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We employ the methods presented in the previous 
hapter for de
od-ing 
orrupted 
odewords, en
oded using sparse parity 
he
k error 
or-re
ting 
odes. We show the similarity between the equations derivedfrom the TAP approa
h and those obtained from belief propagation,and examine their performan
e as pra
ti
al de
oding methods.
1 Introdu
tionIn the previous 
hapter we presented our general derivation of the Thouless-Anderson-Palmer (TAP) [29℄ approa
h and 
on
entrated on its appli
ation to 
asesof extensively 
onne
ted systems, showing the 
onsisten
y between our approa
hand existing results obtained via the 
onventional derivation of the TAP equations.In the 
urrent 
hapter we 
on
entrate on the a
tual appli
ation of themethod for de
oding 
orrupted 
odewords, en
oded using sparse parity-
he
k error-
orre
ting 
odes. The main motivation for developing the new formulation is theinappli
ability of 
onventional TAP approa
hes to intensively 
onne
ted systemsand as de
oding methods in this 
ontext.The de
oding method obtained from the new TAP formalism in the 
aseof parity-
he
k error-
orre
ting 
odes is identi
al to that obtained from BeliefPropagation (BP), an iterative method for approximating the marginal posteriorprobability of the dynami
al variables given the quen
hed variables (data). Theorigins of BP are within the �eld of graphi
al models [22℄ and it has been su

essfullyused for de
oding in a broad range of error 
orre
ting 
odes [5℄. Belief propagationis based on propagating probabilities through a tree stru
ture, and thus providesan exa
t estimate to the marginal probability distributions when no re
urrent
onne
tions are present.This 
hapter is organized as follows: In the next two se
tions, we introdu
e thegeneral ba
kground to the problem of error-
orre
tion and present the sparse parity-
he
k 
odes examined here. We then derive, in se
tion 4, the iterative de
odingequations via the methods of BP. In se
tion 5 we employ our formulation to the TAPapproa
h to re-derive the same iterative equations, and point to the link betweenthe two approa
hes. The de
oding performan
e of the method is then demonstratedin several 
ases (se
tion 6) and 
ompared to analyti
al results obtained from therepli
a method. We end the 
hapter by dis
ussing the advantages and limitationsof the method and its relations to other existing te
hniques.
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2 Noisy information transmissionError-
orre
ting 
odes are of signi�
ant pra
ti
al importan
e as they provide me
h-anisms for retrieving the original message after possible 
orruption due to noiseduring transmission. They are being used extensively in most means of informa-tion transmission from satellite 
ommuni
ation to the storage of information onhardware devi
es. The 
oding eÆ
ien
y, measured in the per
entage of informativetransmitted bits, de�nes the information redundan
y used to 
ompensate for the
orruption during transmission. Rigorous bounds [25℄ have been derived for themaximal 
hannel 
apa
ity for whi
h 
odes, 
apable of a
hieving arbitrarily smallerror probability, 
an be found.One family of 
odes, introdu
ed originally by Gallager [6; 7℄, and abandonedin favor of other methods due to the limited 
omputing fa
ilities of the time, hasre
ently been re-introdu
ed by Ma
Kay and Neal [15; 16℄, showing ex
ellent perfor-man
e with respe
t to most existing 
odes. In fa
t, some of the irregular 
onstru
-tions presented re
ently have superior performan
e [17; 23; 12; 13℄, 
omparable tothose of the turbo 
odes [3℄, and nearly saturate Shannon's bound for in�nite mes-sage size. Gallager-type methods are generally based on the introdu
tion of randomsparse matri
es for en
oding the message as well for de
oding the 
orrupted 
ode-word. Various de
oding methods have been su

essfully employed; here we mainlyfo
us on the leading te
hnique of belief propagation [22; 5℄ and its similarity to themethod derived from our formulation of the TAP approa
h [9; 30℄.In a general s
enario, depi
ted in Fig.6.1, the sender en
odes an N dimensionalBoolean (or binary) message ve
tor � to an M(> N) dimensional 
odeword t,whi
h is then being transmitted through a noisy 
ommuni
ation 
hannel. Di�erent
hannel types and noise models may be used [4℄, the most 
ommon ones being theGaussian and Binary Symmetri
 Channel (BSC). In the former, the message bitsare transmitted as real values and are being 
orrupted by white Gaussian noise; inthe latter, the transmitted bits are 
ipped with some probability p 
hara
terizingthe 
hannel noise. Although both BP and our TAP de
oding 
an be applied to both
hannel and noise models we will fo
us here on the BSC as the treatment is simplerand more transparent.In the BSC, noise 
orruption during transmission 
an be modeled by the noiseve
tor � su
h that the re
eived 
orrupted 
odeword takes the form r = t + � inmodulo 2. The re
