
Critial Noise Levels for LDPC deodingJ. van Mourik and D. SaadThe Neural Computing Researh Group, Aston University, Birmingham B4 7ET, United KingdomY. KabashimaDepartment of Computational Intelligene and Systems Siene,Tokyo Institute of Tehnology, Yokohama 2268502, JapanWe determine the ritial noise level for deoding low density parity hek error orreting odesbased on the magnetization enumerator (M), rather than on the weight enumerator (W) employedin the information theory literature. The interpretation of our method is appealingly simple, andthe relation between the di�erent deoding shemes suh as typial pairs deoding, MAP, and �nitetemperature deoding (MPM) beomes lear. In addition, our analysis provides an explanationfor the di�erene in performane between MN and Gallager odes. Our results are more optimistithan those derived via the methods of information theory and are in exellent agreement with reentresults from another statistial physis approah.PACS numbers: 89.70+,89.90+n,05.50+qI. INTRODUCTIONThe theory of error-orreting odes is based on the eÆient introdution of redundany to given messages forproteting the information ontent against orruption. The theoretial foundations of this area were laid by Shannon'sseminal work [1℄ and have been developing ever sine. One of the main results obtained in this �eld is the elebratedhannel oding theorem stating that there exists a ode suh that the average message error probability PE , whenmaximum likelihood deoding is used, an be made arbitrarily small for suÆiently long messages below the hannelapaity; and will approah 1 above it. The hannel oding theorem is based on unstrutured random odes andimpratial deoders suh as maximum likelihood [2℄ and typial set deoding [3℄. In the ase of strutured odes,the ritial ode rate R (message information ontent/length of the enoded transmission) may lie below the hannelapaity, ommonly termed Shannon's bound, even if optimal (and typially impratial) deoding methods are beingused. The proximity of the ritial ode rate to Shannon's limit provides an indiation to the theoretial limitationsof a given ode.In 1963 Gallager [4℄ proposed a oding sheme whih involves sparse linear transformations of binary messages thatwas forgotten soon after, in part due to the suess of onvolutional odes [2℄ and the omputational limitations ofthe time. Gallager odes have been reently redisovered by MaKay and Neal (MN), that independently proposed alosely related ode [5℄. Variations of this family of odes, known as Low Density Parity Chek (LDPC) odes, havedisplayed performane omparable (and sometimes superior) to other state-of-the-art odes. This family of odes hasbeen thoroughly investigated in the information theory (IT) literature (e.g., [3, 5, 6℄), providing a range of signi�anttheoretial and pratial results.In parallel to studies arried out in the IT ommunity, a di�erent approah has been used to study LDPC odes,using the established methods of statistial physis (SP). This analysis, relying mainly on the replia symmetrianalysis of diluted systems [7, 8℄, o�ers an alternative to information theory methods and has yielded some newresults and insights [9, 11, 12℄. Due to the growing interest in LDPC odes and their suessful analysis via themethods of statistial physis, there is growing interest in the relationship between IT and SP methods. As the twoommunities investigate similar problems, one may expet that standard tehniques known in one framework wouldbring about new developments in the other, and vie versa. Here we present a diret SP method to determine theritial noise level of Gallager and MN error orreting odes, whih allows us to fous on the di�erenes between thevarious deoding riteria and their use for de�ning the ritial noise level for whih deoding is theoretially feasible.The paper is organized as follows: In setion II we introdue the general framework, notation and the quantitieswe fous on, while in setion III we will briey desribe the SP alulation. Setion IV desribes qualitatively theemerging piture of the main quantities alulated for Gallager's ode while the orresponding piture for MN odeswill be desribed in setion V. Quantitative results for the ritial noise level will be presented in setion VI followedby onlusions.



