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We employ the methods presented in the previous hapter for deod-ing orrupted odewords, enoded using sparse parity hek error or-reting odes. We show the similarity between the equations derivedfrom the TAP approah and those obtained from belief propagation,and examine their performane as pratial deoding methods.
1 IntrodutionIn the previous hapter we presented our general derivation of the Thouless-Anderson-Palmer (TAP) [29℄ approah and onentrated on its appliation to asesof extensively onneted systems, showing the onsisteny between our approahand existing results obtained via the onventional derivation of the TAP equations.In the urrent hapter we onentrate on the atual appliation of themethod for deoding orrupted odewords, enoded using sparse parity-hek error-orreting odes. The main motivation for developing the new formulation is theinappliability of onventional TAP approahes to intensively onneted systemsand as deoding methods in this ontext.The deoding method obtained from the new TAP formalism in the aseof parity-hek error-orreting odes is idential to that obtained from BeliefPropagation (BP), an iterative method for approximating the marginal posteriorprobability of the dynamial variables given the quenhed variables (data). Theorigins of BP are within the �eld of graphial models [22℄ and it has been suessfullyused for deoding in a broad range of error orreting odes [5℄. Belief propagationis based on propagating probabilities through a tree struture, and thus providesan exat estimate to the marginal probability distributions when no reurrentonnetions are present.This hapter is organized as follows: In the next two setions, we introdue thegeneral bakground to the problem of error-orretion and present the sparse parity-hek odes examined here. We then derive, in setion 4, the iterative deodingequations via the methods of BP. In setion 5 we employ our formulation to the TAPapproah to re-derive the same iterative equations, and point to the link betweenthe two approahes. The deoding performane of the method is then demonstratedin several ases (setion 6) and ompared to analytial results obtained from thereplia method. We end the hapter by disussing the advantages and limitationsof the method and its relations to other existing tehniques.
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2 Noisy information transmissionError-orreting odes are of signi�ant pratial importane as they provide meh-anisms for retrieving the original message after possible orruption due to noiseduring transmission. They are being used extensively in most means of informa-tion transmission from satellite ommuniation to the storage of information onhardware devies. The oding eÆieny, measured in the perentage of informativetransmitted bits, de�nes the information redundany used to ompensate for theorruption during transmission. Rigorous bounds [25℄ have been derived for themaximal hannel apaity for whih odes, apable of ahieving arbitrarily smallerror probability, an be found.One family of odes, introdued originally by Gallager [6; 7℄, and abandonedin favor of other methods due to the limited omputing failities of the time, hasreently been re-introdued by MaKay and Neal [15; 16℄, showing exellent perfor-mane with respet to most existing odes. In fat, some of the irregular onstru-tions presented reently have superior performane [17; 23; 12; 13℄, omparable tothose of the turbo odes [3℄, and nearly saturate Shannon's bound for in�nite mes-sage size. Gallager-type methods are generally based on the introdution of randomsparse matries for enoding the message as well for deoding the orrupted ode-word. Various deoding methods have been suessfully employed; here we mainlyfous on the leading tehnique of belief propagation [22; 5℄ and its similarity to themethod derived from our formulation of the TAP approah [9; 30℄.In a general senario, depited in Fig.6.1, the sender enodes an N dimensionalBoolean (or binary) message vetor � to an M(> N) dimensional odeword t,whih is then being transmitted through a noisy ommuniation hannel. Di�erenthannel types and noise models may be used [4℄, the most ommon ones being theGaussian and Binary Symmetri Channel (BSC). In the former, the message bitsare transmitted as real values and are being orrupted by white Gaussian noise; inthe latter, the transmitted bits are ipped with some probability p haraterizingthe hannel noise. Although both BP and our TAP deoding an be applied to bothhannel and noise models we will fous here on the BSC as the treatment is simplerand more transparent.In the BSC, noise orruption during transmission an be modeled by the noisevetor � suh that the reeived orrupted odeword takes the form r = t + � inmodulo 2. The reeived message is then deoded by the reeiver for retrieving theoriginal message �. As we already mentioned, the error-orreting ability omes atthe expense of information [25℄; in the ase of BSC, for unbiased messages, error-free ommuniation is theoretially possible if the ode rate R = N=M satis�es theonditionR � 1+p log2 p+(1�p) log2(1�p) : (1)In the more general ase of biased messages (P (�i = 1) = fs ; 8i) and allowing adeoding bit error probability pb, the maximal ode rate R, for a given ip rate p,
