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Abstract

Current methods for retrieving near surface winds from scatterometer observations over the
ocean surface require a foward sensor model which maps the wind vector to the measured
backscatter. This paper develops a hybrid neural network forward model, which retains the
physical understanding embodied in CM0OD4, but incorporates greater flexibility, allowing a
better fit to the observations. By introducing a separate model for the mid-beam and using a
common model for the fore- and aft-beams, we show a significant improvement in local wind
vector retrieval. The hybrid model also fits the scatterometer observations more closely. The
model is trained in a Bayesian framework, accounting for the noise on the wind vector inputs.
We show that adding more high wind speed observations in the training set improves wind vector
retrieval at high wind speeds without compromising performance at medium or low wind speeds.



1. Introduction

Obtaining wind vectors over the ocean is important
to Numerical Weather Prediction (NWP) since the
ability to produce a forecast of the future state of the
atmosphere depends critically on knowing the current
state accurately [Haltiner and Williams, 1980]. How-
ever, the observation network over the oceans (par-
ticularly in the southern hemisphere) is very limited
[Daley, 1991]. Thus it is hoped that the global cover-
age of ocean wind vectors provided by satellite borne
scatterometers [Offiler, 1994] will improve the accu-
racy of weather forecasts by providing better initial
conditions for NWP models [Lorenc et al., 1993]. The
scatterometer data also offers the ability to improve
wind climatologies over the oceans [Levy, 1994] and
the possibility of studying, at high resolution, inter-
esting meteorological features such as cyclones [Dick-
inson and Brown, 1996].

This study uses scatterometer data from the ERS-
2 satellite; the on-board vertically polarised, mi-
crowave radar operates at 5.3 GHz and measures
the backscatter from gravity-capillary waves on the
ocean surface of around 5 ¢m wavelength. Measured
backscatter from the ocean surface is given as the nor-
malised radar cross section, generally denoted by ¢°,
and has units of decibels'. A 500 km wide swathe
is swept by the satellite to the right of the track of
its polar orbit, with nineteen cells sampled across the
swathe, each cell having dimensions of roughly 50 by
50 km. Thus there is some overlap between cells.
Each cell is sampled from three different directions
by the fore, mid, and aft beams respectively, giving a
triplet, 6° = (0f,0%,02). This o° triplet, together
with the incidence and azimuth angles of the beams
(which vary across the swathe) is related to the aver-
age wind vector, (u,v), within the cell [Offiler, 1994].
We assume that the stability of the lower boundary
layer and the effects of longer sea waves are largely
related to wind speed and thus their impact is im-
plicitly included in the empirical models. Other geo-
physical parameters such as rain, sea ice are believed
to also have a small affect on the backscatter [Stof-
felen 1998a]; however these are treated as additional
noise sources in this paper since we have no indepen-
dent measurements of them.

Section 2 reviews the current scatterometer for-

I'We shall always assume we are working in decibel (or log)
space where we write 0° or g9y if the distinction is important.
We use o7} to denote the raw measurement space, 0° = op =

10 IOglo(Uﬁn)'
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ward models, while the neural network forward mod-
els are introduced in Section 3. The effect of training
a non-linear model while accounting for noise on the
inputs, (u,v), is discussed, as is data selection for
training the model and the estimation method itself.
Section 4 compares the performance of the neural net-
work models with CMoOD4 (the current operational
model) using visualisation, distance to cone and wind
retrieval. The results are summarised in Section 5
and conclusions are given in Section 6.

2. Scatterometer Forward Models

Understanding the theoretical relation between ¢°
and (u,v) is essential to retrieving wind vectors from
scatterometer observations [Offiler, 1994]. The re-
lation has been modelled based on both on studies
of the physical processes that govern backscattering
from water surfaces [Ebuchi et al., 1993; Janssen et
al., 1998] and statistical analysis of the relation be-
tween wind vectors (both buoy observed and NWP
derived) and scatterometer measurements [Stoffelen
and Anderson, 1997a]. From these studies empirical
forward models relating ¢° and (u,v) have been es-
tablished of the general form:

Ofin ~ bo(s,0) + b1 (s, 0) cos(x)