2II. REGULAR GALLAGER AND MN CODESIn a general senario, the N dimensional Boolean message ~so 2 f0; 1gN is enoded to the M(> N) dimensionalBoolean vetor ~to, and transmitted via a noisy hannel, whih is taken here to be a Binary Symmetri Channel (BSC)haraterized by an independent ip probability p per bit; other transmission hannels may also be examined withina similar framework. At the other end of the hannel, the orrupted odeword is deoded utilizing the struturedodeword redundany.The �rst type of error orreting ode that we fous on here, is Gallager's linear ode [4℄. Gallager's ode is alow density parity hek ode de�ned by the a binary (M�N)�M matrix A = [C1jC2℄, onatenating two verysparse matries known to both sender and reeiver, with the (M�N)�(M�N) matrix C2 being invertible. Thematrix A has K non-zero elements per row and C per olumn, and the ode rate is given by R=1�C=K=1�N=M .Enoding refers to multiplying the original message ~so with the (M�N) matrix GT (where G=[ N jC�12 ℄), yieldingthe transmitted vetor ~to. Note that all operations are arried out in (mod 2) arithmeti. Upon sending ~to throughthe binary symmetri hannel (BSC) with noise level p, the vetor ~r = ~to+~no is reeived, where ~no is the true noise.Deoding is arried out by multiplying ~r by A to produe the syndrome vetor ~z=A~r (= A~no, sine AGT = 0).In order to reonstrut the original message ~so, one has to obtain an estimate ~n for the true noise ~no. First we seletall ~n that satisfy the parity heks A~n = A~no:Ip(A; ~no) � f~n j A~n = ~zg; and Irp(A; ~no) � f~n 2 Ip(A; ~no) j ~n 6= ~nog; (1)the (restrited) parity hek set.The seond type of error orreting ode that we fous on here is the MaKay-Neal (MN) ode [5℄. An MN odeis a low density parity hek ode de�ned by a binary M�(N+M) matrix A = [CsjCn℄, onatenating two verysparse matries known to both sender and reeiver, with the M�M matrix Cn being invertible. The M�N matrixCs has K non-zero elements per row and C per olumn, while Cn has L non-zero elements per row and olumn. Theode rate is given by R=K=C=N=M . Enoding refers to multiplying the original message ~so by the (M�N) densegenerator matrix G=C�1n Cs, yielding the transmitted vetor ~to. Note that all operations are arried out in (mod2)arithmeti. Upon sending ~to through the binary symmetri hannel (BSC) with noise level p, the vetor ~r = ~to+~nois reeived, where ~no is the true noise.Deoding is arried out by multiplying ~r by Cn to produe the syndrome vetor ~z=Cs~so+Cn~no � A~o, where ~ isthe onatenated vetor (~s; ~n). In order to reonstrut the original message ~so, one has to obtain estimates ~ for thetrue signal and noise ~o. First we selet all ombinations of signal and noise ~ that satisfy the parity heks A~ = A~o:Ip(A;~o) � f~ j A~ = ~zg; and Irp(A;~o) � f~ 2 Ip(A;~o) j ~ 6= ~og; (2)the (restrited) parity hek set.To unify notation for Gallager and MN odes, we will adopt the notation ~o for the original noise (and signal)vetor, and ~ for the estimate of the noise (and signal) vetor. Any general deoding sheme then onsists of seletinga vetor ~� from Ip(A;~o), on the basis of some noise (and signal) statistis riterion. Upon suessful deoding~o will be seleted, while a deoding error is delared when a vetor ~� 2 Irp(A;~o) is seleted. For eah deodingsheme, the average blok error probability [16℄Pe(ps; p) = 
� � a vetor ~ 2 Irp(A;~o) is seleted � �A;~o (3)an be de�ned as a measure of error orreting ability for a given ode ensemble, where �(�) is an indiator funtionreturning 1 if the proposition of the argument is true and 0, otherwise. For BSC, only the number of non-zeroomponents haraterizes the statistis of the noise. On the other hand, the signal bits in general have an equalprobability for being 0 and 1 (i.e. ps = 12 ), whih implies that they have no useful prior information for the estimation.In the following, we therefore fous on deoding shemes based on the weight of a vetor whih is the average sum ofthe noise omponents w(~) � 1M PMj=1 nj . To obtain the error probability, one averages the indiator funtion overall ~o vetors drawn from some distribution and the ode ensemble A as denoted by h:iA;~o .Unfortunately, arrying out averages over the indiator funtion is diÆult. Therefore, the error probability (3) isusually upper-bounded by averaging over the number of vetors ~n obeying a ertain ondition on the weight w(~n)whih haraterizes the employed deoding sheme. Alternatively, one an �nd the average number of vetors with agiven weight value w from whih one an onstrut a omplete weight distribution of noise vetors ~n in Irp(A;~o).From this distribution one an, in priniple, alulate a bound for Pe and derive ritial noise values above whihsuessful deoding annot be arried out.A natural and diret measure for the average number of states is the entropy of a system under the restritionsdesribed above, that an be alulated via the methods of statistial physis.