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Figure 6.1The enoding, the orruption by noise in the hannel and the deoding an be though asa probabilisti network. The aim is to obtain a good estimative b� for the message sent.whih equals the hannel apaity, is given expliitly [4℄ byR = H2(fs)(1�H2(p))=(1�H2(pb)) ; (2)where H2(x) = x log2(x) + (1� x) log2(1� x).3 Sparse parity-hek odesThe origin of sparse parity-hek error-orreting odes an be traed bak to thepapers of Gallager [6; 7℄ where his original algorithms have been presented.Gallager's odeGallager's original ode is de�ned by a binary matrix A = [Cs j Cn℄ onstrutedby onatenating two very sparse matries known by both sender and reeiver, withCn (of dimensionality (M �N)� (M �N)) being invertible and the matrix Cs ofdimensionality (M �N)�N .Enoding is arried out by mapping the original message � 2 f0; 1gN onto abinary vetor t 2 f0; 1gM (M > N) de�ned by t =GT � (mod 2), where all opera-tions are performed in the �eld f0; 1g as indiated by the (mod 2) operation. The(dense) generator matrix used in the enoding proess isG = [I j C�1n Cs℄ (mod 2),where I is the N�N identity matrix; this implies that AGT (mod 2) = 0 and thatthe message � is set as the �rst N bits of t. In a regular Gallager ode the numberof ones in eah row of A is hosen to be exatly K and the number of elements perolumn is C = (1�R)K, where the ode rate is R = N=M . These elements an behosen either systematially or randomly. In irregular onstrutions the number ofunit elements per row and onnetions per olumn may vary.In a BSC, the enoded vetor t is then orrupted by noise represented by thevetor � 2 f0; 1gM with omponents independently drawn from the probabilitydistributionP (�i) = (1�p) Æ(�i)+p Æ(�i�1) ; 8i :The reeived vetor takes the form r = GT � + � (mod 2).Deoding is arried out by multiplying the reeived message by the matrixA, produing the syndrome vetor z = Ar = A� (mod 2) from whih an
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estimate b� for the noise an be produed. An estimate for the original messageis then obtained as the �rst N bits of r+ b� (mod 2). The Bayes optimal estimator(also known as marginal posterior maximiser, MPM) for the noise is de�ned asb�j = argmax�jP (�j j z). The performane of this estimator an be measured by theprobability of bit errorpb = 1�1=M MXj=1 Æ[b�j ; �j ℄ ;where Æ[; ℄ is the Kroneker delta. Knowing the matries Cn and Cs, the orruptedodeword r, and the noise level p it is possible to apply Bayes theorem and omputethe posterior probability as:P (� j z) = 1Z� [z = A� (mod 2)℄P (� ); (3)where �[X ℄ is an indiator funtion that is 1 ifX is true and 0 otherwise. To omputethe MPM one has to ompute the marginal posterior P (�j j z) =P�i6=j P (� j z).In general, this requires O(2M ) operations, and beomes impratial as the messagesize inreases. To obtain a more eÆient algorithm one an use the sparseness ofA to design algorithms that require O(M) operations for performing the sameomputation. One of these methods is the BP algorithm, also known as probabilitypropagation, sum-produt algorithm (see [14℄ and referenes therein) or generalizeddistributive law [1℄.Gallager's ode set the general framework for the family of sparse parity hekodes, it has been all but abandoned for about three deades, until MaKay andNeal [15; 16℄ introdued independently a ode whih is essentially a variation ofGallager's original ode.The MN odeMaKay and Neal [15; 16℄ reently introdued (independently) a variation of theGallager's original method termed the MN ode. In these odes, a message � isenoded into a odeword t using two randomly onstruted Boolean sparse matriesCs and Cn, whih may be haraterized in the following manner.The random matrix Cs is retangular and of dimensionality M �N , having Knon-zero unit elements per row and C per olumn. The matrix Cn is an M �M(mod 2)-invertible matrix randomly onstruted having L non-zero elements perrow and olumn. These matries are shared by both sender and reeiver.Using these matries, one an enode a message � into a odeword t in thefollowing mannert = C�1n Cs� (mod 2); (4)whih is then transmitted via a noisy hannel. Note that all matrix and vetoromponents are of Boolean (0; 1) representation, and all summations are arriedout in this �eld, i.e., (mod 2).