+ ba(s, ) cos(2x) M

where the wind vector (relative to the satellite az-
imuth angle) is given in terms of wind speed, s, and
relative wind direction, y. 6 denotes the beam inci-
dence angle. Since there are three ¢° measurements
for each observation, this functional form implies a
double skinned cone-like response in o® space. Con-
sidering a point on the surface of the cone, the dis-
tance along the axis of the cone is largely related to
wind speed, while the location around the cone is
related to wind direction. The cos(2y) term domi-
nates and, together with the presence of noise, is the
source of the direction ambiguities in the solutions.
The most widely used operational forward model is
known as CMoD4 [Stoffelen and Anderson, 1997a]
and has the form:

o, = Bo(s,8)[1 + Bi(s, ) cos(x)

e (2
+ Bs(s,0) tanh(Bs (s, 8)) cos(2x)]

where the result is raised to the power 1.6 in order to
make the dependence of o}, on x a function of cos(x)
and cos(2y) only.

This paper presents results which show improved
performance of the neural network forward models



both in terms of wind vector retrieval and of their rep-
resentation of the observation manifold in ¢° space. If
the forward models are to be used directly in a varia-
tional data assimilation system (that is assimilate o°
rather than retrieved (u,v)) both attributes will be
important.

CMOD4 is the operational model and, as such, pro-
vides the benchmark by which other models may be
measured. However, operationally CM0D4 is used to-
gether with some empirical corrections; for instance
the UK Meteorological Office increase the retrieved
wind speed by five percent. The VIERS-1 physically
based theoretical ocean backscatter model [Janssen
et al., 1998] is shown to improve upon wind vector
retrieval at high wind speeds when compared with
CmMmoDn4, although it does not fit the observed o® man-
ifold as well as CMoD4. The VIERS-1 model was not
available to us for comparison.

3. Neural Network Scatterometer
Forward Models

One of the reasons that CMo0D4 fits the o® obser-
vations poorly at high wind speeds is the restrictive
functional form imposed by the use of up to second
order Legendre polynomials in the parameterisation
of B.(s,60) in Equation 2. We relax the restrictions
imposed by the functional form and produce an alter-
native model using a Multi-Layer Perceptron (MLP)
with the CMOD4 functional form to produce a more
flexible, hybrid model.

3.1. Neural Networks

Neural networks are universal, non-linear function
approximators which can approximate any continu-
ous mapping to arbitrary accuracy, given sufficient
hidden units. The MLP used is a non-linear statisti-
cal model, which has the advantage of being efficient
to train, due to the back-propagation method for de-
termining derivatives of the outputs (and thus the
cost function) with respect to the weights [Bishop,
1995]. The MLP parameters are generally referred
to as weights can be determined using standard gra-
dient based algorithms to minimise a cost function.
More details of the implementation are given below.
Further details on neural networks can be found in
Bishop [1995].

3.2. Hybrid model

In order to make use of existing knowledge on the
physics of backscattering we imposed constraints on
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the functional form of the neural network model. A
obvious functional form for the hybrid model is:

op, =ao(1 + 0.37 tanh(ay) cos(x)

+ 0.62 tanh(as) cos(2x))? , (3)

where p, ag, a1, and as are functions of the model
inputs and tanh(-) is used to ensure the expression
remains real for all inputs. The values 0.37 and 0.62
are simply scaling parameters chosen so as to sum to
a value less than one. Their relative values have little
importance as the network weights allow rescaling.
Now, ogg can be written in log space:

oo = ity (w0 + P O b))
+ 0.8 tanh(ay) COS(QX)]) ;

this model being referred to as NN2CMoOD. The
model is shown graphically in Figure 1. The MLP
takes the wind speed and sine of the beam incidence
angle as inputs. The inputs were chosen to keep
the mapping as simple as possible. The outputs are
[ao, a1, a2, p] which, together with the relative wind
direction, x, are then used with Equation (4) to yield
the backscatter measurement in decibels. We have
chosen to use ¢ in decibels at all times since this ren-
ders the multiplicative noise on of}, additive on o3g.
There remains the question on the form of the noise
distribution in 0§y space, which is discussed later.