3It was previously shown (see e.g. [9℄ for tehnial details) that this problem an be ast into a statistial mehanisformulation, by replaing the �eld (f0; 1g;+mod(2)) by (f1;�1g;�), and by adapting the parity heks orrespond-ingly. The statistis of a noise vetor ~n is now desribed by its magnetization m(~n) � 1M PMj=1 nj , (m(~n) 2 [1;�1℄),whih is inversely linked to the vetor weight in the [0; 1℄ representation. Similarly, the statistis of a signal vetor~s is now desribed by its magnetization ms(~s) � 1M PMj=1 sj , (ms(~s) 2 [1;�1℄). With this in mind, we introduethe onditioned magnetization enumerator, for a given ode and noise, measuring the noise vetor magnetizationdistribution in Irp(A; ~no) MA;~no(m) � 1M ln" Tr~n2Irp(A;~no) Æ(m(~n)�m)# : (4)To obtain the magnetization enumerator M(m)M(m) = D MA;~o(m) EA;~o ; (5)whih is the entropy of the noise vetors in Irp(A; ~n0) with a given m, one arries out uniform expliit averages overall odes A with given parameters K;C (and L), and the weighted average over all possible noise vetors generatedby the BSC, (and all possible signal vetors) i.e.,P (~no) = MYj �(1�p) Æ(noj�1) + p Æ(noj+1)� ; (6)P (~so) = NYj �(1�ps) Æ(soj�1) + ps Æ(soj+1)� ; (7)with ps = 12 . It is important to note that, in alulating the entropy, the average quantity of interest is the magne-tization enumerator rather than the atual number of states. As physiists, this is the natural way to arry out theaverages for three main reasons: a) The entropy obtained in this way is believed to be self-averaging, i.e., its averagevalue (over the disorder) oinides with its typial value. b) This quantity is extensive and grows linearly with thesystem size. ) This averaging distinguishes between annealed variables that are averaged or summed for a given setof quenhed variables, that are averaged over later on. In this partiular ase, summation over all ~ vetors is arriedfor a �xed hoie of ode A and vetor ~o; averages over these variables are arried out at the next level.One should point out that in somewhat similar alulations, we showed that this method of arrying out the averagesprovides more aurate results in omparison to averaging over both sets of variables simultaneously [14℄.A positive magnetization enumerator, M(m)>0 indiates that there is an exponential number of solutions (in M)with magnetization m, for typially hosen A and ~o, whileM(m)!0 indiates that this number vanishes as M!1(note that negative entropy is unphysial in disrete systems).Another important indiator for suessful deoding is the overlap ! between the seleted estimate ~n�, and the truenoise ~no: !(~n; ~no) � 1M PMj=1 njnoj , (!(~n; ~no) 2 [�1; 1℄), with ! = 1 for suessful (perfet) deoding. However, thisquantity annot be used for deoding as ~no is unknown to the reeiver. The (ode and noise dependent) noise overlapenumerator is now de�ned as: WA;~o(!) � 1M ln" Tr~2Irp(A;~o) Æ(!(~n; ~no)�!)# ; (8)and the average quantity being W(!) = DWA;~o(!)EA;~o : (9)This measure is diretly linked to the weight enumerator [3℄, although aording to our notation, averages are ar-ried out distinguishing between annealed and quenhed variables unlike the ommon de�nition in the IT literature.However, as we will show below, the two types of averages provide idential results in this partiular ase.Similarly, for MN-odes one de�nes the signal magnetization and weight enumerators asMs(ms) � 1N *ln" Tr~2Irp(A;~o) Æ(m(~s)�ms)#+A;~o (10)Ws(!s) � 1N *ln" Tr~2Irp(A;~o) Æ(!(~s;~so)�!s)#+A;~o (11)



4In what follows, we perform all alulations as if both m and ! (and ms and !s for MN-odes), are onstrained topartiular values. As we will show, omitting a onstraint in the �nal expressions an then easily be done by assigningthe zero value to the orresponding Lagrange multiplier.III. THE STATISTICAL PHYSICS APPROACHQuantities of the type Q() = hQy()iy, with Qy() = 1M ln [Zy()℄ and Zy() � Tr x Æ((x; y)�M), are veryommon in the SP of disordered systems; the marosopi order parameter (x; y) is �xed to a spei� value andmay depend both on the disorder y and on the mirosopi variables x. Although we will not prove this here, suha quantity is generally believed to be self-averaging in the large system limit, i.e., obeying a probability distributionP (Qy()) = Æ(Qy()�Q())). The diret alulation of Q() is known as a quenhed average over the disorder, butis typially hard to arry out and requires using the replia method [8℄. The replia method makes use of the identityhlnZi = h limn!0[Zn�1℄=n i, by alulating averages over a produt of partition funtion replias. Employingassumptions about replia symmetries and analytially ontinuing the variable n to zero, one obtains solutions whihenable one to determine the state of the system.To simplify the alulation, one often employs the so-alled annealed approximation, whih onsists of performing anaverage over Qy() �rst, followed by the logarithm operation. This avoids the replia method and provides (throughthe onvexity of the logarithm funtion) an upper bound to the quenhed quantity:Qa() � 1M ln[hZy()iy℄ � Qq() � 1M hln[Zy()℄iy = limn!0 
