
Error-Correting Codes That Nearly Saturate Shannon's BoundIdo Kanter1 and David Saad21 Department of Physis, Bar-Ilan University, Ramat-Gan 52900, Israel.2The Neural Computing Researh Group, Aston University, Birmingham B4 7ET, UK.Gallager-type error-orreting odes that nearly saturate Shannon's bound are onstruted usinginsight gained from mapping the problem onto that of an Ising spin system. The performane ofthe suggested odes is evaluated for di�erent ode rates for both �nite and in�nite message length.89.90.+n, 02.50.-r, 05.50.+q, 75.10.HkEÆient information transmission plays a entral rolein modern soiety, taking a variety of forms, from tele-phone and satellite ommuniation to storing and retriev-ing information on disk-drives. Error-orreting odesare ommonly used in most methods of informationtransmission to ompensate for noise orrupting the dataduring transmission; they require the use of additional in-formation transmitted together with the data itself. Theperentage of informative transmitted bits, determinesthe oding eÆieny and subsequentally the speed ofommuniation hannels and the e�etive storage spaeon hard-disks. In his seminal paper of 1948, Shannon [1℄derived the hannel apaity, providing bounds on theode-rate for whih odes, apable of ahieving perfetretrieval for a given noise level, an be found. The searhfor eÆient, pratial error-orreting odes that satu-rate Shannon's bound resulted in several pratial odes,most of whih are still below Shannon's bound. Here wepropose a new approah based on insight gained from thestudy of Ising spin-systems with low-onnetivity multi-spin interations. Adapting our method to Gallager'serror-orreting odes [2℄ one obtains odes that nearlysaturate the limits set by Shannon.In a typial senario, a message omprising N binarybits is transmitted through a noisy ommuniation han-nel; the reeived string di�ers from the transmitted onedue to noise whih may ip some bits. We identify theipping rate - f 2 [0 : 1℄ - in a binary symmetri han-nel as the fration of bits that hange their value from0 to 1 or from 1 to 0. We fous on this noise modelas it an be easily interpreted within the framework ofIsing spin systems; however, other noise types may alsobe onsidered, and may be more realisti in some se-narios. The reeiver an orret the ipped bits only ifthe soure transmits M(f)>N bits; the ratio betweenthe original number of bits and those of the transmittedmessage R � N=M onstitutes the ode-rate for unbi-ased messages. Shannon [1℄ derived the hannel apaityand provided bounds on the maximal ode rate R, fora given ip rate f and ode bit error probability pb, forwhih odes, apable of ahieving perfet retrieval, exist.The maximal ode rate equals the hannel apaity andis given expliitly [3℄ byR = (1�H2(f))=(1�H2(pb)) ; (1)

where H2(x) = �x log2(x) � (1� x) log2(1� x).Shannon's theory is non-onstrutive, and the manygood algorithms that have been introdued over the years(e.g., BCH, Reed-Muller and Reed-Solomon odes, for areview see [4℄) fall short of saturating Shannon's bounds,although they may provide lose-to-optimal performanein spei� senarios. Even the performane of the el-ebrated turbo ode [5℄ is somewhat below Shannon'sbound.One error-orreting ode whih reently beame pop-ular is the Gallager ode (and its variations) [2,6{8℄,whih was abandoned shortly after its introdution dueto the limited omputational abilities of the time. Inthis method, representing a speial ase of parity-hekodes, the transmitted message omprises the originalmessage itself and additional bits, eah of whih is de-rived from the parity of a sum of ertain message-vetorbits. The hoie of the message-vetor elements used forgenerating single ode-word bits is arried out aordingto a predetermined random set-up and may be repre-sented by a produt of a randomly generated matrix andthe message-vetor in a manner explained below. Deod-ing the reeived message relies on iterative probabilistimethods like belief propagation [6,9℄.It has been shown that by using Gallager-type methodsand spei� hoies of the enoding/deoding matrix itis possible to improve the maximal pratially ahievableode-rate [6,8℄ although results are still somewhat belowShannon's apaity. The root of the problem is the in-evitable tradeo� between improving the ode's orretiveapabilities and the need for a pratial and reliable iter-ative deoding proess, guaranteed to onverge from anyinitial ondition (i.e., that will not require additional,typially unavailable, information about the message it-self). This goal is ahieved by understanding the physialharateristis of the problem and devising a new methodbased on this insight. As Gallager-type methods form thebasis of our proposal we will now explain expliitly theversion we employ - the MN ode [6℄.In the MN ode one onstruts two sparse matriesA and B of dimensionalities M�N and M�M respe-tively. The matrix A has K non-zero (unit) elementsper row and C(= KM=N) per olumn while B has L perrow/olumn. The matrix B�1A is then used for enodingthe message s1



