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Abstra
tCurrent methods for retrieving near surfa
e winds from s
atterometer observations over theo
ean surfa
e require a foward sensor model whi
h maps the wind ve
tor to the measuredba
ks
atter. This paper develops a hybrid neural network forward model, whi
h retains thephysi
al understanding embodied in Cmod4, but in
orporates greater 
exibility, allowing abetter �t to the observations. By introdu
ing a separate model for the mid-beam and using a
ommon model for the fore- and aft-beams, we show a signi�
ant improvement in lo
al windve
tor retrieval. The hybrid model also �ts the s
atterometer observations more 
losely. Themodel is trained in a Bayesian framework, a

ounting for the noise on the wind ve
tor inputs.We show that adding more high wind speed observations in the training set improves wind ve
torretrieval at high wind speeds without 
ompromising performan
e at medium or low wind speeds.



21. Introdu
tionObtaining wind ve
tors over the o
ean is importantto Numeri
al Weather Predi
tion (NWP) sin
e theability to produ
e a fore
ast of the future state of theatmosphere depends 
riti
ally on knowing the 
urrentstate a

urately [Haltiner and Williams, 1980℄. How-ever, the observation network over the o
eans (par-ti
ularly in the southern hemisphere) is very limited[Daley, 1991℄. Thus it is hoped that the global 
over-age of o
ean wind ve
tors provided by satellite bornes
atterometers [OÆler, 1994℄ will improve the a

u-ra
y of weather fore
asts by providing better initial
onditions for NWPmodels [Loren
 et al., 1993℄. Thes
atterometer data also o�ers the ability to improvewind 
limatologies over the o
eans [Levy, 1994℄ andthe possibility of studying, at high resolution, inter-esting meteorologi
al features su
h as 
y
lones [Di
k-inson and Brown, 1996℄.This study uses s
atterometer data from the ERS-2 satellite; the on-board verti
ally polarised, mi-
rowave radar operates at 5.3 GHz and measuresthe ba
ks
atter from gravity-
apillary waves on theo
ean surfa
e of around 5 
m wavelength. Measuredba
ks
atter from the o
ean surfa
e is given as the nor-malised radar 
ross se
tion, generally denoted by �o,and has units of de
ibels1. A 500 km wide swatheis swept by the satellite to the right of the tra
k ofits polar orbit, with nineteen 
ells sampled a
ross theswathe, ea
h 
ell having dimensions of roughly 50 by50 km. Thus there is some overlap between 
ells.Ea
h 
ell is sampled from three di�erent dire
tionsby the fore, mid, and aft beams respe
tively, giving atriplet, �o = (�of ; �om; �oa). This �o triplet, togetherwith the in
iden
e and azimuth angles of the beams(whi
h vary a
ross the swathe) is related to the aver-age wind ve
tor, (u; v), within the 
ell [OÆler, 1994℄.We assume that the stability of the lower boundarylayer and the e�e
ts of longer sea waves are largelyrelated to wind speed and thus their impa
t is im-pli
itly in
luded in the empiri
al models. Other geo-physi
al parameters su
h as rain, sea i
e are believedto also have a small a�e
t on the ba
ks
atter [Stof-felen 1998a℄; however these are treated as additionalnoise sour
es in this paper sin
e we have no indepen-dent measurements of them.Se
tion 2 reviews the 
urrent s
atterometer for-1We shall always assume we are working in de
ibel (or log)spa
e where we write �o or �odB if the distin
tion is important.We use �olin to denote the raw measurement spa
e, �o = �odB =10 log10(�olin).

ward models, while the neural network forward mod-els are introdu
ed in Se
tion 3. The e�e
t of traininga non-linear model while a

