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6 TAP For Parity Check Error
Correcting Codes

David Saad, Yoshiyuki Kabashima and Renato Vicente

We employ the methods presented in the previous chapter for decod-
ing corrupted codewords, encoded using sparse parity check error cor-
recting codes. We show the similarity between the equations derived
from the TAP approach and those obtained from belief propagation,
and examine their performance as practical decoding methods.

1 Introduction

In the previous chapter we presented our general derivation of the Thouless-
Anderson-Palmer (TAP) [29] approach and concentrated on its application to cases
of extensively connected systems, showing the consistency between our approach
and existing results obtained via the conventional derivation of the TAP equations.

In the current chapter we concentrate on the actual application of the
method for decoding corrupted codewords, encoded using sparse parity-check error-
correcting codes. The main motivation for developing the new formulation is the
inapplicability of conventional TAP approaches to intensively connected systems
and as decoding methods in this context.

The decoding method obtained from the new TAP formalism in the case
of parity-check error-correcting codes is identical to that obtained from Belief
Propagation (BP), an iterative method for approximating the marginal posterior
probability of the dynamical variables given the quenched variables (data). The
origins of BP are within the field of graphical models [22] and it has been successfully
used for decoding in a broad range of error correcting codes [5]. Belief propagation
is based on propagating probabilities through a tree structure, and thus provides
an exact estimate to the marginal probability distributions when no recurrent
connections are present.

This chapter is organized as follows: In the next two sections, we introduce the
general background to the problem of error-correction and present the sparse parity-
check codes examined here. We then derive, in section 4, the iterative decoding
equations via the methods of BP. In section 5 we employ our formulation to the TAP
approach to re-derive the same iterative equations, and point to the link between
the two approaches. The decoding performance of the method is then demonstrated
in several cases (section 6) and compared to analytical results obtained from the
replica method. We end the chapter by discussing the advantages and limitations
of the method and its relations to other existing techniques.



MIT Press Neur7XA/2001/03/02:17:13 Page 68

68 David Saad, Yoshiyuki Kabashima and Renato Vicente

2 Noisy information transmission

Error-correcting codes are of significant practical importance as they provide mech-
anisms for retrieving the original message after possible corruption due to noise
during transmission. They are being used extensively in most means of informa-
tion transmission from satellite communication to the storage of information on
hardware devices. The coding efficiency, measured in the percentage of informative
transmitted bits, defines the information redundancy used to compensate for the
corruption during transmission. Rigorous bounds [25] have been derived for the
maximal channel capacity for which codes, capable of achieving arbitrarily small
error probability, can be found.

One family of codes, introduced originally by Gallager [6; 7], and abandoned
in favor of other methods due to the limited computing facilities of the time, has
recently been re-introduced by MacKay and Neal [15; 16], showing excellent perfor-
mance with respect to most existing codes. In fact, some of the irregular construc-
tions presented recently have superior performance [17; 23; 12; 13], comparable to
those of the turbo codes [3], and nearly saturate Shannon’s bound for infinite mes-
sage size. Gallager-type methods are generally based on the introduction of random
sparse matrices for encoding the message as well for decoding the corrupted code-
word. Various decoding methods have been successfully employed; here we mainly
focus on the leading technique of belief propagation [22; 5] and its similarity to the
method derived from our formulation of the TAP approach [9; 30].

In a general scenario, depicted in Fig.6.1, the sender encodes an N dimensional
Boolean (or binary) message vector & to an M (> N) dimensional codeword ¢,
which is then being transmitted through a noisy communication channel. Different
channel types and noise models may be used [4], the most common ones being the
Gaussian and Binary Symmetric Channel (BSC). In the former, the message bits
are transmitted as real values and are being corrupted by white Gaussian noise; in
the latter, the transmitted bits are flipped with some probability p characterizing
the channel noise. Although both BP and our TAP decoding can be applied to both
channel and noise models we will focus here on the BSC as the treatment is simpler
and more transparent.