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During transmission, through a BSC, a noise vetor � is added to t and aorrupted odeword r = t+ � (mod 2) is reeived at the other end of the hannel.Deoding is then arried out by taking the produt of the matrix Cn and the reeivedodeword r, whih results in the syndrome vetor z = Cs�+Cn� = Cnr. The maindi�erene between these odes and Gallager's original ode is that the syndromevetor ontains also information on the original message. The message itself isdiretly estimated and there is no need for reovering the noise vetor perfetly.Deoding the orrupted message in these odes an be formulated, similarly to thatof Gallager's ode, as �nding the most probable vetors S and � , whih orrespondto the signal and noise vetors respetively, that satisfyCs�+Cn� = CsS+Cn� (mod 2); (5)given the matries Cs and Cn and the prior distributions for S and � .Construtions where the number of unit elements per row (K and L) andper olumn (C and L) is �xed are termed regular onstrutions, while otheronstrutions where the number of unit elements per row/olumn is taken from somedistribution are termed irregular. Irregular onstrutions generally show improvedperformane with respet to regular ones [17; 23; 12; 31℄.In spite of the similarity between the two odes they have slightly di�erentproperties [32℄, in their equilibrium harateristis as well as in their dynamialbehavior; these were investigated using the methods of statistial physis.Before presenting the iterative equations derived using BP and our formulationof TAP, we would like to introdue another member of the same family of odespresented and analyzed by Sourlas [27℄. Although the original ode was presentedwithin the framework of statistial physis, it an be mapped bak to the frameworkof sparse parity-hek error-orreting odes.The ode of SourlasDesribed as a parity hek ode, the message � is enoded into a odeword tusing as generator a single randomly onstruted Boolean sparse matrix Cs, ofdimensionality M �N , randomly omposed of K non-zero unit elements per rowand C per olumn.The message � is enoded into a odeword t in the following mannert = Cs� (mod 2); (6)whih is then transmitted via a noisy hannel and is orrupted by ip noise ofprobability p. Unlike Gallager/MN odes, where a syndrome vetor z is generatedby the reeiver in a preproessing stage, the ode of Sourlas uses the orruptedodeword diretly in the deoding proess. Deoding may be arried out by di�erentmethods, one of whih is an MPM based estimation similar to the one used in bothGallager and MN odes [9; 30℄.In the reminder of the hapter we will fous on the Sourlas and MN odes.Despite the di�erenes in the enoding and preproessing stages; the derivation of
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72 David Saad, Yoshiyuki Kabashima and Renato Viente
the deoding algorithm, based on our TAP approah, is similar in the three odetypes, and the numerial results obtained are of a similar nature.4 Deoding: Belief propagationThe Bayesian message estimate (MPM) potentially provides the optimal retrievalof the original messages. However, it is omputationally diÆult to arry out theexat alulation as it requires a sum over O(2N ) terms. Belief propagation [5; 22℄an eÆiently be used for obtaining an approximate estimate.For brevity we will �rst onsider the ode of Sourlas; the extension of thederivation to the MN ode (and Gallager's) will follow diretly. The deodingproess in this ase relies on omputing averages over the marginal posteriorprobability P (Sj j z) for eah of the N message bits Sj given the orrupted enodedbits z� (heks), where � = 1 : : :M . The probabilisti dependenies present in theode an be represented as a bipartite graph known as belief network where thenodes in one layer orrespond to the M heks z� and the nodes in the other tothe N bits Sj . Eah hek is onneted to exatly K bits and eah bit is onnetedexatly C heks (see Fig. 6.2a).Belief propagation is an iterative algorithm proposed by Pearl [22℄; it is basedon loal updates of a set of marginal probabilities and the propagation of beliefs(onditional probabilities) within the network. The onvergene of these iterationsrequires