ounting for noise on theinputs, (u; v), is dis
ussed, as is data sele
tion fortraining the model and the estimation method itself.Se
tion 4 
ompares the performan
e of the neural net-work models with Cmod4 (the 
urrent operationalmodel) using visualisation, distan
e to 
one and windretrieval. The results are summarised in Se
tion 5and 
on
lusions are given in Se
tion 6.2. S
atterometer Forward ModelsUnderstanding the theoreti
al relation between �oand (u; v) is essential to retrieving wind ve
tors froms
atterometer observations [OÆler, 1994℄. The re-lation has been modelled based on both on studiesof the physi
al pro
esses that govern ba
ks
atteringfrom water surfa
es [Ebu
hi et al., 1993; Janssen etal., 1998℄ and statisti
al analysis of the relation be-tween wind ve
tors (both buoy observed and NWPderived) and s
atterometer measurements [Sto�elenand Anderson, 1997a℄. From these studies empiri
alforward models relating �o and (u; v) have been es-tablished of the general form:�olin � b0(s; �) + b1(s; �) 
os(�)+ b2(s; �) 
os(2�) (1)where the wind ve
tor (relative to the satellite az-imuth angle) is given in terms of wind speed, s, andrelative wind dire
tion, �. � denotes the beam in
i-den
e angle. Sin
e there are three �o measurementsfor ea
h observation, this fun
tional form implies adouble skinned 
one-like response in �o spa
e. Con-sidering a point on the surfa
e of the 
one, the dis-tan
e along the axis of the 
one is largely related towind speed, while the lo
ation around the 
one isrelated to wind dire
tion. The 
os(2�) term domi-nates and, together with the presen
e of noise, is thesour
e of the dire
tion ambiguities in the solutions.The most widely used operational forward model isknown as Cmod4 [Sto�elen and Anderson, 1997a℄and has the form:�olin = B0(s; �)[1 +B1(s; �) 
os(�)+B3(s; �) tanh(B2(s; �)) 
os(2�)℄1:6 (2)where the result is raised to the power 1.6 in order tomake the dependen
e of �olin on � a fun
tion of 
os(�)and 
os(2�) only.This paper presents results whi
h show improvedperforman
e of the neural network forward models



3both in terms of wind ve
tor retrieval and of their rep-resentation of the observation manifold in �o spa
e. Ifthe forward models are to be used dire
tly in a varia-tional data assimilation system (that is assimilate �orather than retrieved (u; v)) both attributes will beimportant.Cmod4 is the operational model and, as su
h, pro-vides the ben
hmark by whi
h other models may bemeasured. However, operationally Cmod4 is used to-gether with some empiri
al 
orre
tions; for instan
ethe UK Meteorologi
al OÆ
e in
rease the retrievedwind speed by �ve per
ent. The VIERS-1 physi
allybased theoreti
al o
ean ba
ks
atter model [Janssenet al., 1998℄ is shown to improve upon wind ve
torretrieval at high wind speeds when 
ompared withCmod4, although it does not �t the observed�o man-ifold as well as Cmod4. The VIERS-1 model was notavailable to us for 
omparison.3. Neural Network S
atterometerForward ModelsOne of the reasons that Cmod4 �ts the �o obser-vations poorly at high wind speeds is the restri
tivefun
tional form imposed by the use of up to se
ondorder Legendre polynomials in the parameterisationof B�(s; �) in Equation 2. We relax the restri
tionsimposed by the fun
tional form and produ
e an alter-native model using a Multi-Layer Per
eptron (MLP)with the Cmod4 fun
tional form to produ
e a more
exible, hybrid model.3.1. Neural NetworksNeural networks are universal, non-linear fun
tionapproximators whi
h 
an approximate any 
ontinu-ous mapping to arbitrary a

ura
y, given suÆ
ienthidden units. The MLP used is a non-linear statisti-
al model, whi
h has the advantage of being eÆ
ientto train, due to the ba
k-propagation method for de-termining derivatives of the outputs (and thus the
ost fun
tion) with respe
t to the weights [Bishop,1995℄. The MLP parameters are generally referredto as weights 
an be determined using standard gra-dient based algorithms to minimise a 
ost fun
tion.More details of the implementation are given below.Further details on neural networks 
an be found inBishop [1995℄.3.2. Hybrid modelIn order to make use of existing knowledge on thephysi
s of ba
ks
attering we imposed 
onstraints on