In the BSC, noise corruption during transmission can be modeled by the noise
vector ¢ such that the received corrupted codeword takes the form r = ¢t + ¢ in
modulo 2. The received message is then decoded by the receiver for retrieving the
original message €. As we already mentioned, the error-correcting ability comes at
the expense of information [25]; in the case of BSC, for unbiased messages, error-
free communication is theoretically possible if the code rate R = N/M satisfies the
condition

R <1+plogy p+(1—p)logy(1—p) . (1)

In the more general case of biased messages (P({; = 1) = fs , Vi) and allowing a
decoding bit error probability pp, the maximal code rate R, for a given flip rate p,
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Figure 6.1
The encoding, the corruption by noise in the channel and the decoding can be though as

a probabilistic network. The aim is to obtain a good estimative Efor the message sent.

which equals the channel capacity, is given explicitly [4] by

R. = Hy(fs)(1—Hx(p))/(1—Ha(ps)) , (2)

where Hy(z) = zlogy(z) + (1 — z) log, (1 — z).
3 Sparse parity-check codes

The origin of sparse parity-check error-correcting codes can be traced back to the
papers of Gallager [6; 7] where his original algorithms have been presented.

Gallager’s code

Gallager’s original code is defined by a binary matrix A = [Cs | C,] constructed
by concatenating two very sparse matrices known by both sender and receiver, with
C)p, (of dimensionality (M — N) x (M — N)) being invertible and the matrix Cs of
dimensionality (M — N) x N.

Encoding is carried out by mapping the original message & € {0,1}" onto a
binary vector t € {0, 1} (M > N) defined by ¢ = GT¢ (mod 2), where all opera-
tions are performed in the field {0,1} as indicated by the (mod 2) operation. The
(dense) generator matrix used in the encoding processis G = [I | C;*C;] (mod 2),
where I is the N x N identity matrix; this implies that AGT (mod 2) = 0 and that
the message £ is set as the first NV bits of t. In a regular Gallager code the number
of ones in each row of A is chosen to be exactly K and the number of elements per
column is C = (1 — R)K, where the code rate is R = N/M. These elements can be
chosen either systematically or randomly. In irregular constructions the number of
unit elements per row and connections per column may vary.

In a BSC, the encoded vector t is then corrupted by noise represented by the
vector ¢ € {0,1}™ with components independently drawn from the probability
distribution

P(Gi)=(1-p)6(&)+po(G—1), Vi.

The received vector takes the form r = GT¢ + ¢ (mod 2).
Decoding is carried out by multiplying the received message by the matrix
A, producing the syndrome vector z = Ar = A (mod 2) from which an
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estimate E for the noise can be produced. An estimate for the original message
is then obtained as the first N bits of r + E (mod 2). The Bayes optimal estimator
(also known as marginal posterior mazimiser, MPM) for the noise is defined as
Zj = argmax., P((; | z). The performance of this estimator can be measured by the
probability of bit error

M
py=1-1/M > 0[]

j=1

where 4[;] is the Kronecker delta. Knowing the matrices C,, and C, the corrupted
codeword 7, and the noise level p it is possible to apply Bayes theorem and compute
the posterior probability as:

P(r]|z2) = %X [z = AT(mod 2)] P(1), (3)
where x[X] is an indicator function that is 1 if X is true and 0 otherwise. To compute
the MPM one has to compute the marginal posterior P(7; | z) = Zn# P(1 | 2).
In general, this requires O(2M) operations, and becomes impractical as the message
size increases. To obtain a more efficient algorithm one can use the sparseness of
A to design algorithms that require O(M) operations for performing the same
computation. One of these methods is the BP algorithm, also known as probability
propagation, sum-product algorithm (see [14] and references therein) or generalized
distributive law [1].

Gallager’s code set the general framework for the family of sparse parity check
codes, it has been all but abandoned for about three decades, until MacKay and
Neal [15; 16] introduced independently a code which is essentially a variation of
Gallager’s original code.

The MN code

MacKay and Neal [15; 16] recently introduced (independently) a variation of the
Gallager’s original method termed the MN code. In these codes, a message £ is
encoded into a codeword ¢ using two randomly constructed Boolean sparse matrices
Cs and C,,, which may be characterized in the following manner.