eived message is then de
oded by the re
eiver for retrieving theoriginal message �. As we already mentioned, the error-
orre
ting ability 
omes atthe expense of information [25℄; in the 
ase of BSC, for unbiased messages, error-free 
ommuni
ation is theoreti
ally possible if the 
ode rate R = N=M satis�es the
onditionR � 1+p log2 p+(1�p) log2(1�p) : (1)In the more general 
ase of biased messages (P (�i = 1) = fs ; 8i) and allowing ade
oding bit error probability pb, the maximal 
ode rate R
, for a given 
ip rate p,
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Figure 6.1The en
oding, the 
orruption by noise in the 
hannel and the de
oding 
an be though asa probabilisti
 network. The aim is to obtain a good estimative b� for the message sent.whi
h equals the 
hannel 
apa
ity, is given expli
itly [4℄ byR
 = H2(fs)(1�H2(p))=(1�H2(pb)) ; (2)where H2(x) = x log2(x) + (1� x) log2(1� x).3 Sparse parity-
he
k 
odesThe origin of sparse parity-
he
k error-
orre
ting 
odes 
an be tra
ed ba
k to thepapers of Gallager [6; 7℄ where his original algorithms have been presented.Gallager's 
odeGallager's original 
ode is de�ned by a binary matrix A = [Cs j Cn℄ 
onstru
tedby 
on
atenating two very sparse matri
es known by both sender and re
eiver, withCn (of dimensionality (M �N)� (M �N)) being invertible and the matrix Cs ofdimensionality (M �N)�N .En
oding is 
arried out by mapping the original message � 2 f0; 1gN onto abinary ve
tor t 2 f0; 1gM (M > N) de�ned by t =GT � (mod 2), where all opera-tions are performed in the �eld f0; 1g as indi
ated by the (mod 2) operation. The(dense) generator matrix used in the en
oding pro
ess isG = [I j C�1n Cs℄ (mod 2),where I is the N�N identity matrix; this implies that AGT (mod 2) = 0 and thatthe message � is set as the �rst N bits of t. In a regular Gallager 
ode the numberof ones in ea
h row of A is 
hosen to be exa
tly K and the number of elements per
olumn is C = (1�R)K, where the 
ode rate is R = N=M . These elements 
an be
hosen either systemati
ally or randomly. In irregular 
onstru
tions the number ofunit elements per row and 
onne
tions per 
olumn may vary.In a BSC, the en
oded ve
tor t is then 
orrupted by noise represented by theve
tor � 2 f0; 1gM with 
omponents independently drawn from the probabilitydistributionP (�i) = (1�p) Æ(�i)+p Æ(�i�1) ; 8i :The re
eived ve
tor takes the form r = GT � + � (mod 2).De
oding is 
arried out by multiplying the re
eived message by the matrixA, produ
ing the syndrome ve
tor z = Ar = A� (mod 2) from whi
h an
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estimate b� for the noise 
an be produ
ed. An estimate for the original messageis then obtained as the �rst N bits of r+ b� (mod 2). The Bayes optimal estimator(also known as marginal posterior maximiser, MPM) for the noise is de�ned asb�j = argmax�jP (�j j z). The performan
e of this estimator 
an be measured by theprobability of bit errorpb = 1�1=M MXj=1 Æ[b�j ; �j ℄ ;where Æ[; ℄ is the Krone
ker delta. Knowing the matri
es Cn and Cs, the 
orrupted
odeword r, and the noise level p it is possible to apply Bayes theorem and 
omputethe posterior probability as:P (� j z) = 1Z� [z = A� (mod 2)℄P (� ); (3)where �[X ℄ is an indi
ator fun
tion that is 1 ifX is true and 0 otherwise. To 
omputethe MPM one has to 
ompute the marginal posterior P (�j j z) =P�i6=j P (� j z).In general, this requires O(2M ) operations, and be
omes impra
ti
al as the messagesize in
reases. To obtain a more eÆ
ient algorithm one 
an use the sparseness ofA to design algorithms that require O(M) operations for performing the same
omputation. One of these methods is the BP algorithm, also known as probabilitypropagation, sum-produ
t algorithm (see [14℄ and referen
es therein) or generalizeddistributive law [1℄.Gallager's 
ode set the general framework for the family of sparse parity 
he
k
odes, it has been all but abandoned for about three de
ades, until Ma
Kay andNeal [15; 16℄ introdu
ed independently a 
ode whi
h is essentially a variation ofGallager's original 
ode.The MN 
odeMa
Kay and Neal [15; 16℄ re
ently introdu
ed (independently) a variation of theGallager's original method termed the MN 
ode. In these 
odes, a message � isen
oded into a 
odeword t using two randomly 
onstru
ted Boolean sparse matri
esCs and Cn, whi
h may be 
hara
terized in the following manner.The random matrix Cs is re
tangular and of dimensionality M �N , having Knon-zero unit elements per row and C per 
olumn. The matrix Cn is an M �M(mod 2)-invertible matrix randomly 
onstru
ted having L non-zero elements perrow and 
olumn. These matri
es are shared by both sender and re
eiver.Using these matri
es, one 
an en
ode a message � into a 
odeword t in thefollowing mannert = C�1n Cs� (mod 2); (4)whi
h is then transmitted via a noisy 
hannel. Note that all matrix and ve
tor
omponents are of Boolean (0; 1) representation, and all summations are 
arriedout in this �eld, i.e., (mod 2).