the fun
tional form of the neural network model. Aobvious fun
tional form for the hybrid model is:�olin =a0(1 + 0:37 tanh(a1) 
os(�)+ 0:62 tanh(a2) 
os(2�))p ; (3)where p, a0, a1, and a2 are fun
tions of the modelinputs and tanh(�) is used to ensure the expressionremains real for all inputs. The values 0.37 and 0.62are simply s
aling parameters 
hosen so as to sum toa value less than one. Their relative values have littleimportan
e as the network weights allow res
aling.Now, �odB 
an be written in log spa
e:�odB = 10ln(10)�a0 + p ln �1 + 0:1 tanh(a1) 
os(�)+ 0:8 tanh(a2) 
os(2�)�� ; (4)this model being referred to as Nn2Cmod. Themodel is shown graphi
ally in Figure 1. The MLPtakes the wind speed and sine of the beam in
iden
eangle as inputs. The inputs were 
hosen to keepthe mapping as simple as possible. The outputs are[a0; a1; a2; p℄ whi
h, together with the relative winddire
tion, �, are then used with Equation (4) to yieldthe ba
ks
atter measurement in de
ibels. We have
hosen to use �o in de
ibels at all times sin
e this ren-ders the multipli
ative noise on �olin additive on �odB.There remains the question on the form of the noisedistribution in �odB spa
e, whi
h is dis
ussed later.3.3. Multi-beam modelDuring model validation (see Se
tion 4, Figures 4and 5) it be
ame apparent that the mid-beam an-tenna �o value was not being well modelled by eitherCmod4 or Nn2Cmod. This was not due to the in-ability of the models to represent the relation between�o and � at low in
iden
e angles, this being veri�edby the use of a more 
exible neural network with 12hidden units, whi
h exhibited the same features. Al-though there is no physi
al basis for this, a three beammodel was 
onstru
ted, with two Nn2Cmod modelswith four hidden units in the MLP, one for the mid-beam and one for both fore- and aft-beams. Thismodel, denoted Nn3Cmod, has the advantage thatduring the training pro
ess three �o measurementsare used to infer the `true' wind ve
tor, as opposed toone during the training of Nn2Cmod.3.4. Bayesian Parameter Estimation in thePresen
e of Input NoiseNn2Cmod depends upon weights, w, whi
h aredetermined from the training data. We adopt a prag-



4mati
 Bayesian approa
h for the estimation of theweight ve
tor in the presen
e of input noise, detailsof whi
h 
an be found in Cornford et al., [1999b℄ andWright [1998℄. If the input noise is not properly a
-
ounted for then non-linear models will learn a biasedestimate of the true underlying fun
tion.Using Bayes' theorem the posterior distribution ofthe weights given the noisy training data, p(w jD),
an be expanded as:Z~xnYn p(tn j ~xn;w)| {z }p1 p(xn j ~xn)| {z }p2 p(~xn)| {z }p3 p(w)| {z }p4 d~xn ;(5)where D is the noisy training set, D = ftn;xng, tnare the (noisy) targets in the training data, xn arethe 
orresponding noisy inputs, and ~xn are the asso-
iated noiseless inputs. Training the network 
onsistsof determining the maximum a posteriori probability(MAP) weight ve
tor and noiseless inputs, by min-imising the negative logarithm of Equation (5). Herewe are making a sub-optimal 
hoi
e sin
e ideally weshould sample w from the distribution p(w jD) anduse the samples to approximate the predi
tive inte-gral:p(t� j x�) = Zw p(t� j x�;w)p(w jD) dw ; (6)where x� is a new noise-free input and t� is the 
or-responding predi
ted target. However in operationaluse this fully Bayesian approa
h would be too time
onsuming.In order to evaluate the maximum a posterioriprobability value of p(w jD), we 
ompute four errorsEi = � ln(pi), derived from Equation (5). Writingtn = f�og, xn = fs; �; �g and ~xn = f~s; ~�; �g theseterms be
ome:E1 = � ln(Qn p1(�oj~s; ~�; �;w)), the error of themodel, 
al
ulated using the observed satellite mea-surements and modi�ed wind ve
tors (~s; ~�) whi
htend to the noise free (`true') values during training.The distribution of p1 is assumed to be Gaussian in�odB spa
e, thus:E1 =12 �log(2�) + log(�2t )�+X (f(~s; ~�; �;w)� tn)2 =(2�2t ) ; (7)where the sum is over all patterns in the training set,�2t is the varian
e of the errors in the tn (target) mea-surements and f(~s; ~�; �;w) is the output obtained by