t = B�1A s (mod 2) :The reeived message omprises the transmitted vetororrupted by the noise vetor n: r = t + n (mod 2) :Deoding is arried out by employing the matrix B toobtain: z = B (t+n) = As+Bn (mod 2) ; and requiressolving the equation[A;B℄ � s0n0 � = z (mod 2) ;where s0 and n0 are the unknowns. This may be arriedout using methods of belief network deoding [6,9℄, wherepseudo-posterior probabilities, for the deoded messagebits being 0 or 1, are alulated by solving iteratively aset of equations for the onditional probabilities of theodeword bits given the deoded message and vie versa.For exat details of the method used and the equationthemselves see [6℄.Most studies of Gallager-type odes have been arriedout via methods of information theory (e.g., [6℄). The�rst link between a speial ase of Gallager's method,where B = I the identity matrix, and the realm of physi-al spin-systems was established by Sourlas [10℄ by map-ping the problem onto that of a Hamiltonian system,replaing the original Boolean variables by binary oneswhih are analogous to spins in Ising-type systems withmulti-spin interations. For this simple ase the systemis desribed by the HamiltonianH = � Xhi1;i2:::iKi Ji1;i2;:::;iK ŝ0i1 ŝ0i2 :::ŝ0iK (2)where fŝ0ig are the binary dynamial variables (�1),used in the deoding proess. The tensor Ji1;i2;:::;iK =�ŝi1 ŝi2 :::ŝiK with probabilities 1�f and f orrespond-ingly, represents the reeived odeword orrupted bynoise during transmission, ŝ being the binary representa-tion of the original Boolean message vetor s; the hoieof indies i1; i2; :::; iK orresponds to the non-zero rowelements of the matrix A. Under a gauge transforma-tion this model is mapped onto an Ising spin systemwith ferromagneti bias; �nding the ground state of theHamiltonian is losely related to �nding the Bayes op-timal posterior under a ertain noise level [10℄. Thismapping onto Hamiltonian spin-systems, suggested bySourlas for highly onneted systems, was reently ex-tended to partiular forms of sparse matries A (whereB = I) as well as to ertain B matries [11℄. In thisextended framework, K and L represent the number ofmulti-spin interations among the signal and noise om-ponents respetively.Our method uses the same struture as the MN odesand builds on insight gained from the study of physialsystems with symmetri and asymmetri [12℄ multi-spininterations and from examining a speial ase of Gal-lager's method [10,11℄. These theoretial studies indi-ate that one may obtain superior apabilities, in terms

of the ahievable ode rate, by hoosing high K and Lvalues; however, they ome at the expense of poor deod-ing performane as the orresponding basins of attrationshrink rapidly with the inreasing K and L values, mak-ing it essential to have high initial overlap between theoriginal message and the dynamial variables for the it-erative deoding proess to onverge suessfully. Suhinformation is learly unavailable in pratial senarios.One should emphasise that the basin of attration shrinksdramatially. In the system suggested by Sourlas, for in-stane, the initial overlap (magnetisation in the physialsystem) m = 1=N PNi=1(2si � 1)(2s0i � 1) required inthe ase of K = 6 should be higher than 0:99 for a su-essful onvergene; this has been shown by numerialsimulations as well as by a mean-�eld alulation to bepresented elsewhere. On the other hand, highly robustiterative deoding is obtained for low K and L valuesat the expense of sub-optimal apabilities (i.e., low endoverlap).The method presented here is based on onstrutingthe matriesA andB in a manner that orresponds to thegradual introdution of higher onnetivity sparse sub-matries, exploiting the exellent onvergene propertiesof odes based on low K and L values with the superiorperformane of high-K odes. More spei�ally, one aimsat starting with lowK and L values, in this aseK+L �3, so as to bring the system to high overlap values frompratially any initial ondition; higher values of K andL, e.g. 3 < K + L � 5, may then be used for bringingthe system to a perfet overlap between the deoded andthe original word.The pratial implementation of the enoding is similarto that of the MN ode exept that the omposed ma-trix used, [AjB℄, omprises randomly hosen sparse sub-matries of di�erent onnetivities. The generated ode-word, onstruted by taking the parity of sums of mes-sage vetor bits seleted aording to the spei� hoieof A and B, is then transmitted through the noisy han-nel. Deoding the orrupted odeword is arried out us-ing an iterative proess idential to that of Ref. [6℄ andan take two forms: a) A gradual introdution of higheronnetivity sub-matrix omponents in the Hamiltoniansystem used for deoding following the above desription,where end result at eah stage serves as an initial on-dition for the next. This is equivalent, from a physialpoint of view, to hanging the Hamiltonian as a funtionof time by gradually summing over more message bits inEq.(2). b) Using the omposed matries, inluding a va-riety of sub-matries with di�erent onnetivities, rightfrom the start. The latter, whih simply orrespond toa partiular onstrution of the matries A and B in theMN ode, has been used in most of our experiments dueto its simpliity, although the former has shown fasteronvergene at high noise levels. In both ases the ex-pliit hoie of sites for generating a spei� ode-word2