The random matrix C is rectangular and of dimensionality M x N, having K
non-zero unit elements per row and C' per column. The matrix C,, is an M x M
(mod 2)-invertible matrix randomly constructed having L non-zero elements per
row and column. These matrices are shared by both sender and receiver.

Using these matrices, one can encode a message £ into a codeword ¢ in the
following manner

t=C7'0,6 (mod 2), (4)

which is then transmitted via a noisy channel. Note that all matrix and vector
components are of Boolean (0,1) representation, and all summations are carried
out in this field, i.e., (mod 2).
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During transmission, through a BSC, a noise vector ¢ is added to t and a
corrupted codeword 7 =t 4+ ¢ (mod 2) is received at the other end of the channel.
Decoding is then carried out by taking the product of the matrix C), and the received
codeword 7, which results in the syndrome vector z = Cs& + C,¢ = C,,r. The main
difference between these codes and Gallager’s original code is that the syndrome
vector contains also information on the original message. The message itself is
directly estimated and there is no need for recovering the noise vector perfectly.
Decoding the corrupted message in these codes can be formulated, similarly to that
of Gallager’s code, as finding the most probable vectors S and 7, which correspond
to the signal and noise vectors respectively, that satisfy

Cs&+CpC = Cy 8 +Cpr (mod 2), (5)

given the matrices Cs and C), and the prior distributions for S and 7.

Constructions where the number of unit elements per row (K and L) and
per column (C' and L) is fixed are termed regular constructions, while other
constructions where the number of unit elements per row/column is taken from some
distribution are termed irregular. Irregular constructions generally show improved
performance with respect to regular ones [17; 23; 12; 31].

In spite of the similarity between the two codes they have slightly different
properties [32], in their equilibrium characteristics as well as in their dynamical
behavior; these were investigated using the methods of statistical physics.

Before presenting the iterative equations derived using BP and our formulation
of TAP, we would like to introduce another member of the same family of codes
presented and analyzed by Sourlas [27]. Although the original code was presented
within the framework of statistical physics, it can be mapped back to the framework
of sparse parity-check error-correcting codes.

The code of Sourlas

Described as a parity check code, the message € is encoded into a codeword ¢
using as generator a single randomly constructed Boolean sparse matrix Cs, of
dimensionality M x N, randomly composed of K non-zero unit elements per row
and C per column.

The message £ is encoded into a codeword ¢ in the following manner

t=Cs¢ (mod 2), (6)

which is then transmitted via a noisy channel and is corrupted by flip noise of
probability p. Unlike Gallager/MN codes, where a syndrome vector z is generated
by the receiver in a preprocessing stage, the code of Sourlas uses the corrupted
codeword directly in the decoding process. Decoding may be carried out by different
methods, one of which is an MPM based estimation similar to the one used in both
Gallager and MN codes [9; 30].

In the reminder of the chapter we will focus on the Sourlas and MN codes.
Despite the differences in the encoding and preprocessing stages; the derivation of
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the decoding algorithm, based on our TAP approach, is similar in the three code
types, and the numerical results obtained are of a similar nature.

4 Decoding: Belief propagation

The Bayesian message estimate (MPM) potentially provides the optimal retrieval
of the original messages. However, it is computationally difficult to carry out the
exact calculation as it requires a sum over O(2"V) terms. Belief propagation [5; 22]
can efficiently be used for obtaining an approximate estimate.

For brevity we will first consider the code of Sourlas; the extension of the
derivation to the MN code (and Gallager’s) will follow directly. The decoding
process in this case relies on computing averages over the marginal posterior
probability P(S; | z) for each of the N message bits S; given the corrupted encoded
bits z,, (checks), where po = 1... M. The probabilistic dependencies present in the
code can be represented as a bipartite graph known as belief network where the
nodes in one layer correspond to the M checks z, and the nodes in the other to
the IV bits S;. Each check is connected to exactly K bits and each bit is connected
exactly C checks (see Fig. 6.2a).