propagating the noise free inputs (~s; ~�) and � throughthe model. Note when training Nn3Cmod this willbe the sum of three su
h terms, one for ea
h antenna.E2 = � ln(Qn p2(s; �j~s; ~�)), the error due to thenoise free wind ve
tors di�ering from the 
orrespond-ing noisy wind ve
tor. The distribution p2 is assumedto be spheri
ally Gaussian with varian
e �2u:E2 = log(2�) + log(�2u) +X�(~u� u)2 + (~v � v)2� =(2�2u) ; (8)the summation being over the patterns. Note ~u =~s sin(~�), ~v = �~s 
os(~�) following the meteorologi-
al 
onvention. This 
omponent of the 
ost fun
-tion 
ould also represent the dis
repan
y between theECMWF 10 m wind ve
tor and the lo
al surfa
estress ve
tor, whi
h is what a
tually generates theo
ean surfa
e ripples [Sto�elen 1998a℄.E3 = � ln(p3(~s; ~�)), the assumed prior distributionof noise free wind ve
tors in the training set. In pra
-ti
e we rarely know the true distribution of the windve
tors so in this 
ase we assume a 
onstant prior dis-tribution (that is a uniform distribution in wind speedand dire
tion). This is a reasonable assumption be-
ause of the data sele
tion method used, but futurework 
ould investigate the e�e
t of this assumption.E4 = � ln(p4(w)) is the prior over the weightswhi
h 
ontrols the 
omplexity of the MLP [Bishop,1995℄. The weight de
ay prior:E4 =Xw w2=(2�2w) (9)is used, where �2w is the varian
e of the weights, whi
hwere �xed on the basis of experimentation to be 0.005for the weights and 0.1 for the biases. The e�e
t ofthis term is to produ
e smoother network mappingsas the weight varian
e is de
reased.This is very similar to the 
ost fun
tion used todetermine the parameters of Cmod4 in Sto�elen andAnderson [1997a℄, with the addition of a prior modelfor the distribution of the true wind ve
tors and aprior model for the weight ve
tor. Finding the MAPsolution is essentially the same as a variational deter-mination of the weights. We used 20,000 iterations ofs
aled 
onjugate gradient optimisation to determinethe MAP weight values to ensure 
onvergen
e, parti
-ularly in the estimation of the noise free input values.3.5. Data Sele
tionWhen using data driven models, the quality of thetrained model is only as good as the data used to



5train it. It is possible to bring additional informationto model determination, su
h as using 
ertain model
lasses, within the Bayesian framework adopted, butwe still depend 
riti
ally on 
areful data sele
tion.We have used ERS-2 data 
olle
ted over the pe-riod Mar
h 1996 to January 1998 in the North-ern Hemisphere to 
reate our training sets. TheERS-2 data was 
ollo
ated with European Centrefor Medium Range Weather Fore
asting (ECMWF)10m wind ve
tors by the Fren
h Resear
h Institutefor the Exploitation of the Sea (IFREMER)2. TheECMWF wind ve
tors assimilated CMOD4 retrieveds
atterometer winds. If the data assimilation systemof the ECMWF model is working well then this willonly improve the quality of the (u; v) data in the train-ing set. To further improve the quality of the data setwe 
arefully 
orre
ted the �o observations to a

ountfor 
alibration 
hanges over the data a
quisition pe-riod. We also insisted that the signal to noise ratio inthe s
atterometer observations was less than 7%.We make the usual assumption that the observa-tions in the training set are independent, thus we se-le
ted the observations so that they are separated inspa
e by at least 300 km. This distan
e was 
hosen toa
hieve a 
ompromise between independen
e and ob-taining suÆ
ient samples at high wind speeds. A �lter
omputed the varian
e of the wind �eld within a 
ir-
le of 1 degree of latitude or longitude. If the summedvarian
e of the wind 
omponents was greater than 2.5m2s�2 the 
entral wind ve
tor was not sele
ted, to re-du
e the impa
t of in
orre
tly positioned fronts and
y
lones in the ECMWF model on the quality of thewind ve
tors in the training set. This varian
e was
hosen on the basis of experimentation.3.5.1. Outlier Removal. We further `
lean'the training data using an intera
tive, manual outlierremoval pro
edure. We know that the noise on the �oobservations is small thus visualisation in �o spa
e
an qui
kly identify outliers in terms of �o, whi
h wehave found to be present in pra
ti
e. As the assumed�o varian
e is very small these 
an have a very largee�e
t on the trained models. By using three linkedplots it was possible to eliminate the extreme �o out-liers present in the dataset. A further two linked plotsallowed us to examine outliers in wind speed and di-re
tion.We 
onsidered ea
h �xed the mid-beam in
iden
eangle separately and plotted �of against �oa , �of against2See http://www.ifremer.fr/
ersat/ACTIVITE/E CERACT.HTMfor details.