3.3. Multi-beam model

During model validation (see Section 4, Figures 4
and 5) it became apparent that the mid-beam an-
tenna ¢° value was not being well modelled by either
CmoD4 or NN2CMoD. This was not due to the in-
ability of the models to represent the relation between
o° and 6 at low incidence angles, this being verified
by the use of a more flexible neural network with 12
hidden units, which exhibited the same features. Al-
though there is no physical basis for this, a three beam
model was constructed, with two NN2CMOD models
with four hidden units in the MLP, one for the mid-
beam and one for both fore- and aft-beams. This
model, denoted NN3CMOD, has the advantage that
during the training process three ¢° measurements
are used to infer the ‘true’ wind vector, as opposed to
one during the training of NN2CMOD.

3.4. Bayesian Parameter Estimation in the
Presence of Input Noise

NN2CMOD depends upon weights, w, which are
determined from the training data. We adopt a prag-



matic Bayesian approach for the estimation of the
weight vector in the presence of input noise, details
of which can be found in Cornford et al., [1999b] and
Wright [1998]. If the input noise is not properly ac-
counted for then non-linear models will learn a biased
estimate of the true underlying function.

Using Bayes’ theorem the posterior distribution of
the weights given the noisy training data, p(w | D),
can be expanded as:

/ ot | ) (e | ) pln) ) i
&, N ——
Pz p3 P4

(5)

where D is the noisy training set, D = {tp,Zn}, tn
are the (noisy) targets in the training data, x,, are
the corresponding noisy inputs, and &,, are the asso-
ciated noiseless inputs. Training the network consists
of determining the maximum a posteriori probability
(MAP) weight vector and noiseless inputs, by min-
imising the negative logarithm of Equation (5). Here
we are making a sub-optimal choice since ideally we
should sample w from the distribution p(w | D) and
use the samples to approximate the predictive inte-
gral:

Pt | 2%) = / p(t | &*, w)p(w | D) dw,  (6)

where x* is a new noise-free input and ¢* is the cor-
responding predicted target. However in operational
use this fully Bayesian approach would be too time
consuming.

In order to evaluate the maximum a posteriori

probability value of p(w | D), we compute four errors
E; = —In(p;), derived from Equation (5). Writing

= {0°}, xn = {s,x,0} and &, = {5, x,6} these
terms become:
E; = —In([],,p1(c°]5,X,0,w)), the error of the

model, calculated using the observed satellite mea-
surements and modified wind vectors (8,%) which
tend to the noise free (‘true’) values during training.
The distribution of p; is assumed to be Gaussian in
ogp space, thus:

By = (log(2) + log(07?))
+Z (5%, 0:w) — 1,)° /(207) |

where the sum is over all patterns in the training set,
o? is the variance of the errors in the ¢, (target) mea-
surements and f (3, Y, 6; w) is the output obtained by

(7)
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propagating the noise free inputs (3, x) and 6 through
the model. Note when training NN3CMOD this will
be the sum of three such terms, one for each antenna.

Ey = —In([],, p2(s, x5, X)), the error due to the
noise free wind vectors differing from the correspond-
ing noisy wind vector. The distribution ps is assumed

to be spherically Gaussian with variance o2:

Ey =log(2) + log(7,) +
> (@—w?’+@-0?) /o),

the summation being over the patterns. Note @ =
§sin(x), © = —3cos(x) following the meteorologi-
cal convention. This component of the cost func-
tion could also represent the discrepancy between the
ECMWF 10 m wind vector and the local surface
stress vector, which is what actually generates the
ocean surface ripples [Stoffelen 1998a].

(8)

E; = —In(ps(3, X)), the assumed prior distribution
of noise free wind vectors in the training set. In prac-
tice we rarely know the true distribution of the wind
vectors so in this case we assume a constant prior dis-
tribution (that is a uniform distribution in wind speed
and direction). This is a reasonable assumption be-
cause of the data selection method used, but future
work could investigate the effect of this assumption.

E, = —In(ps(w)) is the prior over the weights
which controls the complexity of the MLP [Bishop,
1995]. The weight decay prior:

Ey =) w®/(20},) (9)

is used, where o2, is the variance of the weights, which
were ﬁxed on the basis of experimentation to be 0.005
for the weights and 0.1 for the biases. The effect of
this term is to produce smoother network mappings
as the weight variance is decreased.

This is very similar to the cost function used to
determine the parameters of CM0OD4 in Stoffelen and
Anderson [1997a], with the addition of a prior model
for the distribution of the true wind vectors and a
prior model for the weight vector. Finding the MAP
solution is essentially the same as a variational deter-
mination of the weights. We used 20,000 iterations of
scaled conjugate gradient optimisation to determine
the MAP weight values to ensure convergence, partic-
ularly in the estimation of the noise free input values.