a tree like network struture with no loops. Typially, the belief networkswhih represent sparse parity-hek error-orreting odes su�er from a signi�antnumber of loops as illustrated in Fig.6.2a. However, it has reently been shownthat in some ases Pearl's algorithm provides good approximation even with thepresene of loops [33℄. In the partiular ase onsidered here one may also arguethat the e�et of loops is negligible due to the network size, whih is assumed to belarge and thus redues the probability of small loops; these have the most signi�ante�et on the auray of the approximation obtained.The general framework of Pearl [22℄ was adapted to the spei� deodingproblem of sparse parity-hek error-orreting odes by MaKay and Neal [15; 16℄;their algorithm relies on omputing the onditional probabilities q(S)�j and r(S)�j (notto be onfused with the reeived vetor r):q(S)�j = P (Sj = S j fz� : � 2 M(j)n�g)is the probability of the Sj = S given information on all heks other than � andr(S)�j = XL(�)nj P (z� j Sj = S; fSl : l 2 L(�)njg) Yl2L(�)nl q(Sl)�lis the probability of the hek z� if the site j is �xed to Sj = S and the ontributionfrom the other bits involved is fatorized with the related probability distributionsgiven by q(Si)�i . The sets L(�) and M(j) de�ne the set of bits in the hek � andthe set of heks over the bit j respetively.Figure 6.2b provides a graphial representation of r(S)�j as the total inuene of
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Figure 6.2(a) Belief network representing an error-orreting ode. Eah bit Sj (white irles) islinked to exatly C heks (odeword bits) and eah hek (blak irles)z� is linked toexatlyK sites. (b) Graphial representation of the �eld r�j . The grey box represents themean �eld ontribution Ql2L(�)nj q�l of all bits other than Sj on the hek (odewordbit) z�. () Representation of one of the �elds q�l in (b).the bit Sj and a loal mean �eldQl2L(�)nl q(S)�l (representing fatorized ontributionfrom the other sites in L(�)) on the hek z�. Figure 6.2 represents graphiallythe �eld q(S)�l as the inuene of the heks in M(l) exluding � on the bit Sl, thisexlusion is required for avoiding loops in the network.Employing Bayes theorem q(S)�j an be rewritten as:q(S)�j = a�j P (fz� : � 2 M(j)n�g j Sj) p(S)j ; (7)where a�j is a normalization onstant suh that q(0)�j + q(1)�j = 1 and p(S)j is the priorprobability over the bit j. The distribution P (fz� : � 2 M(j) n �g j Sj) an bereplaed by a mean �eld approximation in a way that fatorizes the dependeniesusing the �elds r(S)�j , obtainingq(S)�j = a�j p(S)j Y�2M(j)n� r(S)�jr(S)�j = XL(�)nj P (z� j Sj = S; fSi : i 2 L(�) n jg) Yi2L(�)nj q(Si)�i : (8)An estimate b�j = argmaxS2f0;1g nq(S)j o of the original message bits is obtained
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by solving the above equations, what an be done iteratively using several di�er-ent shedules, the eÆieny of whih depends on the partiular topology of thenetwork [1℄; and omputing the pseudo-posterior:q(S)j = ajp(S)j Y�2M(j) r(S)�j ; (9)where aj is a normalization onstant.Notie that the �eld rS�j is not originally normalized with respet to bit variablesS while qS�j is the ase. However, one may introdue an extra normalizationondition r(0)�j + r(1)�j = 1 without hanging any result. By taking advantage ofthis extra ondition, one an redue the set of equations to Æq�j = q(0)�j � q(1)�j andÆr�j = r(0)�j � r(1)�j . The pseudo posterior an be alulated in this manner obtainingan estimate to the original message bits following a ruleb�j = � 0; if Æqj > 0;1; otherwise: (10)Extending the formulation to both Gallager and MN odes is straightforward,as after preproessing these odes also involve a deoding task with very sparsematries; in the latter ase one extends the set of dynamial variables to inludeboth signal and noise vetors [15; 16℄.This algorithm has been employed in a variety of deoding senarios for bothparity-hek odes and turbo odes [16; 5℄ proving to be highly eÆient.5 Deoding: the TAP approahSo far we have desribed the sparse parity hek oding sheme using the on-ventional Boolean (0; 1) representation. However, in order to apply methods ofstatistial physis, it