�om and �oa against �om in �odB spa
e. We also plottedNWP wind speed against (�of +�om+�oa)=3 and NWPwind dire
tion against �of � �oa . To help �nd dire
-tional errors we highlighted those points for whi
h(�of + �om + �oa)=3 >min(�of + �om + �oa)=3 + 8, sin
ethese are the points with higher wind speeds and thusshould have a more 
onsistent relation to wind dire
-tion. During outlier removal 1:9% of the training datawas reje
ted.3.6. Parameter EstimationWe used estimates in Sto�elen and Anderson [1997a℄to set the error varian
es on the �o and the wind ve
-tors. We used values of �2t = 0.04 dB2 and �2u = 2.25m2s�2 in our training (see Equations (7) and (8)).To verify these assumptions we trained models usingthese values and looked at their performan
e on an in-dependent validation set, whi
h had also undergonethe pro
ess of outlier removal.4. Validation of Forward ModelsThere are several measures whi
h one might usewhen determining the performan
e of the various for-ward models. The natural 
hoi
e, related to the errorfun
tion used during training, is the root mean squareerror (RMSE) of the �o observations, given the `true'wind ve
tor. However the requirement for a

uratewind ve
tor retrieval means that the ve
tor RMSE ofthe retrieved (u; v) observations is more important.Other measures in
lude biases in the models, a

u-ra
y of the �rst (most probable) solution or the so
alled Figure of Merit, as proposed by David OÆlerof the UK Meteorologi
al OÆ
e (UKMO) [Cornfordet al., 1999℄. We present a wide range of performan
eindi
ators to allow a 
omplete assessment of the mod-els. In 
ommon with standard pra
ti
e, sin
e we areinterested in the quality of the lo
al models, when
omputing error measures in (u; v) spa
e, we pi
k thewind ve
tor (from the 2 to 4 returned) that is 
los-est to the NWP winds [OÆler, 1994℄. We employedthree validation methods for our models: visualisa-tion, quantitative measures in �o spa
e and qualityof lo
ally retrieved winds.4.1. VisualisationThis se
tion qualitatively assesses the degree towhi
h the models �t the �o observations. This hasproved to be a powerful tool for the rapid examina-tion of forward models, and 
an be instru
tive in sug-gesting where improvements may be ne
essary. The