Belief propagation is an iterative algorithm proposed by Pearl [22]; it is based
on local updates of a set of marginal probabilities and the propagation of beliefs
(conditional probabilities) within the network. The convergence of these iterations
requires a tree like network structure with no loops. Typically, the belief networks
which represent sparse parity-check error-correcting codes suffer from a significant
number of loops as illustrated in Fig.6.2a. However, it has recently been shown
that in some cases Pearl’s algorithm provides good approximation even with the
presence of loops [33]. In the particular case considered here one may also argue
that the effect of loops is negligible due to the network size, which is assumed to be
large and thus reduces the probability of small loops; these have the most significant
effect on the accuracy of the approximation obtained.

The general framework of Pearl [22] was adapted to the specific decoding
problem of sparse parity-check error-correcting codes by MacKay and Neal [15; 16];
their algorithm relies on computing the conditional probabilities ql(j) and rfj) (not
to be confused with the received vector 7):

¢\ = P(S; =S | {2, :v € M(j)\u})

is the probability of the S; = S given information on all checks other than y and

r =3 Pl Si=8 48 te cw\ih) [ ¢
L(p)\j leL(\l

is the probability of the check z,, if the site j is fixed to S; = S and the contribution
from the other bits involved is factorized with the related probability distributions
given by qff."). The sets £(u) and M(j) define the set of bits in the check u and
the set of checks over the bit j respectively.

Figure 6.2b provides a graphical representation of S

uj as the total influence of
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(b)

Figure 6.2
(a) Belief network representing an error-correcting code. Each bit S; (white circles) is

linked to exactly C' checks (codeword bits) and each check (black circles)z, is linked to
exactly K sites. (b) Graphical representation of the field ;. The grey box represents the
mean field contribution ;¢ £ (,)\; @ut of all bits other than S; on the check (codeword

bit) z,. (c) Representation of one of the fields g, in (b).

the bit S; and a local mean field [T, 7, q,(f) (representing factorized contribution
from the other sites in £(u)) on the check z,. Figure 6.2c represents graphically
the field qu) as the influence of the checks in M (1) excluding p on the bit S;, this

exclusion is required for avoiding loops in the network.

(S)

Employing Bayes theorem ¢,.” can be rewritten as:

i
s . s
0 = au; Pz v € MG)\u} | S5) 97 )
where a,; is a normalization constant such that ql(g.) + qfllj) =1and pES) is the prior

probability over the bit j. The distribution P({z, : v € M(j) \ u} | Sj) can be

replaced by a mean field approximation in a way that factorizes the dependencies
(8)

using the fields r,.’, obtaining
S S S
ql(lj) = Opj p; ) H rgj)
vEM(j)\n
Tl(j') = Z P(z,|S; =8{Si:ieL(w\j}) H q;(zfi)' (8)
EUON €L\

An estimate EJ = argmaXge (9,1} {qj(s)} of the original message bits is obtained
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by solving the above equations, what can be done iteratively using several differ-
ent schedules, the efficiency of which depends on the particular topology of the
network [1]; and computing the pseudo-posterior:

S S S
4 =™ T 15, 0
veM(j)

where a; is a normalization constant.
Notice that the field rfj is not originally normalized with respect to bit variables
S while qu is the case. However, one may introduce an extra normalization

condition 7% + () = 1 without changing any result. By taking advantage of

1 1
this extra condition, one can reduce the set of equations to dg,; = qu.) — ,(}])
S}) — rLlj.). The pseudo posterior can be calculated in this manner obtaining
an estimate to the original message bits following a rule

" { 0, if dg; > 0,

and

Oory; =r

&= 1, otherwise. (10)
Extending the formulation to both Gallager and MN codes is straightforward,
as after preprocessing these codes also involve a decoding task with very sparse
matrices; in the latter case one extends the set of dynamical variables to include
both signal and noise vectors [15; 16].
This algorithm has been employed in a variety of decoding scenarios for both
parity-check codes and turbo codes [16; 5] proving to be highly efficient.

5 Decoding: the TAP approach

So far we have described the sparse parity check coding scheme using the con-
ventional Boolean (0,1) representation. However, in order to apply methods of
statistical physics, it is highly convenient to introduce an equivalent representation
using binary variables £1. More specifically, we hereafter convert all the Boolean
variables to the binary ones, by employing the isomorphism

Boolean binary

0,1,+) “ (+1, -1, x). (11)

One can easily check the equivalence between these two groups by observing the
following simple isomorphic map:

(—1)ztytetz (mod 2) _ x oy o o 7 (12)

where z,y, ...,z are the Boolean (0, 1) variables while X = (=1)*,Y = (=1)¥,...,
Z = (—1)* are the corresponding binary (+1) ones.