is highly onvenient to introdue an equivalent representationusing binary variables �1. More spei�ally, we hereafter onvert all the Booleanvariables to the binary ones, by employing the isomorphismBoolean(0; 1;+) $ binary(+1;�1;�): (11)One an easily hek the equivalene between these two groups by observing thefollowing simple isomorphi map:(�1)x+y+:::+z (mod 2) = X�Y � : : :�Z; (12)where x; y; : : : ; z are the Boolean (0; 1) variables while X = (�1)x; Y = (�1)y; : : : ;Z = (�1)z are the orresponding binary (�1) ones.Mapping to an Ising Spin SystemTwo advantages in the novel representation are worthwhile mentioning. The �rst isthe ompatness of the desription. For example, one an desribe the onditional
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probabilities standing for the transmission through a BSC in a simple manner asP (rjt) = 1 + �rt2 = exp [�nrt℄2 osh(�n) ; (13)in the binary representation, where t(2 [�1;+1℄) and r(2 [�1;+1℄) are the trans-mitted and reeived message bits respetively, p is the ip probability of the hanneland � = 1 � 2p and �n = (1=2) ln [(1� p)=p℄. In partiular, the last term on theright in Eq. (13) makes alulations like those in Eqs. (8) easier to handle as onean onvert the produt operations to simple summations.In addition, the adoption of the binary representation makes the similarity toIsing spin models expliit, enabling one to take advantage of the tehniques de-veloped in statistial physis for analysing suh systems. Employing an expressionlike the one on the right hand side of Eq. (13) for the distributions of binary vari-ables, one an generally represent posterior probabilities after �nding the syndromez (the reeived message itself as in Sourlas' ode or the preproessed vetor as inGallager/MN odes)P (S j z) = exp [��H(Sjz)℄Z(z) ; (14)with�H(Sjz) = �� MX�=1 z� Yl2L(�)Sl�F NXl=1 Sl; (15)where Z(z) = TrS exp[��H(Sjz)℄, � and F are hyper-parameters determinedby the type of odes, the hannel noise and the prior distribution of messages.Parity hek odes an be generally mapped onto Ising spin systems with multi-spin interations desribed by a Hamiltonian of the type (15) failitating the useof methods developed in physis for analysing the urrent system [27; 28; 20; 24; 9;10; 8℄.In this ontext, our formulation of the deoding problem is strongly linked tothe Bethe [2℄ approximation and its extensions [32℄, and to the onventional TAPapproah [29℄. In [9℄ we have shown that this framework provides a similar set ofiterative equations to that of BP.The motivation for developing this formulation is the exellent approximationprovided by the Bethe lattie approah for �nitely onneted systems in thethermodynami limit [26℄. Finite loops linking the di�erent network sites vanish asthe system size grows and an be negleted without introduing signi�ant errorsin this senario. The approximation used also has mean �eld properties in the wayone takes into aount the mean inuene of the whole lattie on a partiular site.Due to the transpareny of the derivation in this ase, we start by explainingthe TAP formulation for the ode of Sourlas.
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The ode of SourlasTo develop the new approah we notie that the likelihood P (z� j S) is proportionalto the Boltzmann weight, for a given inverse temperature �(= 1=T ):wB(z� j S) = exp0���z� Yi2L(�)Si1A ; (16)that an be rewritten in the more onvenient form:wB(z� j S) = 12osh(�z�)�0�1 + tanh(�z�) Yj2L(�)Sj1A : (17)In fat, the inverse temperature � has an optimal value given by Nishimori'stemperature �n = (1=2) ln[(1� p)=p℄ [20℄ if the ip probability p in BSC is known.However, we deal with it as a ontrol parameter in order to onsider generalsituations where p is not exatly known to reeiver.The onditional probability r(Sj )�j an then be seen as an normalized e�etiveBoltzmann weight (e�etive Boltzmann probability)r(Sl)�l = a�l we� (z� j Sl; fz� 6=�g) (18)= a�l TrfSk 6=lg wB (z� j S) Yk 6=l qSk�lobtained by taking the onnetion � out of the system, and taking into onsiderationthe (fatorized) dependene of the variables S on all other onnetions (q�j ;8j);a�l being a normalization oeÆient. The term q�j is identi�ed as the mean �eldontribution to a spei� site, from whih the �rst of Eqs.