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During transmission, through a BSC, a noise ve
tor � is added to t and a
orrupted 
odeword r = t+ � (mod 2) is re
eived at the other end of the 
hannel.De
oding is then 
arried out by taking the produ
t of the matrix Cn and the re
eived
odeword r, whi
h results in the syndrome ve
tor z = Cs�+Cn� = Cnr. The maindi�eren
e between these 
odes and Gallager's original 
ode is that the syndromeve
tor 
ontains also information on the original message. The message itself isdire
tly estimated and there is no need for re
overing the noise ve
tor perfe
tly.De
oding the 
orrupted message in these 
odes 
an be formulated, similarly to thatof Gallager's 
ode, as �nding the most probable ve
tors S and � , whi
h 
orrespondto the signal and noise ve
tors respe
tively, that satisfyCs�+Cn� = CsS+Cn� (mod 2); (5)given the matri
es Cs and Cn and the prior distributions for S and � .Constru
tions where the number of unit elements per row (K and L) andper 
olumn (C and L) is �xed are termed regular 
onstru
tions, while other
onstru
tions where the number of unit elements per row/
olumn is taken from somedistribution are termed irregular. Irregular 
onstru
tions generally show improvedperforman
e with respe
t to regular ones [17; 23; 12; 31℄.In spite of the similarity between the two 
odes they have slightly di�erentproperties [32℄, in their equilibrium 
hara
teristi
s as well as in their dynami
albehavior; these were investigated using the methods of statisti
al physi
s.Before presenting the iterative equations derived using BP and our formulationof TAP, we would like to introdu
e another member of the same family of 
odespresented and analyzed by Sourlas [27℄. Although the original 
ode was presentedwithin the framework of statisti
al physi
s, it 
an be mapped ba
k to the frameworkof sparse parity-
he
k error-
orre
ting 
odes.The 
ode of SourlasDes
ribed as a parity 
he
k 
ode, the message � is en
oded into a 
odeword tusing as generator a single randomly 
onstru
ted Boolean sparse matrix Cs, ofdimensionality M �N , randomly 
omposed of K non-zero unit elements per rowand C per 
olumn.The message � is en
oded into a 
odeword t in the following mannert = Cs� (mod 2); (6)whi
h is then transmitted via a noisy 
hannel and is 
orrupted by 
ip noise ofprobability p. Unlike Gallager/MN 
odes, where a syndrome ve
tor z is generatedby the re
eiver in a prepro
essing stage, the 
ode of Sourlas uses the 
orrupted
odeword dire
tly in the de
oding pro
ess. De
oding may be 
arried out by di�erentmethods, one of whi
h is an MPM based estimation similar to the one used in bothGallager and MN 
odes [9; 30℄.In the reminder of the 
hapter we will fo
us on the Sourlas and MN 
odes.Despite the di�eren
es in the en
oding and prepro
essing stages; the derivation of
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the de
oding algorithm, based on our TAP approa
h, is similar in the three 
odetypes, and the numeri
al results obtained are of a similar nature.4 De
oding: Belief propagationThe Bayesian message estimate (MPM) potentially provides the optimal retrievalof the original messages. However, it is 
omputationally diÆ
ult to 
arry out theexa
t 
al
ulation as it requires a sum over O(2N ) terms. Belief propagation [5; 22℄
an eÆ
iently be used for obtaining an approximate estimate.For brevity we will �rst 
onsider the 
ode of Sourlas; the extension of thederivation to the MN 
ode (and Gallager's) will follow dire
tly. The de
odingpro
ess in this 
ase relies on 
omputing averages over the marginal posteriorprobability P (Sj j z) for ea
h of the N message bits Sj given the 
orrupted en
odedbits z� (
he
ks), where � = 1 : : :M . The probabilisti
 dependen
ies present in the
ode 
an be represented as a bipartite graph known as belief network where thenodes in one layer 
orrespond to the M 
he
ks z� and the nodes in the other tothe N bits Sj . Ea
h 
he
k is 
onne
ted to exa
tly K bits and ea
h bit is 
onne
tedexa
tly C 
he
ks (see Fig. 6.2a).Belief propagation is an iterative algorithm proposed by Pearl [22℄; it is basedon lo
al updates of a set of marginal probabilities and the propagation of beliefs(
onditional probabilities) within the network. The 
onvergen
e of these iterationsrequires a tree like network stru
ture with no loops. Typi
ally, the belief networkswhi
h represent sparse parity-
he
k error-
orre
ting 
odes su�er from a signi�
antnumber of loops as illustrated in Fig.6.2a. However, it has re
ently been shownthat in some 
ases Pearl's algorithm provides good approximation even with thepresen
e of loops [33℄. In the parti
ular 
ase 
onsidered here one may also arguethat the e�e
t of loops is negligible due to the network size, whi
h is assumed to belarge and thus redu
es the probability of small loops; these have the most signi�
ante�e
t on the a

ura
y of the approximation obtained.The general framework of Pearl [22℄ was adapted to the spe
i�
 de
odingproblem of sparse parity-
he
k error-
orre
ting 
odes by Ma
Kay and Neal [15; 16℄;their algorithm relies on 
omputing the 
onditional probabilities q(S)�j and r(S)�j (notto be 
onfused with the re
eived ve
tor r):q(S)�j = P (Sj = S j fz� : � 2 M(j)n�g)is the probability of the Sj = S given information on all 
he
ks other than � andr(S)�j = XL(�)nj P (z� j Sj = S; fSl : l 2 L(�)njg) Yl2L(�)nl q(Sl)�lis the probability of the 
he
k z� if the site j is �xed to Sj = S and the 
ontributionfrom the other bits involved is fa
torized with the related probability distributionsgiven by q(Si)�i . The sets L(�) and M(j) de�ne the set of bits in the 
he
k � andthe set of 
he
ks over the bit j respe
tively.Figure 6.2b provides a graphi
al representation of r(S)�j as the total in
uen
e of
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Figure 6.2(a) Belief network representing an error-
orre
ting 
ode. Ea
h bit Sj (white 
ir
les) islinked to exa
tly C 
he
ks (
odeword bits) and ea
h 
he
k (bla
k 
ir
les)z� is linked toexa
tlyK sites. (b) Graphi
al representation of the �eld r�j . The grey box represents themean �eld 
ontribution Ql2L(�)nj q�l of all bits other than Sj on the 
he
k (
odewordbit) z�. (
) Representation of one of the �elds q�l in (b).the bit Sj and a lo
al mean �eldQl2L(�)nl q(S)�l (representing fa
torized 
ontributionfrom the other sites in L(�)) on the 
he
k z�. Figure 6.2
 represents graphi
allythe �eld q(S)�l as the in
uen
e of the 
he
ks in M(l) ex
luding � on the bit Sl, thisex
lusion is required for avoiding loops in the network.Employing Bayes theorem q(S)�j 
an be rewritten as:q(S)�j = a�j P (fz� : � 2 M(j)n�g j Sj) p(S)j ; (7)where a�j is a normalization 
onstant su
h that q(0)�j + q(1)�j = 1 and p(S)j is the priorprobability over the bit j. The distribution P (fz� : � 2 M(j) n �g j Sj) 
an berepla
ed by a mean �eld approximation in a way that fa
torizes the dependen
iesusing the �elds r(S)�j , obtainingq(S)�j = a�j p(S)j Y�2M(j)n� r(S)�jr(S)�j = XL(�)nj P (z� j Sj = S; fSi : i 2 L(�) n jg) Yi2L(�)nj q(Si)�i : (8)An estimate b�j = argmaxS2f0;1g nq(S)j o of the original message bits is obtained
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by solving the above equations, what 
an be done iteratively using several di�er-ent s
hedules, the eÆ
ien
y of whi
h depends on the parti
ular topology of thenetwork [1℄; and 
omputing the pseudo-posterior:q(S)j = ajp(S)j Y�2M(j) r(S)�j ; (9)where aj is a normalization 
onstant.Noti
e that the �eld rS�j is not originally normalized with respe
t to bit variablesS while qS�j is the 
ase. However, one may introdu
e an extra normalization
ondition r(0)�j + r(1)�j = 1 without 
hanging any result. By taking advantage ofthis extra 
ondition, one 
an redu
e the set of equations to Æq�j = q(0)�j � q(1)�j andÆr�j = r(0)�j � r(1)�j . The pseudo posterior 
an be 
al
ulated in this manner obtainingan estimate to the original message bits following a ruleb�j = � 0; if Æqj > 0;1; otherwise: (10)Extending the formulation to both Gallager and MN 
odes is straightforward,as after prepro
essing these 
odes also involve a de
oding task with very sparsematri
es; in the latter 
ase one extends the set of dynami
al variables to in
ludeboth signal and noise ve
tors [15; 16℄.This algorithm has been employed in a variety of de
oding s
enarios for bothparity-
he
k 
odes and turbo 
odes [16; 5℄ proving to be highly eÆ
ient.5 De
oding: the TAP approa
hSo far we have des
ribed the sparse parity 
he
k 
oding s
heme using the 
on-ventional Boolean (0; 1) representation. However, in order to apply methods ofstatisti
al physi
s, it is highly 
onvenient to introdu
e an equivalent representationusing binary variables �1. More spe
i�
ally, we hereafter 
onvert all the Booleanvariables to the binary ones, by employing the isomorphismBoolean(0; 1;+) $ binary(+1;�1;�): (11)One 
an easily 
he