Zny ()�y�1nM : (12)The tehnial details of the alulation are similar to those in [9℄. It turns out that it is useful to perform thegauge transformation j!joj , suh that the averages over the ode A and noise/signal ~o an be separated, WA;~obeomes independent of ~o, leading to an equality between the quenhed and annealed results,W(m) =Ma(m)jp=0 =Mq(m)jp=0. For any �nite noise value p one should multiply exp[W(!)℄ by the probability that a state obeys all parityheks exp[�K(!; p)℄ given an overlap ! and a noise level p [3℄. In alulating W(!) and Ma=q(m), the Æ-funtions�xing m and !, are enfored by introduing Lagrange multipliers m̂ and !̂.Carrying out the averages expliitly one then employs the saddle point method to extremize the averaged quantitywith respet to the parameters introdued while arrying out the alulation. These lead, in both quenhed andannealed alulations, to a set of saddle point equations that are solved either analytially or numerially to obtainthe �nal expression for the averaged quantity (entropy).The �nal expressions for the annealed entropy per noise degree of freedom for Gallager odes, under both overlap(!) and magnetization (m) onstraints, are of the form:Qa = �CK �ln(2)+(K�1) ln[1+K1 ℄�+ln� Trn=�1 exp(n(!̂+m̂no))(1+nK�11 )C�no � (!̂!+m̂m) ; (13)where 1 has to be obtained from the saddle point equation �Qa�1 = 0. Similarly, the �nal expression in the quenhedalulation, employing the simplest replia symmetry assumption [8℄, is of the form:Qq = �CZ dxdx̂ �(x)�̂(x̂) ln[1+xx̂℄+ CK Z ( KYk=1 dxk�(xk)) ln"12  1+ KYk=1xk!#+Z ( CY=1 dx̂�̂(x̂))*ln " Trn=�1 exp(n(!̂+m̂no)) CY=1(1+nx̂)#+no � (!̂!+m̂m) : (14)The probability distributions �(x) and �̂(x̂) emerge from the alulation; the former represents a probability distribu-tion with respet to the noise vetor loal magnetization [15℄, while the latter relates to a �eld of onjugate variableswhih emerge from the introdution of Æ-funtions while arrying out the averages (for details see [9℄). Their expliitforms are obtained from the funtional saddle point equations ÆQqÆ�(x) , ÆQqÆ�̂(x̂) = 0, and all integrals are from�1 to 1.The �nal expressions for the annealed entropy per noise degree of freedom for MN-odes, under both signal andnoise overlap (!; !s) and magnetization (m;ms) onstraints, are of the form:Qa = � �log(2)+(K+L�1) ln[1 + K1 dL1 ℄��R(m̂sms+!̂s!s)� (m̂m+!̂!)+R ln� Trs=�1 exp (s(!̂s + m̂s so)) (1 + ŝ1)C�so + ln� Trn=�1 exp (n(!̂ + m̂ no)) (1 + nd̂1)L�no (15)



5where 1; d1 have to be obtained from the saddle point equations �Qa�1 ; �Qa�d1 = 0. Similarly, the �nal expression in thequenhed alulation, employing the simplest replia symmetry assumption [8℄, is of the form:Qq = Z KYk=1 dxk �(xk) LYl=1 dyl �(yl) ln"12  1+ KYk=1xk LYl=1 yl!#�R(m̂sms+!̂s!s)� (m̂m+!̂!)�K Z dxdx̂ �(x)�̂(x̂) ln[1+xx̂℄ +R Z CY=1 dx̂ �̂(x̂)*ln" Trs=�1 exp(s(!̂s + m̂sso)) CY=1(1+sx̂)#+so�L Z dydŷ �(y)�̂(ŷ) ln[1+yŷ℄ + Z LYl=1 dŷl �̂(ŷl) *ln" Trn=�1 exp(n(!̂ + m̂ no) LYl=1(1+nŷl )#+no (16)The probability distributions �(x); �(y) and �̂(x̂); �̂(ŷ) emerge from the alulation; the former represent probabilitydistributions with respet to the signal/noise vetor loal magnetizations [15℄, while the latter relate to �elds ofonjugate variables whih emerge from the introdution of Æ-funtions while arrying out the averages (for detailssee [9℄). Their expliit forms are obtained from the funtional saddle point equations ÆQqÆ�(x) ; ÆQqÆ�̂(x̂) ; ÆQqÆ�(y) ; ÆQqÆ�̂(ŷ) = 0, andall integrals are from�1 to 1.Enforing a Æ-funtion orresponds to taking !̂; m̂; !̂s; m̂s suh that �Qa=q�!̂ ; �Qa=q�m̂ ; �Qa=q�!̂s ; �Qa=q�m̂s = 0, while notenforing it orresponds to putting !̂; m̂; !̂s; m̂s to 0. Sine !;m; !s;ms, follow from �Qa=q�!̂ ; �Qa=q�m̂ ; �Qa=q�!̂s ; �Qa=q�m̂s =0,all the relevant quantities an be reovered with appropriate hoies of !̂; m̂; !̂s; m̂s.a) p<p M(m)
m m+(p)�1 1

b) p=p M(m)
m m+(p)�1 1) p>p M(m)

m m+(p)�1 1
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FIG. 1: The qualitative piture ofM(m)�0 (solid lines) for di�erent values of p. For MAP, MPM and typial set deoding, onlythe relative values of m+(p) and m0(p) determine the ritial noise level. Dashed lines orrespond to the energy ontribution of��F at Nishimori's ondition (� = 1). The states with the lowest free energy are indiated by a point �. a) Sub-ritial noiselevels p<p, where m+(p)<m0(p), there are no solutions with higher magnetization than m0(p), and the orret solution hasthe lowest free energy. b) Critial noise level p=p, where m+(p)=m0(p). The minimum of the free energy of the sub-optimalsolutions is equal to that of the orret solution at Nishimori's ondition. ) Over-ritial noise levels p > p where manysolutions have a higher magnetization than the true typial one. The minimum of the free energy of the sub-optimal solutionsis lower than that of the orret solution.