Mapping to an Ising Spin System

Two advantages in the novel representation are worthwhile mentioning. The first is
the compactness of the description. For example, one can describe the conditional
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probabilities standing for the transmission through a BSC in a simple manner as

1+ prt  exp[Bnrt]

P(rit) = 2 2cosh(By)’

(13)

in the binary representation, where (€ [—1,+41]) and r(€ [—1,+1]) are the trans-
mitted and received message bits respectively, p is the flip probability of the channel
and p = 1—2p and 8, = (1/2)In[(1 — p)/p|]. In particular, the last term on the
right in Eq. (13) makes calculations like those in Eqgs. (8) easier to handle as one
can convert the product operations to simple summations.

In addition, the adoption of the binary representation makes the similarity to
Ising spin models explicit, enabling one to take advantage of the techniques de-
veloped in statistical physics for analysing such systems. Employing an expression
like the one on the right hand side of Eq. (13) for the distributions of binary vari-
ables, one can generally represent posterior probabilities after finding the syndrome
z (the received message itself as in Sourlas’ code or the preprocessed vector as in
Gallager/MN codes)

P | = 2L,

with

H(S|z) = —52@ H Si— FZS, (15)

p=1 leL(p

where Z(z) = Trgexp[~BH(S|z)], f and F are hyper-parameters determined
by the type of codes, the channel noise and the prior distribution of messages.
Parity check codes can be generally mapped onto Ising spin systems with multi-
spin interactions described by a Hamiltonian of the type (15) facilitating the use
of methods developed in physics for analysing the current system [27; 28; 20; 24; 9;
10; 8].

In this context, our formulation of the decoding problem is strongly linked to
the Bethe [2] approximation and its extensions [32], and to the conventional TAP
approach [29]. In [9] we have shown that this framework provides a similar set of
iterative equations to that of BP.

The motivation for developing this formulation is the excellent approximation
provided by the Bethe lattice approach for finitely connected systems in the
thermodynamic limit [26]. Finite loops linking the different network sites vanish as
the system size grows and can be neglected without introducing significant errors
in this scenario. The approximation used also has mean field properties in the way
one takes into account the mean influence of the whole lattice on a particular site.

Due to the transparency of the derivation in this case, we start by explaining
the TAP formulation for the code of Sourlas.
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The code of Sourlas

To develop the new approach we notice that the likelihood P(z, | S) is proportional
to the Boltzmann weight, for a given inverse temperature (= 1/T):

wp(zy | S) =exp | =Bz, H Si| (16)

1EL(1)

that can be rewritten in the more convenient form:

wr(z, | S) = %cosh(ﬁzu) x | 1 + tanh(f8z,) H Si |- (17)
JEL(p)

In fact, the inverse temperature § has an optimal value given by Nishimori’s
temperature (3, = (1/2)In[(1 — p)/p] [20] if the flip probability p in BSC is known.
However, we deal with it as a control parameter in order to consider general
situations where p is not exactly known to receiver.

The conditional probability rg")
Boltzmann weight (effective Boltzmann probability)

= et (ou | St {zve)) (18)

= au Trs,,y we (20| S) [] o
k#l

obtained by taking the connection u out of the system, and taking into consideration
the (factorized) dependence of the variables S on all other connections (g,;,Vj);
a,; being a normalization coefficient. The term g,; is identified as the mean field
contribution to a specific site, from which the first of Eqgs.(8) follows directly.
Plugging the form (17) for the likelihood in the equations (8), using the fact that
the prior probability is given by pg.s) = 1 (14 tanh(BSF)) (which constitutes the
definition of F') and computing dg,; and 6r,; we find:

can then be seen as an normalized effective

ory; = tanh(B8z,) H dqu
leL(p)\j

dqu; = tanh Z tanh™' (dr,;) + BF | . (19)
veM(j)\n
Solving these equations iteratively enables one to derive the pseudo-posterior
through the expression:

dg; = tanh Z tanh ™" (dr,;) + BF | , (20)
veEM(j)