k the equivalen
e between these two groups by observing thefollowing simple isomorphi
 map:(�1)x+y+:::+z (mod 2) = X�Y � : : :�Z; (12)where x; y; : : : ; z are the Boolean (0; 1) variables while X = (�1)x; Y = (�1)y; : : : ;Z = (�1)z are the 
orresponding binary (�1) ones.Mapping to an Ising Spin SystemTwo advantages in the novel representation are worthwhile mentioning. The �rst isthe 
ompa
tness of the des
ription. For example, one 
an des
ribe the 
onditional
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probabilities standing for the transmission through a BSC in a simple manner asP (rjt) = 1 + �rt2 = exp [�nrt℄2 
osh(�n) ; (13)in the binary representation, where t(2 [�1;+1℄) and r(2 [�1;+1℄) are the trans-mitted and re
eived message bits respe
tively, p is the 
ip probability of the 
hanneland � = 1 � 2p and �n = (1=2) ln [(1� p)=p℄. In parti
ular, the last term on theright in Eq. (13) makes 
al
ulations like those in Eqs. (8) easier to handle as one
an 
onvert the produ
t operations to simple summations.In addition, the adoption of the binary representation makes the similarity toIsing spin models expli
it, enabling one to take advantage of the te
hniques de-veloped in statisti
al physi
s for analysing su
h systems. Employing an expressionlike the one on the right hand side of Eq. (13) for the distributions of binary vari-ables, one 
an generally represent posterior probabilities after �nding the syndromez (the re
eived message itself as in Sourlas' 
ode or the prepro
essed ve
tor as inGallager/MN 
odes)P (S j z) = exp [��H(Sjz)℄Z(z) ; (14)with�H(Sjz) = �� MX�=1 z� Yl2L(�)Sl�F NXl=1 Sl; (15)where Z(z) = TrS exp[��H(Sjz)℄, � and F are hyper-parameters determinedby the type of 
odes, the 
hannel noise and the prior distribution of messages.Parity 
he
k 
odes 
an be generally mapped onto Ising spin systems with multi-spin intera
tions des
ribed by a Hamiltonian of the type (15) fa
ilitating the useof methods developed in physi
s for analysing the 
urrent system [27; 28; 20; 24; 9;10; 8℄.In this 
ontext, our formulation of the de
oding problem is strongly linked tothe Bethe [2℄ approximation and its extensions [32℄, and to the 
onventional TAPapproa
h [29℄. In [9℄ we have shown that this framework provides a similar set ofiterative equations to that of BP.The motivation for developing this formulation is the ex
ellent approximationprovided by the Bethe latti
e approa
h for �nitely 
onne
ted systems in thethermodynami
 limit [26℄. Finite loops linking the di�erent network sites vanish asthe system size grows and 
an be negle
ted without introdu
ing signi�
ant errorsin this s
enario. The approximation used also has mean �eld properties in the wayone takes into a

ount the mean in
uen
e of the whole latti
e on a parti
ular site.Due to the transparen
y of the derivation in this 
ase, we start by explainingthe TAP formulation for the 
ode of Sourlas.
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The 
ode of SourlasTo develop the new approa
h we noti
e that the likelihood P (z� j S) is proportionalto the Boltzmann weight, for a given inverse temperature �(= 1=T ):wB(z� j S) = exp0���z� Yi2L(�)Si1A ; (16)that 
an be rewritten in the more 
onvenient form:wB(z� j S) = 12
osh(�z�)�0�1 + tanh(�z�) Yj2L(�)Sj1A : (17)In fa
t, the inverse temperature � has an optimal value given by Nishimori'stemperature �n = (1=2) ln[(1� p)=p℄ [20℄ if the 
ip probability p in BSC is known.However, we deal with it as a 
ontrol parameter in order to 
onsider generalsituations where p is not exa
tly known to re
eiver.The 
onditional probability r(Sj )�j 
an then be seen as an normalized e�e
tiveBoltzmann weight (e�e
tive Boltzmann probability)r(Sl)�l = a�l we� (z� j Sl; fz� 6=�g) (18)= a�l TrfSk 6=lg wB (z� j S) Yk 6=l qSk�lobtained by taking the 
onne
tion � out of the system, and taking into 
onsiderationthe (fa
torized) dependen
e of the variables S on all other 
onne
tions (q�j ;8j);a�l being a normalization 
oeÆ
ient. The term q�j is identi�ed as the mean �eld
ontribution to a spe
i�
 site, from whi
h the �rst of Eqs.(8) follows dire
tly.Plugging the form (17) for the likelihood in the equations (8), using the fa
t thatthe prior probability is given by p(S)j = 12 (1 + tanh(�SF )) (whi
h 
onstitutes thede�nition of F ) and 