6IV. QUALITATIVE PICTUREWe now disuss the qualitative behaviour of M(m), and the interpretation of the various deoding shemes. Toobtain separate results for M(m) and W(m) we alulate the results of Eqs.(13) and (14) (and Eqs. (15) and (16)),orresponding to the annealed and quenhed ases respetively, setting !̂ = 0 to obtain M(m) and m̂=0 to obtainW(!) (that beomes M(m)jp=0 after gauging). In Fig. 1, we have qualitatively plotted the resulting funtion M(m)for relevant values of p. M(m) (solid line) only takes positive values in the interval [m�(p);m+(p)℄; for even K,M(m)is an even funtion of m and m�(p) = �m+(p). The maximum value of M(m) is always (1�R) ln(2) for Gallagerodes, and R ln(2) for MN odes. The true noise ~no has (with probability 1) the typial magnetization of the BSC:m(~no)=m0(p)=1�2p (dashed-dotted line).The various deoding shemes an be summarized as follows:� Maximum likelihood (MAP) deoding - minimizes the blok error probability [16℄ and onsists of seletingthe ~n from Ip(A; ~n0) with the highest magnetization. Sine the probability of error below m+(p) vanishes,P (9~n 2 Irp : m(~n)>m+(p))=0, and sine P (m(~no)=m0(p))=1, the ritial noise level p is determined by theondition m+(p)=m0(p). The seletion proess is explained in Fig.1(a)-().� Typial pairs deoding - is based on randomly seleting a ~n from Ip with m(~n) = m0(p) [3℄; an error isdelared when ~n0 is not the only element of Ip. For the same reason as above, the ritial noise level p isdetermined by the ondition m+(p)=m0(p).� Finite temperature (MPM) deoding - An energy �Fm(~n) (with F = 12 ln( 1�pp )) aording to Nishimori'sondition (orresponding to the seletion of an aurate prior within the Bayesian framework). is attributed toeah ~n 2 Ip, and a solution is hosen from those with the magnetization that minimizes the free energy [9℄. Thisproedure is known to minimize the bit error probability [16℄. Using the thermodynami relation F = U � 1�S,� being the inverse temperature (Nishimori's ondition orresponds to setting � = 1), the free energy of thesub-optimal solutions is given by F(m) =�Fm� 1�M(m) (for M(m)� 0), while that of the orret solutionis given by �Fm0(p) (its entropy being 0). The seletion proess is explained graphially in Fig.1(a)-(). Thefree energy di�erenes between sub-optimal solutions relative to that of the orret solution in the urrent plots,are given by the orthogonal distane betweenM(m) and the line with slope ��F through the point (m0(p); 0).Solutions with a magnetization m for whih M(m) lies above this line, have a lower free energy, while thosefor whih M(m) lies below, have a higher free energy. Sine negative entropy values are unphysial in disretesystems, only sub-optimal solutions with M(m) � 0 are onsidered. The lowest p value for whih there aresub-optimal solutions with a free energy equal to �Fm0(p) is the ritial noise level p for MPM deoding. Infat, using the onvexity of M(m) and Nishimori's ondition, one an show that the slope �M(m)=�m>��Ffor any value m<mo(p) and any p, and equals ��F only at m=mo(p); therefore, the ritial noise level forMPM deoding p=p is idential to that of MAP, in agreement with results obtained in the information theoryommunity [17℄.The statistial physis interpretation of �nite temperature deoding orresponds to making the spei� hoie forthe Lagrange multiplier m̂=�F and onsidering the free energy instead of the entropy. In earlier work on MPMdeoding in the SP framework [9℄, negative entropy values were treated by adopting di�erent replia symmetryassumptions, whih e�etively result in hanging the inverse temperature, i.e., the Lagrange multiplier m̂. Thise�etively sets m=m+(p), i.e. to the highest value with non-negative entropy. The sub-optimal states with thelowest free energy are then those with m=m+(p).The entral point in all deoding shemes, is to selet the orret solution only on the basis of its magnetization.As long as there are no sub-optimal solutions with the same magnetization, this is in priniple possible. As shownhere, all three deoding shemes disussed above, manage to do so. To �nd whether at a given p there exists a gapbetween the magnetization of the orret solution and that of the nearest sub-optimal solution, just requires plottingM(m)(> 0) and m0(p), thus allowing a graphial determination of p. Sine MPM deoding is done at Nishimori'stemperature, the simplest replia symmetry assumption is suÆient to desribe the thermodynamially dominantstate [8℄. At p the states with m+(p)=m0(p) are thermodynamially dominant, and the p values that we obtainunder this assumption are exat.V. MN CODES - AN ALTERNATIVE VIEWFor MN odes there is a way to obtain the exat expression for M, in the ase of unbiased messages, by employinga single highly plausible assumption. We �rst note that every the parity hek bit z<> = soi1 ::soiKnoj1 ::nojL is made up