(8) follows diretly.Plugging the form (17) for the likelihood in the equations (8), using the fat thatthe prior probability is given by p(S)j = 12 (1 + tanh(�SF )) (whih onstitutes thede�nition of F ) and omputing Æq�j and Ær�j we �nd:Ær�j = tanh(�z�) Yl2L(�)nj Æq�lÆq�j = tanh0� X�2M(j)n� tanh�1(Ær�j) + �F1A : (19)Solving these equations iteratively enables one to derive the pseudo-posteriorthrough the expression:Æqj = tanh0� X�2M(j) tanh�1(Ær�j) + �F1A ; (20)This provides a way for omputing the Bayes optimal deoding b�j = sign(Æqj). It isinteresting to note that the somewhat arbitrary use of the di�erenes Æq�l= hS�l iqand Ær�l = hS�l ir in the BP approah beomes lear form the TAP formulation,where they represent the expetation values of the dynamial variables with respet
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to the �elds.It is important at this point to list and interpret the mean �eld assumptionsused here [9℄:1. We assume a mean �eld behavior for the dependene of the dynamial variablesS on a ertain realization of the message sites z, i.e., the posterior distribution isfatorizable with respet to dynamial variables Si=1;:::;N and may be replaed bya produt of mean �elds.2. Boltzmann weights for a spei� site Sl are fatorizable with respet to themessage sites z�.3. The ontribution of single variables Si=1;:::;N , and z�=1;:::;M to the marosopivariables is small and an be isolated.The fatorizability of the probability distributions provides a good approxima-tion due to the absene of short loops in the lattie and by the luster property:limN!1 1N2 X8i6=j �hSiSjip(Sjz) � hSiip(Sjz)hSjip(Sjz)�2 ! 0 (21)that the bits Sj are supposed to obey within a pure state [18℄.The MN odesThe derivation presented above an be easily extended to the ase of MN odes. Inthis ase one treats both variable types (signal and noise, S and � respetively) onequal footing, aiming to alulate the marginal posterior probabilitiesP (Sijz0) = TrffSk 6=ig;� gP (S; � jz0)andP (�j jz0) = TrfS;f�k 6=jggP (S; � jz0)based on similar three assumptions, as in the ase of Sourlas, inluding both Sand � . Here, we denote z0 as the binary equivalent to the Boolean syndrome Cnzomputed in MN odes.From a statistial physis point of view, the main di�erene between the urrentodes and those of Sourlas is the temperature at whih the odes are appropriatelymapped onto Ising spin systems. Sine ondition (5) is introdued to posteriordistribution through an indiator funtion as� [Cnz = CsS + Cn� (mod 2)℄ = lim�!1exp h�PM�=1 z0�Qk2Ls(�) SkQj2Ln(�)�ji(2 osh�)M ;(22)in the binary representation, the MN odes are mapped onto Ising models witha new e�etive temperature ��1 whih is set to be zero onstraining the spaeof on�gurations to those obeying the onstraints de�ned by �[:℄. Here, we have
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introdued notations Ls(�) and Ln(�) in order to denote the set of all indies ofnon-zero omponents in �-th row of the sparse matrix Cs and Cn, respetively.In the statistial physis ommunity, it is widely known that Ising spin systemswith quenhed disorder an be highly frustrated at low temperatures, whih makeseÆient omputation by mean �eld approximations infeasible. However, it shouldbe stressed here that the interations desribed by Eq. (22) produe no frustrationin the urrent system even at the e�etive temperature ��1 set to zero beausethis model is at [18℄, i.e. the disorder an be trivially gauged and there are more(M +N) dynamial variables than the number of onstraints (M).In addition to these onstraints, prior knowledge about the message and noisevetors S and � is also taken into aount by introduing the following priordistributionsP (S) = exp[FsPNl=1 Sl℄(2 oshFs)N ; P (� ) = exp[FnPMj=1 �j ℄(2 oshFn)M ; (23)where Fn = (1=2) ln[(1 � p)=p℄ is set to its optimal value, and non-zero �eldFs is introdued for biased messages. These O(1) �elds work to ompensate theinsuÆieny of onditions for uniquely determining eah bit sequene withoutausing frustration. This e�et beomes stronger for larger Fn and Fs. Therefore,one an expet that for suÆiently large Fn, Fs, whih implies