3.5. Data Selection

When using data driven models, the quality of the
trained model is only as good as the data used to



train it. It is possible to bring additional information
to model determination, such as using certain model
classes, within the Bayesian framework adopted, but
we still depend critically on careful data selection.

We have used ERS-2 data collected over the pe-
riod March 1996 to January 1998 in the North-
ern Hemisphere to create our training sets. The
ERS-2 data was collocated with European Centre
for Medium Range Weather Forecasting (ECMWTF)
10m wind vectors by the French Research Institute
for the Exploitation of the Sea (IFREMER)?. The
ECMWF wind vectors assimilated CMOD4 retrieved
scatterometer winds. If the data assimilation system
of the ECMWF model is working well then this will
only improve the quality of the (u, v) data in the train-
ing set. To further improve the quality of the data set
we carefully corrected the o° observations to account
for calibration changes over the data acquisition pe-
riod. We also insisted that the signal to noise ratio in
the scatterometer observations was less than 7%.

We make the usual assumption that the observa-
tions in the training set are independent, thus we se-
lected the observations so that they are separated in
space by at least 300 km. This distance was chosen to
achieve a compromise between independence and ob-
taining sufficient samples at high wind speeds. A filter
computed the variance of the wind field within a cir-
cle of 1 degree of latitude or longitude. If the summed
variance of the wind components was greater than 2.5
m?s~2 the central wind vector was not selected, to re-
duce the impact of incorrectly positioned fronts and
cyclones in the ECMWF model on the quality of the
wind vectors in the training set. This variance was
chosen on the basis of experimentation.

3.5.1. Outlier Removal. We further ‘clean’
the training data using an interactive, manual outlier
removal procedure. We know that the noise on the o°
observations is small thus visualisation in &° space
can quickly identify outliers in terms of o°, which we
have found to be present in practice. As the assumed
o° variance is very small these can have a very large
effect on the trained models. By using three linked
plots it was possible to eliminate the extreme a° out-
liers present in the dataset. A further two linked plots
allowed us to examine outliers in wind speed and di-
rection.

We considered each fixed the mid-beam incidence
angle separately and plotted of against o3, of against

2See http://www.ifremer.fr/cersat/ACTIVITE/E_CERACT.HTM

for details.
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og, and of against og in o3y space. We also plotted
NWP wind speed against (o + 02, +02)/3 and NWP
wind direction against of — of. To help find direc-
tional errors we highlighted those points for which
(6f + 0 + 02)/3 >min(of + 0 + 02)/3 + 8, since
these are the points with higher wind speeds and thus
should have a more consistent relation to wind direc-
tion. During outlier removal 1.9% of the training data
was rejected.

3.6. Parameter Estimation

We used estimates in Stoffelen and Anderson [1997a]
to set the error variances on the ¢° and the wind vec-
tors. We used values of o7 = 0.04 dB? and 02 = 2.25
m?s~2 in our training (see Equations (7) and (8)).
To verify these assumptions we trained models using
these values and looked at their performance on an in-
dependent validation set, which had also undergone

the process of outlier removal.

4. Validation of Forward Models

There are several measures which one might use
when determining the performance of the various for-
ward models. The natural choice, related to the error
function used during training, is the root mean square
error (RMSE) of the o° observations, given the ‘true’
wind vector. However the requirement for accurate
wind vector retrieval means that the vector RMSE of
the retrieved (u,v) observations is more important.
Other measures include biases in the models, accu-
racy of the first (most probable) solution or the so
called Figure of Merit, as proposed by David Offiler
of the UK Meteorological Office (UKMO) [Cornford
et al., 1999]. We present a wide range of performance
indicators to allow a complete assessment of the mod-
els. In common with standard practice, since we are
interested in the quality of the local models, when
computing error measures in (u, v) space, we pick the
wind vector (from the 2 to 4 returned) that is clos-
est to the NWP winds [Offiler, 1994]. We employed
three validation methods for our models: visualisa-
tion, quantitative measures in o° space and quality
of locally retrieved winds.