7of a ombination of K unbiased (i.e. ps = 12 ) signal bits, and L biased (i.e. p 6= 12 ) noise bits. As a result, everysyndrome element z<> is unbiased independently of the noise bit statistis. It is therefore plausible to assume thatthe noise bit statistis (i.e. p) have no inuene on the distribution of the parity hek bits z<>, and therefore on M(whih only depends on the true noise through the z<>). If this assumption is satis�ed, one an invoke Nishimori'sondition to obtain an exat expression for M.Independently of the assumption, Nishimori's ondition gives the following identity for the thermodynamially domi-nant state: �M(m)�m ����m=mo(p) = �F (p) = �12 ln�1�pp � = �12 ln�1+mo1�mo� : (17)Sine states haraterized by any magnetization value m < m0(pt) will beome dominant for an appropriately hosenvalue of p, and sine we assume that M is independent of p, the identity�M(m)�m = �12 ln�1+m1�m� ; (18)must hold for any value of m. Furthermore, the maximum of M(m) is reahed at m = 0 with M(0) = R ln(2), andwe have that M(m) =M(0)� 12 Z m0 du ln�1+u1�u� = ln(2) �R� 1 +H2�1 +m2 �� ; (19)where H2(p) is the binary entropy per bit for vetors with bias p. Hene, under this assumption, we do not onlyobtain the exat expression forM(m), but we see that the ritial noise level p is given by R = 1�H2(p), saturatingShannon's bound for this type of odes!Unfortunately, the assumption an not be veri�ed easily without the replia method. To verify whether indeed�M(m)�p = 0, we have to take the derivative of expression (16) (setting !̂ = !̂s = m̂s = 0) with respet to p. It turnsout that M is only independent of p, when �(ŷ) is an even funtion of ŷ, whih in turn requires that �(y) and �(x)are even funtions of their arguments. Numerial analysis shows, that this is the ase for any K � 3 or K = 2; L � 3,while not so for K = 1 or K = L = 2. This result is onsistent with those reported in [9℄, i.e. that typial MN odeswith K � 3 or K = 2; L � 3 do saturate Shannon's bound, while those with K = 1 and K = L = 2 do not.Intuitively this result an be understood in the following way. There are M parity hek bits and only N(< M)signal bits, suh that parity hek bits, although individually unbiased, are not unorrelated. These orrelations doseem to have an e�et onM(m) for K = 1 and K = L = 2, while for K � 3 and K = 2; L � 3 the signal bits seem tobe \srambled" enough in the parity heks for the orrelations to be insigni�ant. Note that this argument does nothold for Gallager odes and MN odes with biased messages, where the parity hek bits exlusively omprise biasedbits, and are therefore biased themselves. They only beome unbiased as K !1 for Gallager odes (for whih it wasalready reported in the literature [5℄ that suh odes an saturate Shannon's bound), and for K !1 or L!1 forMN odes.In fat, numerial analysis reveals that for K � 3 and for K = 2; L � 3 we have that �(ŷ) = Æ(ŷ), �(y) = Æ(y),�(x) = Æ(x) at least up to m+(p) = m0(pt) whih is independent of p. This allows us to alulate M analytiallyfrom expression (16), and we reover, as expeted, the exat expression (19).For K = 1 or K = L = 2, like in the ase of Gallager odes, one an only obtain m+(p) numerially. The resultsof this proedure are presented in the next setion. Furthermore, for K = 1 and for K = L = 2, we �nd thatspontaneously ms 6= 0 for some values of p < p, when no restrition is enfored (i.e. for m̂s = 0). This implies thatone may improve the deoding performane by imposing the ondition of unbiased signal (similar to the onditionsfor typial set deoding), i.e. by adjusting the Lagrange multiplier m̂s suh that ms = 0. Unfortunately, this onlyhappens for values of p for whih there is an exponential number of sub-optimal solutions ~ 2 Irp(A;~o) with the sameweight as ~o, and imposing this onstraint on the signal estimator only redues this number, leaving it nevertheless,exponential.It was shown [10℄ that MN odes in priniple ontain suÆient information to saturate Shannon's bound for unbiasedmessages. For odes withK = 1, orK = L = 2, some of this information is wasted in a region where errorless deodingis impossible anyway, suh that Shannon's bound is not saturated. For odes with K � 3, or K = 2; L � 3, ouranalysis indiates that all information is used optimally, and that Shannon's bound an be theoretially saturated.Our argument also explains the relative importane of the parameters K and L for the behaviour of the ode inomparison with C.



