by numeri
ally 
al
ulating m
;a=q(p), and by determining their interse
tion with m0(p). Thisis explained graphi
ally in Fig.2(a). As the results for MPM de
oding have already been presented elsewhere [11℄, wea) 1 m
0 pp
;a p
;q m0(p)m+;a(p)m+;q(p)0:5

b) (K;C) (6; 3) (5; 3) (6; 4) (4; 3)Code rate 1=2 2=5 1=3 1=4IT (Wa) 0.0915 0.129 0.170 0.205SP 0.0990 0.136 0.173 0.209p
;a (Ma) 0.031 0.066 0.162 0.195p
;q (Mq) 0.0998 0.1365 0.1725 0.2095Shannon pt 0.109 0.145 0.174 0.214FIG. 2: a) Determining the 
riti
al noise levels p
;a=q based on the fun
tion Ma=q for Gallager 
odes and for MN 
odeswith K = 1 or K = L = 2, a qualitative pi
ture. b) Comparison of di�erent 
riti
al noise level (p
) estimates for Gallager
odes. Typi
al set de
oding estimates have been obtained via the methods of IT [3℄, based on having a unique solution toW(m) =K(m; p
), as well as using the methods of SP [18℄. The numeri
al pre
ision is up to the last digit for the 
urrentmethod. Shannon's limit denotes the highest theoreti
ally a
hievable 
riti
al noise level pt for any 
ode [1℄.will now 
on
entrate on the 
riti
al results p
 obtained for typi
al set and MAP de
oding for Gallager 
odes; theseare presented in Fig.2(b), showing the values of p
;a=q for various 
hoi
es of K and C 
ompared with those reportedin the literature.>From the table it is 
lear that the annealed approximation gives a mu
h more pessimisti
 estimate for p
. This isdue to the fa
t that it overestimatesM in the following way. Ma(m) des
ribes the 
ombined entropy of ~n and ~no asif ~no were thermal variables as well. Therefore, exponentially rare events for ~no (i.e. m(~no) 6=m0(p)) still may 
arrypositive entropy due to the addition of a positive entropy term from ~n. In a separate study [18℄ these e�e
ts have beentaken 
are of by the introdu
tion of an extra exponent; this is not ne
essary in the 
urrent formalism as the quen
hed
al
ulation automati
ally suppresses su
h 
ontributions. The similarity between the results reported here and thoseobtained in [14℄ is not surprising as the equations obtained in quen
hed 
al
ulations are similar to those obtained byaveraging the upper-bound to the reliability exponent using a methods presented originally by Gallager [4℄. Numeri
aldi�eren
es between the two sets of results are probably due to the higher numeri
al pre
ision here.We have also obtained the 
riti
al noise levels for some parameter 
hoi
es in MN 
odes. We only present thequen
hed (exa
t) values, and 
ompare them only with the highest theoreti
ally a
hievable 
riti
al noise level pt forany 
ode [1℄, as we are not aware of values obtained with other methods in the literature. Note that although stillstri
tly below pt, the 
riti
al noise levels p
 for K = L = 2 with in
reasing values of C rapidly approa
h pt to withinthe 
urrent numeri
al pre
ision.a) 1 m
0 pp
;q = pt m0(p)m+;q(p) = m0(pt)0:5

b) (K;C;L) (1; 3; 2) (2; 6; 2) (2; 3; 2) (3; 9; 3)Code rate 1=3 1=3 2=3 1=3p
;q (Mq) 0:15 <�0.174 0:06 0:174Shannon pt 0:174 0:174 0:0615 0:174FIG. 3: a) Determining the 
riti
al noise levels p
;q based on the fun
tion Mq for MN 
odes with K � 3 or K = 2; L � 3, aqualitative pi
ture. b) Comparison of di�erent 
riti
al noise level (p
;q) estimates for MN 
odes. The numeri
al pre
ision is upto the last digit for the 
urrent method. Shannon's limit denotes the highest theoreti
ally a
hievable 
riti
al noise level pt forany 
ode [1℄.



9VII. CONCLUSIONSIn this paper we have shown how both weight and magnetization enumerators 
an be 
al
ulated using the methodsof statisti
al physi
s in the 
ase of regular LDPC 
odes. We study the role played by the magnetization enumeratorM(m) in determining the a
hievable 
riti
al noise level for various de
oding s
hemes. The formalism based onthe magnetization enumerator M o�ers a intuitively simple alternative to the weight enumerator formalism usedin 
onjun
tion with typi
al pairs de
oding in the IT literature [3, 18℄. The SP based analysis employes the repli
amethod given the very low 
riti
al values obtained by the annealed approximation 
al
ulation. Furthermore, thepowerfull gauge theory as proposed by Nishimori [8℄, proves that the repli
a symmetri
 assumption is 
orre
t (at leastat the 
riti
al noise level), and thus that the 
riti
al noise levels as obtained by our method are exa
t. Althoughwe have 
on
entrated here on the 
riti
al noise level for the BSC, other 
hannel types as well as other quantities ofinterest 
an be treated using a similar formalism. The predi
tions for the 
riti
al noise level are more optimisti
 thanthose reported in the IT literature, and are up to numeri
al pre
ision in agreement with those reported in [18℄. Wehave also shown that the 
riti
al noise levels for typi
al pairs, MAP and MPM de
oding must 
oin
ide, and we haveprovided an intuitive explanation to the di�eren
e between MAP and MPM de
oding. Finally, an extension of thisanalysis to MN 
odes reveals the me
hanism whi
h allows them to saturate Shannon's limit for �nite K � 3 and forK = 2; L � 3 values (if impra
ti
al algorithms su
h as maximum likelihood are used). This result, whi
h is 
onsistentwith previous SP based analyses [9℄ is 
onsidered as surprising in the IT 
ommunity.We believe that SP based analysis will provide more insight into the performan
e and 
hara
teristi
s of randomLDPC 
odes, 
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