4.1. Visualisation

This section qualitatively assesses the degree to
which the models fit the a° observations. This has
proved to be a powerful tool for the rapid examina-
tion of forward models, and can be instructive in sug-
gesting where improvements may be necessary. The



results can be seen in Figures 3 and 4, where the out-
line of the model manifolds are plotted over the range
2-28 ms~!, viewed from above (in the plane of, o)
and the side (in the plane (0f +02)/2, 02). Every
o° observation from an independent validation set of
ERS-2 observations is also plotted for the given inci-
dence angle, which thus fill the ‘centre’ of the models.
CMOD4 can be seen to fit the o° observations well
at larger incidence angles, but is not sufficiently flex-
ible at low incidence angles. The model extends be-
yond the regions within which o is observed, mainly
at higher winds speeds, which correspond to greater
o° values. NN2CMOD fits the o° observation well at
higher wind speeds, but does not fit well at lower wind
speeds. This is related to the difference between the
behaviour of the mid-beam compared with the fore-
and aft-beams. NN3CMOD, which uses separate mod-
els for these beams, fits the °® observations very well.

4.2. Distance to Model Cone - Validation in
o° Space

In order to obtain quantitative results on the fit of
the models in ° space we have looked at the distance
to the cone for a validation set which has the same dis-
tribution in wind speed and direction as the training
set. The results can be seen in Table 1 where the Jaco-
bians of the models were used to determine the exact
minimum distance to the cone using a scaled conju-
gate gradient minimisation algorithm. The minimum
distance to the cone, which corresponds to the mini-
mum distance of the ° observation from the model
manifold shows that NN3CMoD fits the cone more
tightly than CmoDp4 and NN2CMoD. The distance
from the point on the cone corresponding to the re-
trieved wind vector closest to the NWP wind vector,
denoted dist(best) also shows the improvement given
by NN3CMOD. The variances of the o® errors on the
individual beams were also calculated for the three
models.

In Table 1 this shows that the fore- and aft-beams
have smaller noise levels than the mid-beam, for all
models. For CM0oD4 and NN2CMoOD, Figure 5 shows
this is related to the poor fitting (bias) of the mod-
els to ¢° at small incidence angles (the mid-beam in-
cidence angles are generally smaller). However for
NN3CwmoD the mid-beam ¢° still has a higher vari-
ance, despite an unbiased fit to the ¢° observations
(Figure 5¢). Figure 5c¢ shows no evidence of a sys-
tematic dependence on 6, rather there seems to be
a distinctly different variance for the mid-beam o°.
This suggests that it would is preferable to have a
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separate model for the mid-beam and a joint model
for the fore- and aft-beams, as done in NN3CMOD.

Figure 6 shows the misfit of models in o space
plotted as a function of retrieved wind speed. CMOD4
shows a great deal more scatter than the neural net-
work models, particularly at wind speeds above 8
ms~!. The results for NN3CMoD (Figure 6¢) sug-
gest that the variance of the o° observations decreases
with increasing wind speed, however reference to Fig-
ure 3 suggests this may partly reflect the poor fit of
all models at low ¢ values, which correspond to lower
wind speeds. The misfit in o° space as a function of
retrieved relative wind direction can be seen in Fig-
ure 7 and show that all models are relatively insensi-
tive to wind direction, with NN3CMOD exhibiting the
closest fit to the data.

4.3. Local Wind Retrieval - Validation in
(u,v) Space

Since the forward models will ultimately be used
for wind vector retrieval, it is this evaluation mea-
sure that is the most important from a user perspec-
tive. In this section we present the results of the lo-
cal retrieval of wind vectors using the forward mod-
els. The models are inverted using their Jacobians
as done on the validation set. As the ECMWF wind
vectors used in training the models already have some
influence from CMOD4, an independent test set of a°
measurements was used. This test set used UK Me-
teorological Office (UKMO) first guess at appropri-
ate time winds as targets. These are unified model
zero to six hour forecast winds [Andrews and Bell,
1998], interpolated to the o° observation locations.
Three days of global scatterometer observations from
10/6/98,25/1/99 and 7/2/99 were randomly subsam-
pled, to provide the test set of 60,000 measurements,
with a distribution similar to that observed in the
atmosphere.