8VI. CRITICAL NOISE LEVEL - RESULTSSome general omments an be made about the ritial MAP (or typial set) values obtained via the annealedand quenhed alulations. Sine Mq(m) �Ma(m) (for given values of K, C (L) and p), we an derive the generalinequality p;q � p;a. For all K, C (L) values that we have numerially analyzed, for both annealed and quenhedases, m+(p) is a non inreasing funtion of p, and p is unique. The estimates of the ritial noise levels p;a=q, basedon Ma=q , are obtained by numerially alulating m;a=q(p), and by determining their intersetion with m0(p). Thisis explained graphially in Fig.2(a). As the results for MPM deoding have already been presented elsewhere [11℄, wea) 1 m
0 pp;a p;q m0(p)m+;a(p)m+;q(p)0:5

b) (K;C) (6; 3) (5; 3) (6; 4) (4; 3)Code rate 1=2 2=5 1=3 1=4IT (Wa) 0.0915 0.129 0.170 0.205SP 0.0990 0.136 0.173 0.209p;a (Ma) 0.031 0.066 0.162 0.195p;q (Mq) 0.0998 0.1365 0.1725 0.2095Shannon pt 0.109 0.145 0.174 0.214FIG. 2: a) Determining the ritial noise levels p;a=q based on the funtion Ma=q for Gallager odes and for MN odeswith K = 1 or K = L = 2, a qualitative piture. b) Comparison of di�erent ritial noise level (p) estimates for Gallagerodes. Typial set deoding estimates have been obtained via the methods of IT [3℄, based on having a unique solution toW(m) =K(m; p), as well as using the methods of SP [18℄. The numerial preision is up to the last digit for the urrentmethod. Shannon's limit denotes the highest theoretially ahievable ritial noise level pt for any ode [1℄.will now onentrate on the ritial results p obtained for typial set and MAP deoding for Gallager odes; theseare presented in Fig.2(b), showing the values of p;a=q for various hoies of K and C ompared with those reportedin the literature.>From the table it is lear that the annealed approximation gives a muh more pessimisti estimate for p. This isdue to the fat that it overestimatesM in the following way. Ma(m) desribes the ombined entropy of ~n and ~no asif ~no were thermal variables as well. Therefore, exponentially rare events for ~no (i.e. m(~no) 6=m0(p)) still may arrypositive entropy due to the addition of a positive entropy term from ~n. In a separate study [18℄ these e�ets have beentaken are of by the introdution of an extra exponent; this is not neessary in the urrent formalism as the quenhedalulation automatially suppresses suh ontributions. The similarity between the results reported here and thoseobtained in [14℄ is not surprising as the equations obtained in quenhed alulations are similar to those obtained byaveraging the upper-bound to the reliability exponent using a methods presented originally by Gallager [4℄. Numerialdi�erenes between the two sets of results are probably due to the higher numerial preision here.We have also obtained the ritial noise levels for some parameter hoies in MN odes. We only present thequenhed (exat) values, and ompare them only with the highest theoretially ahievable ritial noise level pt forany ode [1℄, as we are not aware of values obtained with other methods in the literature. Note that although stillstritly below pt, the ritial noise levels p for K = L = 2 with inreasing values of C rapidly approah pt to withinthe urrent numerial preision.a) 1 m
0 pp;q = pt m0(p)m+;q(p) = m0(pt)0:5

b) (K;C;L) (1; 3; 2) (2; 6; 2) (2; 3; 2) (3; 9; 3)Code rate 1=3 1=3 2=3 1=3p;q (Mq) 0:15 <�0.174 0:06 0:174Shannon pt 0:174 0:174 0:0615 0:174FIG. 3: a) Determining the ritial noise levels p;q based on the funtion Mq for MN odes with K � 3 or K = 2; L � 3, aqualitative piture. b) Comparison of di�erent ritial noise level (p;q) estimates for MN odes. The numerial preision is upto the last digit for the urrent method. Shannon's limit denotes the highest theoretially ahievable ritial noise level pt forany ode [1℄.