omputing Æq�j and Ær�j we �nd:Ær�j = tanh(�z�) Yl2L(�)nj Æq�lÆq�j = tanh0� X�2M(j)n� tanh�1(Ær�j) + �F1A : (19)Solving these equations iteratively enables one to derive the pseudo-posteriorthrough the expression:Æqj = tanh0� X�2M(j) tanh�1(Ær�j) + �F1A ; (20)This provides a way for 
omputing the Bayes optimal de
oding b�j = sign(Æqj). It isinteresting to note that the somewhat arbitrary use of the di�eren
es Æq�l= hS�l iqand Ær�l = hS�l ir in the BP approa
h be
omes 
lear form the TAP formulation,where they represent the expe
tation values of the dynami
al variables with respe
t
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to the �elds.It is important at this point to list and interpret the mean �eld assumptionsused here [9℄:1. We assume a mean �eld behavior for the dependen
e of the dynami
al variablesS on a 
ertain realization of the message sites z, i.e., the posterior distribution isfa
torizable with respe
t to dynami
al variables Si=1;:::;N and may be repla
ed bya produ
t of mean �elds.2. Boltzmann weights for a spe
i�
 site Sl are fa
torizable with respe
t to themessage sites z�.3. The 
ontribution of single variables Si=1;:::;N , and z�=1;:::;M to the ma
ros
opi
variables is small and 
an be isolated.The fa
torizability of the probability distributions provides a good approxima-tion due to the absen
e of short loops in the latti
e and by the 
luster property:limN!1 1N2 X8i6=j �hSiSjip(Sjz) � hSiip(Sjz)hSjip(Sjz)�2 ! 0 (21)that the bits Sj are supposed to obey within a pure state [18℄.The MN 
odesThe derivation presented above 
an be easily extended to the 
ase of MN 
odes. Inthis 
ase one treats both variable types (signal and noise, S and � respe
tively) onequal footing, aiming to 
al
ulate the marginal posterior probabilitiesP (Sijz0) = TrffSk 6=ig;� gP (S; � jz0)andP (�j jz0) = TrfS;f�k 6=jggP (S; � jz0)based on similar three assumptions, as in the 
ase of Sourlas, in
luding both Sand � . Here, we denote z0 as the binary equivalent to the Boolean syndrome Cnz
omputed in MN 
odes.From a statisti
al physi
s point of view, the main di�eren
e between the 
urrent
odes and those of Sourlas is the temperature at whi
h the 
odes are appropriatelymapped onto Ising spin systems. Sin
e 
ondition (5) is introdu
ed to posteriordistribution through an indi
ator fun
tion as� [Cnz = CsS + Cn� (mod 2)℄ = lim�!1exp h�PM�=1 z0�Qk2Ls(�) SkQj2Ln(�)�ji(2 
osh�)M ;(22)in the binary representation, the MN 
odes are mapped onto Ising models witha new e�e
tive temperature ��1 whi
h is set to be zero 
onstraining the spa
eof 
on�gurations to those obeying the 
onstraints de�ned by �[:℄. Here, we have
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introdu
ed notations Ls(�) and Ln(�) in order to denote the set of all indi
es ofnon-zero 
omponents in �-th row of the sparse matrix Cs and Cn, respe
tively.In the statisti
al physi
s 
ommunity, it is widely known that Ising spin systemswith quen
hed disorder 
an be highly frustrated at low temperatures, whi
h makeseÆ
ient 
omputation by mean �eld approximations infeasible. However, it shouldbe stressed here that the intera
tions des
ribed by Eq. (22) produ
e no frustrationin the 
urrent system even at the e�e
tive temperature ��1 set to zero be
ausethis model is 
at [18℄, i.e. the disorder 
an be trivially gauged and there are more(M +N) dynami
al variables than the number of 
onstraints (M).In addition to these 
onstraints, prior knowledge about the message and noiseve
tors S and � is also taken into a

ount by introdu
ing the following priordistributionsP (S) = exp[FsPNl=1 Sl℄(2 
oshFs)N ; P (� ) = exp[FnPMj=1 �j ℄(2 
oshFn)M ; (23)where Fn = (1=2) ln[(1 � p)=p℄ is set to its optimal value, and non-zero �eldFs is introdu
ed for biased messages. These O(1) �elds work to 
ompensate theinsuÆ
ien
y of 
onditions for uniquely determining ea
h bit sequen
e without
ausing frustration. This e�e
t be
omes stronger for larger Fn and Fs. Therefore,one 
an expe
t that for suÆ
iently large Fn, Fs, whi
h implies suÆ
iently small 
iprate p if the message is not biased, unique bit sequen
es S and � 
an be determinedby the posterior distribution and 
an possibly be 
omputed e�e
tively by the TAPapproa
h.Parameterizing pseudo-marginal posteriors and marginalized 
onditional prob-abilities asP (Sijfz0� 6=�g) = 1 + ÆqS�iSi2 ;P (�j jfz0� 6=�g) = 1 + Æqn�j�j2 ; (24)P (z0�jSi; fz0� 6=�g) � 1 + ÆrS�iSi2 ;P (z0�j�j ; fz0� 6=�g) � 1 + Ærn�j�j2 ; (25)a set of self-
onsistent equations 