Table 2 shows the results on the test set. There
has been no selection of the data which is collected
in both Northern and Southern hemispheres. The
VRMSE of the CM0OD4+5% retrieval is larger than
that of the neural network models by some 0.5 ms—!
which is a large margin, and certainly statistically sig-
nificant with over fifty thousand observations. This
figure must be interpreted carefully since on average
CMoD4+5% returned 2.24 solutions per a° observa-
tion, while NN2CMOD returned 2.36 and NN3CMOD
2.33. A negative bias in wind speed remains in
CMoD4+5% despite the 5% correction applied to the
wind speed. The bias of the neural network models



is small, suggesting that the parameterisations of the
lower boundary layers in the ECMWEF and UKMO
numerical models are similar, and thus our models
could be used consistently with the UKMO unified
model or the ECMWF model.

The direction biases are similar and small for all
models, but CM0OD4+5% has a larger direction stan-
dard deviation. Both neural network models consis-
tently have much better performance in terms of get-
ting the first (most probable) solution within 20° of
the NWP wind vector compared with CmMoD4+5%.
This is probably related to the lower RMSE in o°
space, and illustrates that a better fitting in o° space
is important for (u,v) retrieval, particularly in ambi-
guity removal. This measure will not be affected by
the number of solution returned. The Figure of Merit,
which can be used to assess different models on many
criteria, shows that NN2CMOD and NN3CMOD are
very similar in overall performance on wind vector
retrieval and better by 20% than CmMoD4+5%.

5. Discussion

When tuning a non-linear model, data selection
and quality control is very important. Although inter-
active data manipulation demands anecessitated large
amount of user time, it can greatly improve the mod-
elling exercise. The more flexible the model, the more
important is data integrity. Despite this reduction of
errors in the (u,v) inputs, it was necessary to train
the neural network models, using a Bayesian proce-
dure to learn both the forward model parameters and
the ‘true’ (u,v) values. If standard training was used
on the neural network models (that is disregarding
input noise) the results, both in terms of fit to the o°
observations and (u,v) retrieval were very poor.

The fit of the models in o° space shows that
NN3CwmonD fits better than both NN2CMoD and CMoD4
which is attributed to the use of a different model of
the mid-beam in NN3CMoOD. This is confirmed by
visualisation, where it can be seen that NN3CMOD
fits the a° observations well, although there remains
room for improvement at low wind speeds, which
could be investigated in further work.

Local wind vector retrieval is improved using the
neural network models. This is related to their abil-
ity to fit the o° observations better but can be
largely attributed to the Bayesian training procedure
used to minimise the impact of input noise on the
model parameters. Although NN3CwmoD fits much
better in a° space compared with NN2CMOD, the re-
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trieval in (u,v) space is only marginally better. How-
ever,NN3CMOD has greater skill in determining which
of the ambiguous solutions is the ‘true’ solution. Data
assimilation systems which assimilate o° rather than
(u,v) will be more accurate if the o° fit of the model
is more accurate. Even for data assimilation systems
which assimilate retrieved (u,v), the accurate fit of
NN3CMoOD will improve the estimation of (u,v) di-
rectly but also improve the estimate of the probabil-
ity of each ambiguous solution which can be fed to
the data assimilation system (or ambiguity removal
algorithm).

Figure 8 shows the effect of using different dis-
tributions of wind speed in the training set. Three
NN3CwmoD models where trained using different train-
ing sets. The results illustrate that models trained
with a near uniform distribution in wind speed (that
is with more cases in the higher wind speed range)
perform better when retrieving winds at higher wind
speeds, but slightly worse when retrieving lower speed
winds. It is also clear that mixing the training sets
allows the model to learn well at both high and low
wind speeds without compromising performance else-
where. This suggests that on-line learning strategies
could be used to enhance these models performance
at high wind speeds, which is currently limited by
data availability. The error for CMOD4+5% is also
shown, illustrating the improvement in performance
of NN3CMOD especially at higher wind speeds.

6. Conclusions

This paper has discussed two novel neural network
based scatterometer forward models. An interactive
outlier removal method was used with careful data se-
lection but this still the use of a training method that
accounted for the input noise in the ‘cleaned’ NWP
wind vectors. Visualisation was used in a preliminary
assessment of model accuracy in o® space, and in in-
terpreting later results.