This provides a way for computing the Bayes optimal decoding EJ = sign(dg;). It is
interesting to note that the somewhat arbitrary use of the differences dg,; = (S/"),
and ér, = (S}'), in the BP approach becomes clear form the TAP formulation,
where they represent the expectation values of the dynamical variables with respect
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to the fields.
It is important at this point to list and interpret the mean field assumptions
used here [9]:

1. We assume a mean field behavior for the dependence of the dynamical variables
S on a certain realization of the message sites z, i.e., the posterior distribution is
factorizable with respect to dynamical variables S;—;, . n and may be replaced by
a product of mean fields.

2. Boltzmann weights for a specific site S; are factorizable with respect to the
message sites z,.

3. The contribution of single variables S;—1 .. n, and z,—1,. a to the macroscopic
variables is small and can be isolated.

The factorizability of the probability distributions provides a good approxima-
tion due to the absence of short loops in the lattice and by the cluster property:
1 2
lim_ 5z 2 (550,812~ (50812 Spis1z)) =0 (21)

N —o00
Vi)
that the bits S; are supposed to obey within a pure state [18].
The MN codes
The derivation presented above can be easily extended to the case of MN codes. In

this case one treats both variable types (signal and noise, S and 7 respectively) on
equal footing, aiming to calculate the marginal posterior probabilities

P(S;2") = Tr  P(S,71|z'
(Sil2") s (S, 7]2)
and
P(rjlz")= _Tr  P(S,7|2)
{8 {rnzi1}

based on similar three assumptions, as in the case of Sourlas, including both S
and 7. Here, we denote 2’ as the binary equivalent to the Boolean syndrome C,, 2
computed in MN codes.

From a statistical physics point of view, the main difference between the current
codes and those of Sourlas is the temperature at which the codes are appropriately
mapped onto Ising spin systems. Since condition (5) is introduced to posterior
distribution through an indicator function as

M
exp B Zu:l Z/’LHICGES(M) Sk Hjeﬁn(N)Tj
(2 cosh B)M

3

(22)
in the binary representation, the MN codes are mapped onto Ising models with
a new effective temperature B~! which is set to be zero constraining the space
of configurations to those obeying the constraints defined by x[.]. Here, we have

X [Cnz = CsS + Cp7 (mod 2)] = lim
B—o0
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introduced notations £s(p) and £, (p) in order to denote the set of all indices of
non-zero components in u-th row of the sparse matrix Cy and C,, respectively.

In the statistical physics community, it is widely known that Ising spin systems
with quenched disorder can be highly frustrated at low temperatures, which makes
efficient computation by mean field approximations infeasible. However, it should
be stressed here that the interactions described by Eq. (22) produce no frustration
in the current system even at the effective temperature 6_1 set to zero because
this model is flat [18], i.e. the disorder can be trivially gauged and there are more
(M + N) dynamical variables than the number of constraints (M).

In addition to these constraints, prior knowledge about the message and noise
vectors S and 7 is also taken into account by introducing the following prior

distributions
Fs N (S Fn ]Vi j
P(S) = exp| Zl:l]fl]a P(r) = xp| 2171]\;3]. (23)
(2 cosh Fy) (2 cosh Fy,)

where F,, = (1/2)In[(1 — p)/p] is set to its optimal value, and non-zero field
Fy is introduced for biased messages. These O(1) fields work to compensate the
insufficiency of conditions for uniquely determining each bit sequence without
causing frustration. This effect becomes stronger for larger F,, and Fy. Therefore,
one can expect that for sufficiently large F),, Fs, which implies sufficiently small flip
rate p if the message is not biased, unique bit sequences S and 7 can be determined
by the posterior distribution and can possibly be computed effectively by the TAP
approach.