9VII. CONCLUSIONSIn this paper we have shown how both weight and magnetization enumerators an be alulated using the methodsof statistial physis in the ase of regular LDPC odes. We study the role played by the magnetization enumeratorM(m) in determining the ahievable ritial noise level for various deoding shemes. The formalism based onthe magnetization enumerator M o�ers a intuitively simple alternative to the weight enumerator formalism usedin onjuntion with typial pairs deoding in the IT literature [3, 18℄. The SP based analysis employes the repliamethod given the very low ritial values obtained by the annealed approximation alulation. Furthermore, thepowerfull gauge theory as proposed by Nishimori [8℄, proves that the replia symmetri assumption is orret (at leastat the ritial noise level), and thus that the ritial noise levels as obtained by our method are exat. Althoughwe have onentrated here on the ritial noise level for the BSC, other hannel types as well as other quantities ofinterest an be treated using a similar formalism. The preditions for the ritial noise level are more optimisti thanthose reported in the IT literature, and are up to numerial preision in agreement with those reported in [18℄. Wehave also shown that the ritial noise levels for typial pairs, MAP and MPM deoding must oinide, and we haveprovided an intuitive explanation to the di�erene between MAP and MPM deoding. Finally, an extension of thisanalysis to MN odes reveals the mehanism whih allows them to saturate Shannon's limit for �nite K � 3 and forK = 2; L � 3 values (if impratial algorithms suh as maximum likelihood are used). This result, whih is onsistentwith previous SP based analyses [9℄ is onsidered as surprising in the IT ommunity.We believe that SP based analysis will provide more insight into the performane and harateristis of randomLDPC odes, omplementing the analysis provided by the methods of IT.Support by Grants-in-Aid Nos. 13680400 and 13780208 (YK), The Royal Soiety and EPSRC-GR/N00562 (DS/JvM) is aknowledged.[1℄ C.E. Shannon, Bell Sys. Teh. J. 27 379, 623 (1948).[2℄ A.J Viterbi and J.K. Omura, Priniples of Digital Communiation and Coding MGraw-Hill Book Co., Singapore (1979).[3℄ S. Aji, H. Jin, A. Khandekar, D.J.C. MaKay and R.J. MEliee, In Marus, B., Rosenthal, J. (eds): Codes, Systems andGraphial Models. Springer Verlag, New York, 195 (2001).[4℄ R.G. Gallager, IRE Trans. Info. Theory 8 21 (1962).[5℄ D.J.C. MaKay, IEEE Trans. on IT 45 399 (1999).[6℄ T. Rihardson, A. Shokrollahi, R. Urbanke, IEEE Trans. on IT 47 619 (2001).[7℄ M. Mezard, G. Parisi and M.A. Virasoro, Spin Glass Theory and Beyond, World Sienti� Publishing Co., Singapore(1987).[8℄ H. Nishimori, Statistial Physis of Spin Glasses and Information Proessing, Oxford University Press, Oxford UK (2001).[9℄ Y. Kabashima, T. Murayama and D. Saad, Phys. Rev. Lett., 84, 1355 (2000); Y. Kabashima, T. Murayama, D. Saad andR. Vinente, Phys. Rev. E, 62 1577 (2000).[10℄ R. Viente, D. Saad and Y. Kabashima, Low Density Parity Chek Codes: A Statistial Physis Perspetive in Advanesin Imaging and Eletron Physis, Editor P. Hawkes, Aademi press, NY, in press (2002).[11℄ R. Viente, D. Saad and Y. Kabashima, Europhys. Lett. 51 698 (2000).[12℄ A. Montanari, Eur. Phys. J. B, 23 121 (2001).[13℄ R.G. Gallager, Information Theory and Reliable Communiation, Weily & Sons, New York (1968).[14℄ Y. Kabashima, N. Sazuka, K. Nakamura and D. Saad Phys. Rev. E 64 art. no. 046113, (2001)[15℄ M. Opper and D. Saad, Advaned Mean Field Methods - Theory and Pratie, MIT Press, Cambridge MA (2001).[16℄ Y. Iba, Jour. Phys. A 32 3875 (1999).[17℄ D.J.C. MaKay, On Thresholds of Codes, http://wol.ra.phy.am.a.uk/makay/CodesTheory.html unpublished (2000).[18℄ Y Kabashima, K. Nakamura, J. van Mourik, Statistial Mehanis of Typial Set Deoding: ond-mat/0106323 unpublished(2001).