suÆiently small iprate p if the message is not biased, unique bit sequenes S and � an be determinedby the posterior distribution and an possibly be omputed e�etively by the TAPapproah.Parameterizing pseudo-marginal posteriors and marginalized onditional prob-abilities asP (Sijfz0� 6=�g) = 1 + ÆqS�iSi2 ;P (�j jfz0� 6=�g) = 1 + Æqn�j�j2 ; (24)P (z0�jSi; fz0� 6=�g) � 1 + ÆrS�iSi2 ;P (z0�j�j ; fz0� 6=�g) � 1 + Ærn�j�j2 ; (25)a set of self-onsistent equations an be found [9; 11; 30℄ÆqS�l = tanh0�Fs + X�2MS(l)=� tanh�1(ÆrS�l)1A ;Æqn�l = tanh0�Fn + X�2Mn(l)=� tanh�1(Ærn�l)1A ; (26)andÆrS�l = z0� Yk2LS(�)=l ÆqS�k Yj2Ln(�) Æqn�j ;Ærn�l = z0� Yk2LS(�) ÆqS�k Yj2Ln(�)=l Æqn�j ; (27)
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similar to those obtained in the ase of Sourlas ode (19). Here, Ms(l) and Mn(l)indiate the set of all indies of non-zero omponents in the l-th olumn of thesparse matrix Cs and Cn, respetively. The notation Ms(l)=� represents the set ofall indies belonging to Ms(l) exept l and similar for the others.Equations (26) and (27) are solved iteratively using appropriate initial ondi-tions. After obtaining a solution to all Æq�l and Ær�l, an approximated posteriormean an be alulated asÆqSi = tanh0�Fs + X�2MS(l) tanh�1(ÆrS�i)1A ; (28)whih provides an approximation to the Bayes-optimal estimator of the form�̂B = sign(ÆqSi ).By introduing the new variables xi = �iÆqS�i, x̂i = �iÆrS�i, yj = �jÆqn�j andŷj = �jÆrn�j and assuming that they are independently drawn from distributions�(x), �̂(x̂), �(y) and �̂(ŷ) (an assumption that has been veri�ed experimentally), onean link the equations (26,27) to those obtained using the replia method [19; 11℄.This onnetion an be extended further by providing an expression for the TAPfree energy whih equations(26) and (27) extremizefTAP (fÆqg; fÆrg) = MN ln 2 + 1N MX�=1 Xi2LS(�) ln �1 + ÆqS�iÆrS�i�+ 1N MX�=1 Xj2Ln(�) ln �1 + Æqn�jÆrn�j� (29)� 1N MX�=1 ln0�1 + z0� Yi2LS(�) ÆqS�i Yj2Ln(�) Æqn�j1A� 1N NXi=1 ln24eFs Y�2MS(i) �1 + ÆrS�i�+ e�Fs Y�2MS(i) �1� ÆrS�i�35� 1N MXj=1 ln24eFn Y�2Mn(j) �1 + Ærn�j�+ e�Fn Y�2Mn(j) �1� Ærn�j�35 :This expression may be used for seleting the best estimate when Eqs.(26) and (27)have several solutions.This derivation an be easily extended to aommodate Gallager's ode.6 Experimental resultsAs our TAP formulation arrives at exatly the same iterative equations as thoseobtained using BP, we briey presents a ouple of examples demonstrating theeÆay of the method for deoding orrupted messages enoded using the MN andSourlas error orreting odes.We �rst presented some experiments using the ode of Sourlas and equa-
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tions (19). In these experiments we used the losed set of iterative equations todeode messages enoded by the ode of Sourlas and orrupted during transmis-sion by ip noise of probability p. For eah run, a �xed ode is used to generate20000 bit odewords from 10000 bit messages; orrupted versions of the odewordsare then deoded using (19). For eah trial we monitor the overlap between thedeoded vetor and the original message (magnetization) m= 1=N PNi=1 �ib�j (inbinary). Numerial solutions for 10 individual runs are presented in Fig.6.3a, theinitial onditions are hosen as Ær�l = 0 and Æq�l = tanh(�F ) reeting prior be-liefs for both signal and noise. In �gure 6.3 we show results for K = 2 and C = 4,orresponding to a ode rate R = 1=2, in the unbiased ase (prior probabilityP (�j = 1) = fs = 0:5; 8j) at a temperature as low as T = 0:26. We also show theagreement between the results obtained and those oming from the replia sym-metri alulation [9; 30℄. In the same �gure we show the performane for the aseof biased examples (P (�j = 1) = fs = 0:1 8j). Again the agreement with resultsobtained using the replia method [9; 30℄ is rather onvining. The third urve inthe Fig.6.3a shows the performane for biased messages at Nishimori's tempera-ture, 1=Tn=1=2 ln[(1 � p)=p℄ [20℄, as expeted [24; 28; 21; 8℄ it is superior to lowtemperature deoding, being equivalent to having the orret prior in the Bayesianframework. The agreement with the replia based results is even better.In Fig.6.3b we show results for K = 5 