Using the model Jacobians we have shown that the
neural network models fit the o® observations better
than CmoD4. We also show that the mid-beam an-
tenna has a different response to the fore- and aft-
beams. This strongly suggests that a different model
is required for the mid-beam ¢° measurements, al-
though a joint model can be used for the fore- and
aft-beams, as implemented in NN3CMOD.

The neural network models are shown to be more
accurate for wind vector retrieval. The neural net-
work models are unbiased with respect to wind speed



and direction retrieval on the ECMWF and UKMO
datasets and have lower direction standard deviations
compare with CMoD4+5%. When using look up ta-
bles the models will take the same amount of time
to invert, and thus on the basis of performance the
hybrid neural network model, NN3CMOD, might be
preferred for operational use. In terms of the cost of
inverting the models using the Jacobians NN3CMOD
requires about 30% more floating point operations per
pattern, compared to CMOD4.

Future work could consider a better model for the
o4p error which should improve the fit of the model.
Better understanding of the impact of the input noise
in (u,v) (and its distribution) will also improve the
model training.
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Table 1. Fit of the models in &° space on a validation set of 15000 observa-
tions between 4 and 24 ms~! which have undergone the manual outlier removal
procedure.

o variance for beam

dist(min)?® dist (best)P fore mid aft

dB dB dB? dB? dB?
Cmon4 0.29 0.48 0.104 0.181 0.105
NN2CwMmOD 0.31 0.45 0.056 0.152 0.056
NN3CwmoOD 0.22 0.29 0.025 0.096 0.025

#Mean minimum distance to the cone for all ambiguous wind vectors retrieved.

PMean distance to the cone for the wind vector closest to the NWP wind.



Table 2. Performance of the models on the UKMO test set with an atmospheric distribution in
wind speed and direction and 50,720 observations in the range 4-24 ms~—!'. Wind speed is in ms~!
and wind direction is in degrees.

vector RMSE s bias sstd®  y bias x std®  ONETP  FoM¢

CMOD4+5% 3.26 —-0.44 1.75 -0.9 224 32.0 1.07
NN2CMOD 2.76 —0.09 1.73 0.6 16.7 44.7 1.27
NN3CMOD 2.71 -0.19 1.71 0.7 16.3 ol1.1 1.29

#Standard deviation.
YPercentage of the most likely solutions within 20° of the NWP wind vector.

“The Figure of Merit as proposed by David Offiler of the UK Meteorological Office. This is unit-less, a
value of 1 indicating that the scatterometer meets its design specifications, larger values reflecting better
performance.
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Figure 1. The hybrid neural network scatterometer model

, symbols defined in the text.
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Figure 2. Graphical representation of the the power parameter p (Equation 3) of NN2CMOD as a function of wind
speed and incidence angle.
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Figure 3. Visualising CmoD4 (left), NN2CMOD (middle) and NN3CMOD (right) using the ‘top view’ at mid-beam
incidence angles of 18.0° (top), 33.4° (middle) and 45.4° (bottom). The solid line shows the model manifold for
4-24 ms™', the dotted line for 2-28 ms~!. The small dots show every point in the validation set.
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Figure 4. Visualising CMoDn4 (left), NN2CMOD (middle) and NN3CMOD (right) using the ‘side view’ at mid-beam
incidence angles of 18.0° (top), 33.4° (middle) and 45.4° (bottom). The solid line shows the model manifold for
4-24 ms~1, the dotted line for 2-28 ms~!. The small dots show every point in the validation set.
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Figure 5. The residuals 00° = 0y, 4icteq = Topservea PlOtted for every tenth point in the validation set as a function
of incidence angle for a) CmoD4, b) NN2CmMoD and ¢) NN3CMOD. The solid line gives the running mean, the

dotted line + one standard deviation. The thicker lines to the left are the mid-beam statistics, the thinner line to

the right, the combined fore- and aft-beam statistics.
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Figure 7. The residuals 00° = 0, 1i.teq — Topservea PLOtEd for every tenth point in the validation set as a function

of retrieved wind direction (closest to NWP direction) for a) CmMoD4, b) NN2CMOD and ¢) NN3CMoOD. The solid
line gives the running mean, the dotted line &+ one standard deviation. All beams are considered together.
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Figure 8. The vector RMSE as a function of retrieved wind speed, for CMoD4+5% and three versions of NN3CMOD
trained using a mixed (mix.), atmospheric (atm.) and uniform (uni.) distribution of wind speed in the training set.