6results 
an be seen in Figures 3 and 4, where the out-line of the model manifolds are plotted over the range2{28 ms�1, viewed from above (in the plane �of , �oa)and the side (in the plane (�of +�oa)/2, �om). Every�o observation from an independent validation set ofERS-2 observations is also plotted for the given in
i-den
e angle, whi
h thus �ll the `
entre' of the models.Cmod4 
an be seen to �t the �o observations wellat larger in
iden
e angles, but is not suÆ
iently 
ex-ible at low in
iden
e angles. The model extends be-yond the regions within whi
h �o is observed, mainlyat higher winds speeds, whi
h 
orrespond to greater�o values. Nn2Cmod �ts the �o observation well athigher wind speeds, but does not �t well at lower windspeeds. This is related to the di�eren
e between thebehaviour of the mid-beam 
ompared with the fore-and aft-beams. Nn3Cmod, whi
h uses separate mod-els for these beams, �ts the �o observations very well.4.2. Distan
e to Model Cone - Validation in�o Spa
eIn order to obtain quantitative results on the �t ofthe models in �o spa
e we have looked at the distan
eto the 
one for a validation set whi
h has the same dis-tribution in wind speed and dire
tion as the trainingset. The results 
an be seen in Table 1 where the Ja
o-bians of the models were used to determine the exa
tminimum distan
e to the 
one using a s
aled 
onju-gate gradient minimisation algorithm. The minimumdistan
e to the 
one, whi
h 
orresponds to the mini-mum distan
e of the �o observation from the modelmanifold shows that Nn3Cmod �ts the 
one moretightly than Cmod4 and Nn2Cmod. The distan
efrom the point on the 
one 
orresponding to the re-trieved wind ve
tor 
losest to the NWP wind ve
tor,denoted dist(best) also shows the improvement givenby Nn3Cmod. The varian
es of the �o errors on theindividual beams were also 
al
ulated for the threemodels.In Table 1 this shows that the fore- and aft-beamshave smaller noise levels than the mid-beam, for allmodels. For Cmod4 and Nn2Cmod, Figure 5 showsthis is related to the poor �tting (bias) of the mod-els to �o at small in
iden
e angles (the mid-beam in-
iden
e angles are generally smaller). However forNn3Cmod the mid-beam �o still has a higher vari-an
e, despite an unbiased �t to the �o observations(Figure 5
). Figure 5
 shows no eviden
e of a sys-temati
 dependen
e on �, rather there seems to bea distin
tly di�erent varian
e for the mid-beam �o.This suggests that it would is preferable to have a

separate model for the mid-beam and a joint modelfor the fore- and aft-beams, as done in Nn3Cmod.Figure 6 shows the mis�t of models in �o spa
eplotted as a fun
tion of retrieved wind speed. Cmod4shows a great deal more s
atter than the neural net-work models, parti
ularly at wind speeds above 8ms�1. The results for Nn3Cmod (Figure 6
) sug-gest that the varian
e of the �o observations de
reaseswith in
reasing wind speed, however referen
e to Fig-ure 3 suggests this may partly re
e
t the poor �t ofall models at low �o values, whi
h 
orrespond to lowerwind speeds. The mis�t in �o spa
e as a fun
tion ofretrieved relative wind dire
tion 
an be seen in Fig-ure 7 and show that all models are relatively insensi-tive to wind dire
tion, with Nn3Cmod exhibiting the
losest �t to the data.4.3. Lo
al Wind Retrieval - Validation in(u; v) Spa
eSin
e the forward models will ultimately be usedfor wind ve
tor retrieval, it is this evaluation mea-sure that is the most important from a user perspe
-tive. In this se
tion we present the results of the lo-
al retrieval of wind ve
tors using the forward mod-els. The models are inverted using their Ja
obiansas done on the validation set. As the ECMWF windve
tors used in training the models already have somein
uen
e from Cmod4, an independent test set of �omeasurements was used. This test set used UK Me-teorologi
al OÆ
e (UKMO) �rst guess at appropri-ate time winds as targets. These are uni�ed modelzero to six hour fore
ast winds [Andrews and Bell,1998℄, interpolated to the �o observation lo
ations.Three days of global s
atterometer observations from10/6/98, 25/1/99 and 7/2/99 were randomly subsam-pled, to provide the test set of 60,000 measurements,with a distribution similar to that observed in theatmosphere.Table 2 shows the results on the test set. Therehas been no sele
tion of the data whi
h is 
olle
tedin both Northern and Southern hemispheres. TheVRMSE of the Cmod4+5% retrieval is larger thanthat of the neural network models by some 0.5 ms�1whi
h is a large margin, and 
ertainly statisti
ally sig-ni�
ant with over �fty thousand observations. This�gure must be interpreted 
arefully sin
e on averageCmod4+5% returned 2.24 solutions per �o observa-tion, while Nn2Cmod returned 2.36 and Nn3Cmod2.33. A negative bias in wind speed remains inCmod4+5% despite the 5% 
orre
tion applied to thewind speed. The bias of the neural network models