and C = 10, again the ode rateis R = 0:5. For unbiased messages the system is extremely sensitive to initialonditions and does not perform well on average even at Nishimori's temperature,ending up in some sub-optimal solution. For biased messages the results are farbetter and in agreement with the replia based results [9; 30℄.Applying the same algorithm to the ase of regular and irregular MN odeswe obtain the results presented in �gure 6.4, demonstrating the improvement inperformane ahieved by simple irregularity in the onstrution. The irregularityused is based on the following probability distribution, from whih the (olumn)onnetivities of the signal matrix Cs are derived:PC(C) = (1��) Æ(C�Co) + � Æ(C�Ce): (30)The mean onnetivity is C = (1� �) Co + � Ce and Co < C < Ce and the noisematrix Cn is hosen to be regular.To gain some insight on the e�et of irregularity on solving the TAP/BPequations (26) and (27) we performed several runs starting from the �xed initialonditions Æqs�j(0) = 1 � 2fs and Æqn�l(0) = 1 � 2p. For omparison we obtainedanalytial solutions based on the replia symmetri theory [31℄.In Figure 6.4 we show a typial urve for the magnetization as a funtion of thenoise level. The analytial results agree very well with TAP/BP deoding results,indiating that the addition of irregularity improves the performane onsiderably.7 SummaryIn this paper we disuss the appliation of our TAP formulation to the deodingproblem in sparse parity-hek error-orreting odes. We show that using simple
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Figure 6.3The overlap (magnetization) obtained from numerial solutions for di�erent ip rate p.(a) For the ase K=2, di�erent biases (fs=P (�j = 1)=0:1; 0:5 8j) and temperatures(T =0:26; Tn), we see good agreement between the TAP/BP solutions and the theoretialvalues [9; 30℄. Results for the unbiased patterns are shown as raw data, i.e., results of10 runs for eah ip rate value p (diamond), while the theoretial solution is markedby the dashed line. Results for biased patterns are shown by their mean and standarddeviation, showing a suboptimal improvement in performane as expeted for T =0:26and an optimal one at Nishimori's temperature -Tn. Note that in the ase of T =Tn thestandard deviation is signi�antly smaller than the symbol size. Figure (b) shows resultsfor the ase K=5 and T =Tn in similar onditions to (a). Also here iterative solutionsmay generally drift away from the theoretial values where temperatures other than Tnare employed (not shown); using Nishimori's temperature alleviates the problem only inthe ase of biased messages and the results are in lose agreement with the theoretialsolutions (fousing on low p values in the inset).mean �eld arguments and interpreting the e�etive Boltzmann weight as the loalsite onditional probability, one a single onnetion has been taken out of thesystem, one retrieves the same iterative equations obtained from the BP method.We employ the TAP/BP iterative equations for deoding orrupted messages,enoded using the MN odes, and the ode of Sourlas, in partiular senarios. Weompared the results obtained to the analytial solutions obtained by the repliamethod. In the ase of Sourlas, the solutions indiate that the method is partiularlyuseful in the ase of biased messages and that using Nishimori's temperature ishighly bene�ial; solutions obtained using other temperature values may be sub-optimal. For unbiased messages and K�3 we may obtain erroneous solutions usingthese methods.The TAP/BP approah is extremely useful in the ase of MN odes where,below a ertain orruption level, they onverge to the solution whih shows exellentretrieval of the original vetor [11; 19; 31℄. Above this point the algorithm tend toonverge to sub-optimal solutions, but this is due to the inherent limitation of theonstrutions rather than a failure of the deoding algorithm. In the urrent hapterwe used the TAP/BP approah to show the improvement in performane emerging

MIT Press Neur7XA/2001/03/02:17:13 Page 81



82 David Saad, Yoshiyuki Kabashima and Renato Viente

0.05 0.1 0.15 0.2 0.25 0.3
p

0.4

0.6

0.8

1

m
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