Parameterizing pseudo-marginal posteriors and marginalized conditional prob-
abilities as

1+ (quisi
P(Sil{zyz,}) = ——5—,

2
14 4dq.7;
1+ 6755,
14 6rl. 7
P(Z;A|Tj’{zll/7éu}) ~ % 3 (25)

a set of self-consistent equations can be found [9; 11; 30]

S = tanh [Fy+ S tanhl(ord) |
vEMs(l) /1
dqy = tanh | F, + Z tanh*%‘”‘fh) ) (26)
vEMn (1) /p
and
§r§l = ZL H 5q§k H 5(12]‘7
keLs (1)l JELn (1)
o = = I dan II o 27

keLs(n) JELn (1) /1
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similar to those obtained in the case of Sourlas code (19). Here, M(1) and M, (1)
indicate the set of all indices of non-zero components in the [-th column of the
sparse matrix Cs and C,,, respectively. The notation M(l)/u represents the set of
all indices belonging to M(l) except | and similar for the others.

Equations (26) and (27) are solved iteratively using appropriate initial condi-
tions. After obtaining a solution to all dg,; and ér,;, an approximated posterior
mean can be calculated as

6qf:tanh F, + Z tanhfl(érfi) , (28)
neEMs (1)

which provides an approximation to the Bayes-optimal estimator of the form
€8 = sign(dg?).

By introducing the new variables x; = fi(sqfi, T; = fi(srfi, y;j = (jdq,; and
U = Cj§ij and assuming that they are independently drawn from distributions
m(x), 7(Z), p(y) and p(g) (an assumption that has been verified experimentally), one
can link the equations (26,27) to those obtained using the replica method [19; 11].
This connection can be extended further by providing an expression for the TAP
free energy which equations(26) and (27) extremize

M
M 1
frap ({0g}.{or}) = Fin2+ £ >° > In(1+dg0ry)
n=1l4ieLs(p)

M
1 n n
o2 D Im(1+agorn) (29)

h=ljeLn (1)

|
Z|~
M=

In 1+2L H 5‘152' H 84,

k=1 i€Ls (1) JE€Ln (1)
|
- NZln el H (1+§r§i) + et H (1—61‘2)
i=1 | pEMs(i) HEM s (7)
|
— NZln efn H (1+61“Zj)+e*F" H (1—57‘Zj)
J=1 HEM (j) HEMn (j)

This expression may be used for selecting the best estimate when Eqs.(26) and (27)
have several solutions.
This derivation can be easily extended to accommodate Gallager’s code.

6 Experimental results

As our TAP formulation arrives at exactly the same iterative equations as those
obtained using BP, we briefly presents a couple of examples demonstrating the
efficacy of the method for decoding corrupted messages encoded using the MN and
Sourlas error correcting codes.

We first presented some experiments using the code of Sourlas and equa-
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tions (19). In these experiments we used the closed set of iterative equations to
decode messages encoded by the code of Sourlas and corrupted during transmis-
sion by flip noise of probability p. For each run, a fixed code is used to generate
20000 bit codewords from 10000 bit messages; corrupted versions of the codewords
are then decoded using (19). For each trial we monitor the overlap between the
decoded vector and the original message (magnetization) m =1/N Zfil gi@ (in
binary). Numerical solutions for 10 individual runs are presented in Fig.6.3a, the
initial conditions are chosen as ér,; = 0 and dg,; = tanh(SF) reflecting prior be-
liefs for both signal and noise. In figure 6.3 we show results for K =2 and C' = 4,
corresponding to a code rate R = 1/2, in the unbiased case (prior probability
P(¢ =1) = fs = 0.5, Vj) at a temperature as low as T' = 0.26. We also show the
agreement between the results obtained and those coming from the replica sym-
metric calculation [9; 30]. In the same figure we show the performance for the case
of biased examples (P({; = 1) = fs = 0.1 Vj). Again the agreement with results
obtained using the replica method [9; 30] is rather convincing. The third curve in
the Fig.6.3a shows the performance for biased messages at Nishimori’s tempera-
ture, 1/T, =1/21n[(1 — p)/p] [20], as expected [24; 28; 21; 8] it is superior to low
temperature decoding, being equivalent to having the correct prior in the Bayesian
framework. The agreement with the replica based results is even better.

In Fig.6.3b we show results for K = 5 and C' = 10, again the code rate
is R = 0.5. For unbiased messages the system is extremely sensitive to initial
conditions and does not perform well on average even at Nishimori’s temperature,
ending up in some sub-optimal solution. For biased messages the results are far
better and in agreement with the replica based results [9; 30].