an be found [9; 11; 30℄ÆqS�l = tanh0�Fs + X�2MS(l)=� tanh�1(ÆrS�l)1A ;Æqn�l = tanh0�Fn + X�2Mn(l)=� tanh�1(Ærn�l)1A ; (26)andÆrS�l = z0� Yk2LS(�)=l ÆqS�k Yj2Ln(�) Æqn�j ;Ærn�l = z0� Yk2LS(�) ÆqS�k Yj2Ln(�)=l Æqn�j ; (27)
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similar to those obtained in the 
ase of Sourlas 
ode (19). Here, Ms(l) and Mn(l)indi
ate the set of all indi
es of non-zero 
omponents in the l-th 
olumn of thesparse matrix Cs and Cn, respe
tively. The notation Ms(l)=� represents the set ofall indi
es belonging to Ms(l) ex
ept l and similar for the others.Equations (26) and (27) are solved iteratively using appropriate initial 
ondi-tions. After obtaining a solution to all Æq�l and Ær�l, an approximated posteriormean 
an be 
al
ulated asÆqSi = tanh0�Fs + X�2MS(l) tanh�1(ÆrS�i)1A ; (28)whi
h provides an approximation to the Bayes-optimal estimator of the form�̂B = sign(ÆqSi ).By introdu
ing the new variables xi = �iÆqS�i, x̂i = �iÆrS�i, yj = �jÆqn�j andŷj = �jÆrn�j and assuming that they are independently drawn from distributions�(x), �̂(x̂), �(y) and �̂(ŷ) (an assumption that has been veri�ed experimentally), one
an link the equations (26,27) to those obtained using the repli
a method [19; 11℄.This 
onne
tion 
an be extended further by providing an expression for the TAPfree energy whi
h equations(26) and (27) extremizefTAP (fÆqg; fÆrg) = MN ln 2 + 1N MX�=1 Xi2LS(�) ln �1 + ÆqS�iÆrS�i�+ 1N MX�=1 Xj2Ln(�) ln �1 + Æqn�jÆrn�j� (29)� 1N MX�=1 ln0�1 + z0� Yi2LS(�) ÆqS�i Yj2Ln(�) Æqn�j1A� 1N NXi=1 ln24eFs Y�2MS(i) �1 + ÆrS�i�+ e�Fs Y�2MS(i) �1� ÆrS�i�35� 1N MXj=1 ln24eFn Y�2Mn(j) �1 + Ærn�j�+ e�Fn Y�2Mn(j) �1� Ærn�j�35 :This expression may be used for sele
ting the best estimate when Eqs.(26) and (27)have several solutions.This derivation 
an be easily extended to a

ommodate Gallager's 
ode.6 Experimental resultsAs our TAP formulation arrives at exa
tly the same iterative equations as thoseobtained using BP, we brie
y presents a 
ouple of examples demonstrating theeÆ
a
y of the method for de
oding 
orrupted messages en
oded using the MN andSourlas error 
orre
ting 
odes.We �rst presented some experiments using the 
ode of Sourlas and equa-
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tions (19). In these experiments we used the 
losed set of iterative equations tode
ode messages en
oded by the 
ode of Sourlas and 
orrupted during transmis-sion by 
ip noise of probability p. For ea
h run, a �xed 
ode is used to generate20000 bit 
odewords from 10000 bit messages; 
orrupted versions of the 
odewordsare then de
oded using (19). For ea
h trial we monitor the overlap between thede
oded ve
tor and the original message (magnetization) m= 1=N PNi=1 �ib�j (inbinary). Numeri
al solutions for 10 individual runs are presented in Fig.6.3a, theinitial 
onditions are 
hosen as Ær�l = 0 and Æq�l = tanh(�F ) re
e
ting prior be-liefs for both signal and noise. In �gure 6.3 we show results for K = 2 and C = 4,
orresponding to a 
ode rate R = 1=2, in the unbiased 
ase (prior probabilityP (�j = 1) = fs = 0:5; 8j) at a temperature as low as T = 0:26. We also show theagreement between the results obtained and those 
oming from the repli
a sym-metri
 
al
ulation [9; 30℄. In the same �gure we show the performan
e for the 
aseof biased examples (P (�j = 1) = fs = 0:1 8j). Again the agreement with resultsobtained using the repli
a method [9; 30℄ is rather 
onvin
ing. The third 
urve inthe Fig.6.3a shows the performan
e for biased messages at Nishimori's tempera-ture, 1=Tn=1=2 ln[(1 � p)=p℄ [20℄, as expe
ted [24; 28; 21; 8℄ it is superior to lowtemperature de
oding, being equivalent to having the 
orre
t prior in the Bayesianframework. The agreement with the repli
a based results is even better.In Fig.6.3b we show results for K = 5 and C = 10, again the 
ode rateis R = 0:5. For unbiased messages the system is extremely sensitive to initial
onditions and does not perform well on average even at Nishimori's temperature,ending up in some sub-optimal solution. For biased messages the results are farbetter and in agreement with the repli
a based results [9; 30℄.Applying the same algorithm to the 
ase of regular and irregular MN 
odeswe obtain the results presented in �gure 6.4, demonstrating the improvement inperforman
e a
hieved by simple irregularity in the 
onstru
tion. The irregularityused is based on the following probability distribution, from whi
h the (
olumn)
onne