7is small, suggesting that the parameterisations of thelower boundary layers in the ECMWF and UKMOnumeri
al models are similar, and thus our models
ould be used 
onsistently with the UKMO uni�edmodel or the ECMWF model.The dire
tion biases are similar and small for allmodels, but Cmod4+5% has a larger dire
tion stan-dard deviation. Both neural network models 
onsis-tently have mu
h better performan
e in terms of get-ting the �rst (most probable) solution within 20Æ ofthe NWP wind ve
tor 
ompared with Cmod4+5%.This is probably related to the lower RMSE in �ospa
e, and illustrates that a better �tting in �o spa
eis important for (u; v) retrieval, parti
ularly in ambi-guity removal. This measure will not be a�e
ted bythe number of solution returned. The Figure of Merit,whi
h 
an be used to assess di�erent models on many
riteria, shows that Nn2Cmod and Nn3Cmod arevery similar in overall performan
e on wind ve
torretrieval and better by 20% than Cmod4+5%.5. Dis
ussionWhen tuning a non-linear model, data sele
tionand quality 
ontrol is very important. Although inter-a
tive data manipulation demands ane
essitated largeamount of user time, it 
an greatly improve the mod-elling exer
ise. The more 
exible the model, the moreimportant is data integrity. Despite this redu
tion oferrors in the (u; v) inputs, it was ne
essary to trainthe neural network models, using a Bayesian pro
e-dure to learn both the forward model parameters andthe `true' (u; v) values. If standard training was usedon the neural network models (that is disregardinginput noise) the results, both in terms of �t to the �oobservations and (u; v) retrieval were very poor.The �t of the models in �o spa
e shows thatNn3Cmod �ts better than bothNn2Cmod andCmod4whi
h is attributed to the use of a di�erent model ofthe mid-beam in Nn3Cmod. This is 
on�rmed byvisualisation, where it 
an be seen that Nn3Cmod�ts the �o observations well, although there remainsroom for improvement at low wind speeds, whi
h
ould be investigated in further work.Lo
al wind ve
tor retrieval is improved using theneural network models. This is related to their abil-ity to �t the �o observations better but 
an belargely attributed to the Bayesian training pro
edureused to minimise the impa
t of input noise on themodel parameters. Although Nn3Cmod �ts mu
hbetter in �o spa
e 
ompared with Nn2Cmod, the re-

trieval in (u; v) spa
e is only marginally better. How-ever,Nn3Cmod has greater skill in determining whi
hof the ambiguous solutions is the `true' solution. Dataassimilation systems whi
h assimilate �o rather than(u; v) will be more a

urate if the �o �t of the modelis more a

urate. Even for data assimilation systemswhi
h assimilate retrieved (u; v), the a

urate �t ofNn3Cmod will improve the estimation of (u; v) di-re
tly but also improve the estimate of the probabil-ity of ea
h ambiguous solution whi
h 
an be fed tothe data assimilation system (or ambiguity removalalgorithm).Figure 8 shows the e�e
t of using di�erent dis-tributions of wind speed in the training set. ThreeNn3Cmodmodels where trained using di�erent train-ing sets. The results illustrate that models trainedwith a near uniform distribution in wind speed (thatis with more 
ases in the higher wind speed range)perform better when retrieving winds at higher windspeeds, but slightly worse when retrieving lower speedwinds. It is also 
lear that mixing the training setsallows the model to learn well at both high and lowwind speeds without 
ompromising performan
e else-where. This suggests that on-line learning strategies
ould be used to enhan
e these models performan
eat high wind speeds, whi
h is 
urrently limited bydata availability. The error for Cmod4+5% is alsoshown, illustrating the improvement in performan
eof Nn3Cmod espe
ially at higher wind speeds.6. Con
lusionsThis paper has dis
ussed two novel neural networkbased s
atterometer forward models. An intera
tiveoutlier removal method was used with 
areful data se-le
tion but this still the use of a training method thata

ounted for the input noise in the `
leaned' NWPwind ve
tors. Visualisation was used in a preliminaryassessment of model a

ura
y in �o spa
e, and in in-terpreting later results.Using the model Ja
obians we have shown that theneural network models �t the �o observations betterthan Cmod4. We also show that the mid-beam an-tenna has a di�erent response to the fore- and aft-beams. This strongly suggests that a di�erent modelis required for the mid-beam �o measurements, al-though a joint model 
an be used for the fore- andaft-beams, as implemented in Nn3Cmod.The neural network models are shown to be morea

urate for wind ve
tor retrieval. The neural net-work models are unbiased with respe
t to wind speed