Applying the same algorithm to the case of regular and irregular MN codes
we obtain the results presented in figure 6.4, demonstrating the improvement in
performance achieved by simple irregularity in the construction. The irregularity
used is based on the following probability distribution, from which the (column)
connectivities of the signal matrix C; are derived:

Pe(C) = (1—6) 6(C—C,) + 6 5(C—C.). (30)

The mean connectivity is C = (1 -6) C, + 6 C. and C, < C < C, and the noise
matrix C,, is chosen to be regular.

To gain some insight on the effect of irregularity on solving the TAP/BP
equations (26) and (27) we performed several runs starting from the fixed initial
conditions dg;,;(0) = 1 — 2f; and dg;,(0) = 1 — 2p. For comparison we obtained
analytical solutions based on the replica symmetric theory [31].

In Figure 6.4 we show a typical curve for the magnetization as a function of the
noise level. The analytical results agree very well with TAP/BP decoding results,
indicating that the addition of irregularity improves the performance considerably.

7 Summary

In this paper we discuss the application of our TAP formulation to the decoding
problem in sparse parity-check error-correcting codes. We show that using simple
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Figure 6.3

The overlap (magnetization) obtained from numerical solutions for different flip rate p.
(a) For the case K =2, different biases (fs = P(§; = 1)=0.1,0.5 Vj) and temperatures

(T=0.26,T),), we see good agreement between the TAP/BP solutions and the theoretical
values [9; 30]. Results for the unbiased patterns are shown as raw data, i.e., results of
10 runs for each flip rate value p (diamond), while the theoretical solution is marked
by the dashed line. Results for biased patterns are shown by their mean and standard
deviation, showing a suboptimal improvement in performance as expected for T'=0.26
and an optimal one at Nishimori’s temperature -T,,. Note that in the case of T'=T, the
standard deviation is significantly smaller than the symbol size. Figure (b) shows results
for the case K =5 and T'=T}, in similar conditions to (a). Also here iterative solutions
may generally drift away from the theoretical values where temperatures other than T},
are employed (not shown); using Nishimori’s temperature alleviates the problem only in
the case of biased messages and the results are in close agreement with the theoretical
solutions (focusing on low p values in the inset).

mean field arguments and interpreting the effective Boltzmann weight as the local
site conditional probability, once a single connection has been taken out of the
system, one retrieves the same iterative equations obtained from the BP method.

We employ the TAP/BP iterative equations for decoding corrupted messages,
encoded using the MN codes, and the code of Sourlas, in particular scenarios. We
compared the results obtained to the analytical solutions obtained by the replica
method. In the case of Sourlas, the solutions indicate that the method is particularly
useful in the case of biased messages and that using Nishimori’s temperature is
highly beneficial; solutions obtained using other temperature values may be sub-
optimal. For unbiased messages and K >3 we may obtain erroneous solutions using
these methods.

The TAP/BP approach is extremely useful in the case of MN codes where,
below a certain corruption level, they converge to the solution which shows excellent
retrieval of the original vector [11; 19; 31]. Above this point the algorithm tend to
converge to sub-optimal solutions, but this is due to the inherent limitation of the
constructions rather than a failure of the decoding algorithm. In the current chapter
we used the TAP/BP approach to show the improvement in performance emerging
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Overlap (magnetization) as a function of the noise level p for codes with K = L = 3 and

C = 15 with message bias fs = 0.3. Analytical solutions for the regular code are denoted
as ¢ and for the irregular code, with C, = 4 and C. = 30, as [J. Simulation results

are averaged over 10 runs of the TAP/BP algorithm in an irregular construction with
message length of N = 6000, starting from fixed initial conditions (see the text); they
are plotted as e in the rightmost curve for comparison. TAP/BP results for the regular
case agree with the theoretical solutions and have been omitted to avoid overloading the
figure.

from the introduction of irregularity in the matrix construction.
It would be interesting to utilize more refined approximation techniques,

adopted from the statistical physics literature, to find better coding/decoding

schemes, evaluating the trade off between performance improvement obtained and
the increasing computational costs.
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