tivities of the signal matrix Cs are derived:PC(C) = (1��) Æ(C�Co) + � Æ(C�Ce): (30)The mean 
onne
tivity is C = (1� �) Co + � Ce and Co < C < Ce and the noisematrix Cn is 
hosen to be regular.To gain some insight on the e�e
t of irregularity on solving the TAP/BPequations (26) and (27) we performed several runs starting from the �xed initial
onditions Æqs�j(0) = 1 � 2fs and Æqn�l(0) = 1 � 2p. For 
omparison we obtainedanalyti
al solutions based on the repli
a symmetri
 theory [31℄.In Figure 6.4 we show a typi
al 
urve for the magnetization as a fun
tion of thenoise level. The analyti
al results agree very well with TAP/BP de
oding results,indi
ating that the addition of irregularity improves the performan
e 
onsiderably.7 SummaryIn this paper we dis
uss the appli
ation of our TAP formulation to the de
odingproblem in sparse parity-
he
k error-
orre
ting 
odes. We show that using simple
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Figure 6.3The overlap (magnetization) obtained from numeri
al solutions for di�erent 
ip rate p.(a) For the 
ase K=2, di�erent biases (fs=P (�j = 1)=0:1; 0:5 8j) and temperatures(T =0:26; Tn), we see good agreement between the TAP/BP solutions and the theoreti
alvalues [9; 30℄. Results for the unbiased patterns are shown as raw data, i.e., results of10 runs for ea
h 
ip rate value p (diamond), while the theoreti
al solution is markedby the dashed line. Results for biased patterns are shown by their mean and standarddeviation, showing a suboptimal improvement in performan
e as expe
ted for T =0:26and an optimal one at Nishimori's temperature -Tn. Note that in the 
ase of T =Tn thestandard deviation is signi�
antly smaller than the symbol size. Figure (b) shows resultsfor the 
ase K=5 and T =Tn in similar 
onditions to (a). Also here iterative solutionsmay generally drift away from the theoreti
al values where temperatures other than Tnare employed (not shown); using Nishimori's temperature alleviates the problem only inthe 
ase of biased messages and the results are in 
lose agreement with the theoreti
alsolutions (fo
using on low p values in the inset).mean �eld arguments and interpreting the e�e
tive Boltzmann weight as the lo
alsite 
onditional probability, on
e a single 
onne
tion has been taken out of thesystem, one retrieves the same iterative equations obtained from the BP method.We employ the TAP/BP iterative equations for de
oding 
orrupted messages,en
oded using the MN 
odes, and the 
ode of Sourlas, in parti
ular s
enarios. We
ompared the results obtained to the analyti
al solutions obtained by the repli
amethod. In the 
ase of Sourlas, the solutions indi
ate that the method is parti
ularlyuseful in the 
ase of biased messages and that using Nishimori's temperature ishighly bene�
ial; solutions obtained using other temperature values may be sub-optimal. For unbiased messages and K�3 we may obtain erroneous solutions usingthese methods.The TAP/BP approa
h is extremely useful in the 
ase of MN 
odes where,below a 
ertain 
orruption level, they 
onverge to the solution whi
h shows ex
ellentretrieval of the original ve
tor [11; 19; 31℄. Above this point the algorithm tend to
onverge to sub-optimal solutions, but this is due to the inherent limitation of the
onstru
tions rather than a failure of the de
oding algorithm. In the 
urrent 
hapterwe used the TAP/BP approa
h to show the improvement in performan
e emerging
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Figure 6.4Overlap (magnetization) as a fun
tion of the noise level p for 
odes with K = L = 3 andC = 15 with message bias fs = 0:3. Analyti
al solutions for the regular 
ode are denotedas � and for the irregular 
ode, with Co = 4 and Ce = 30, as �. Simulation resultsare averaged over 10 runs of the TAP/BP algorithm in an irregular 
onstru
tion withmessage length of N = 6000, starting from �xed initial 
onditions (see the text); theyare plotted as � in the rightmost 
urve for 
omparison. TAP/BP results for the regular
ase agree with the theoreti
al solutions and have been omitted to avoid overloading the�gure.from the introdu
tion of irregularity in the matrix 
onstru
tion.It would be interesting to utilize more re�ned approximation te
hniques,adopted from the statisti
al physi
s literature, to �nd better 
oding/de
odings
hemes, evaluating the trade o� between performan
e improvement obtained andthe in
reasing 
omputational 
osts.A
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