8and dire
tion retrieval on the ECMWF and UKMOdatasets and have lower dire
tion standard deviations
ompare with Cmod4+5%. When using look up ta-bles the models will take the same amount of timeto invert, and thus on the basis of performan
e thehybrid neural network model, Nn3Cmod, might bepreferred for operational use. In terms of the 
ost ofinverting the models using the Ja
obians Nn3Cmodrequires about 30% more 
oating point operations perpattern, 
ompared to Cmod4.Future work 
ould 
onsider a better model for the�odB error whi
h should improve the �t of the model.Better understanding of the impa
t of the input noisein (u; v) (and its distribution) will also improve themodel training.A
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9Table 1. Fit of the models in �o spa
e on a validation set of 15000 observa-tions between 4 and 24 ms�1 whi
h have undergone the manual outlier removalpro
edure. �o varian
e for beamdist(min)a dist(best)b fore mid aftdB dB dB2 dB2 dB2Cmod4 0.29 0.48 0.104 0.181 0.105Nn2Cmod 0.31 0.45 0.056 0.152 0.056Nn3Cmod 0.22 0.29 0.025 0.096 0.025aMean minimum distan
e to the 
one for all ambiguous wind ve
tors retrieved.bMean distan
e to the 
one for the wind ve
tor 
losest to the NWP wind.



10Table 2. Performan
e of the models on the UKMO test set with an atmospheri
 distribution inwind speed and dire
tion and 50,720 observations in the range 4{24 ms�1. Wind speed is in ms�1and wind dire
tion is in degrees.ve
tor RMSE s bias s stda � bias � stda ONETb FoM
Cmod4+5% 3.26 �0:44 1.75 �0:9 22.4 32.0 1.07Nn2Cmod 2.76 �0:09 1.73 0:6 16.7 44.7 1.27Nn3Cmod 2.71 �0:19 1.71 0:7 16.3 51.1 1.29aStandard deviation.bPer
entage of the most likely solutions within 20Æ of the NWP wind ve
tor.
The Figure of Merit as proposed by David OÆler of the UK Meteorologi
al OÆ
e. This is unit-less, avalue of 1 indi
ating that the s
atterometer meets its design spe
i�
ations, larger values re
e
ting betterperforman
e.
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Figure 3. Visualising Cmod4 (left), Nn2Cmod (middle) and Nn3Cmod (right) using the `top view' at mid-beamin
iden
e angles of 18:0Æ (top), 33:4Æ (middle) and 45:4Æ (bottom). The solid line shows the model manifold for4{24 ms�1, the dotted line for 2{28 ms�1. The small dots show every point in the validation set.
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Figure 4. Visualising Cmod4 (left), Nn2Cmod (middle) and Nn3Cmod (right) using the `side view' at mid-beamin
iden
e angles of 18:0Æ (top), 33:4Æ (middle) and 45:4Æ (bottom). The solid line shows the model manifold for4{24 ms�1, the dotted line for 2{28 ms�1. The small dots show every point in the validation set.
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(
)Figure 5. The residuals Æ�o = �opredi
ted��oobserved plotted for every tenth point in the validation set as a fun
tionof in
iden
e angle for a) Cmod4, b) Nn2Cmod and 
) Nn3Cmod. The solid line gives the running mean, thedotted line � one standard deviation. The thi
ker lines to the left are the mid-beam statisti
s, the thinner line tothe right, the 
ombined fore- and aft-beam statisti
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(
)Figure 6. The residuals Æ�o = �opredi
ted��oobserved plotted for every tenth point in the validation set as a fun
tionof retrieved wind speed for a) Cmod4, b)Nn2Cmod and 
) Nn3Cmod. The solid line gives the running mean, thedotted line � one standard deviation. All beams are 
onsidered together.
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)Figure 7. The residuals Æ�o = �opredi
ted��oobserved plotted for every tenth point in the validation set as a fun
tionof retrieved wind dire
tion (
losest to NWP dire
tion) for a) Cmod4, b) Nn2Cmod and 
) Nn3Cmod. The solidline gives the running mean, the dotted line � one standard deviation. All beams are 
onsidered together.
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Figure 8. The ve
tor RMSE as a fun
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