bit is arried out at random, in a similar fashion to mostGallager-type odes.The main question that should be addressed is the opti-mal hoie of sub-matrix onnetivities. There are manypossibilities for hoosing K and L values for the di�erentstages and one should examine various possibilities beforearriving at the optimal on�guration. However, there area few guidelines one should follow: 1) Initial stages areharaterised by low K and L values; K values are ho-sen gradually higher, so as to support the orretion offaulty bits. 2) One should hoose the number of non-zero olumn elements as uniformly as possible, as thenumber of onnetions per bit (spin) de�nes the orre-tive input it reeives (this is somewhat in ontrast to theapproah adopted for irregular Gallager odes in whiholumn/row onnetivity is taken from some distribution[7,8℄). 3) As in most of these systems both solutions, withm=�1, are equally attrative one should break the in-version symmetry. This may be ahieved by adding someodd onnetion values to the mainly even K+L valuesused initially; this assists in breaking the symmetry fromany initialisation of the iterative equations [6℄ with pra-tially no e�et on the basin of attration. 4) To guar-antee the inversion of the matrix B, and sine noise bitshave no expliit orrelation, we use a patterned struture,Bi;k=Æi;k+Æi;k+5, for the B-submatries with L=2 andBi;k = Æi;k for L = 1. Other pratial points as well asa more detailed explanation of the physial insight lead-ing to the optimal hoie of onnetion values and therelation to Sourlas's ode will be presented elsewhere.R N A K B L fN f1 f1=3 10000 N�N 1 N�3N 2 0.159 0.169 0.1743=4 N�N 3 3=4 N�3N 2 -0.1705=4 N�N 3 5=4 N�3N 11=4 30000 3=2 N�N 1 3=2 N�4N 2 0.204 0.210 0.2145N=2�N 3 N=2�4N 2 -0.2112N�N 3 2N�4N 11=5 36000 3N�N 1 3N�5N 2 0.235 0.239 0.24302N�N 3 2N�5N 1 -0.240TABLE I. The ritial ip rates fN and f1 obtained byemploying our method for various ode rates in omparison tothe maximal ip rate f provided by Shannon's bound. De-tails of the spei� arhitetures used and their row/olumnonnetivities are also provided.We onlude this presentation with a demonstration ofthe method's apabilities for three di�erent ode-ratesR=1=3; 1=4 and 1=5. In eah of the ases we divided theomposed matrix [AjB℄ to six sub-matries haraterisedby spei� K and L values as explained in table 1; thedimensionalities of the full A and B matries are M�NandM�M respetively. Sub-matrix elements were hosenat random aording to the guidelines mentioned above.Enoding was arried out straightforwardly by using thematrix B�1A and the orrupted messages were deoded

using the set of reursive equations of Ref. [6℄, using ran-dom initial onditions. In eah ase, T bloks of N -bitunbiased messages (where exatly 1=2 of the bits are 1)were sent through a noisy hannel of ip rate f (i.e., anexat fration f of the odeword bits were ipped); bothbit and blok error-rates, denoted pb and pB respetively,were monitored. We performed at least T = 10000 tri-als runs for the smaller systems (N =10000; 12000) andT =1000�2000 runs for the larger ones (N=30000; 36000)for eah ip-rate value, starting from di�erent initial on-ditions. These were averaged to obtain the mean biterror-rate and the orresponding variane. In most ofour experiments we observed onvergene after less than100 iterations, exept very lose to the ritial ip rate.The main halting riterion we adopted relies on the sta-tionarity of the �rst N bits (i.e., the deoded message)over a ertain number of iterations. The deoding algo-rithm's omplexity is of O(N) as all matries are sparse.The inversion of the matrix B is arried out only oneand requires O(1) operations due to the struture hosen.
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Figure 1 shows results obtained for ode-rates R =1=3; 1=4 and 1=5 and various ip rates; results for eahode-rate appear as symbols adjaent to a line represent-ing Shannon's theoretial bound for the given ode-rateand noise level. Triangles and squares, represent meanvalues obtained for small and large network sizes respe-tively; varianes are smaller than the symbol size. Onenotes the existene of �nite size e�ets, manifested in thedi�erene between the results obtained for di�erent sys-tem sizes. Predited ode-rate values in the N!1 limit,derived below, are represented as arrows on the x axis.The results learly show that in all the ode-rates exam-ined our method omes very lose to saturating Shan-non's bound.
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FIG. 2. The blok magnetisations pro�le for R = 1=5,f = 0:236; 0:237 (solid and dashed lines respetively) andN = 12000; 36000, showing the sample magnetisation m vs.the fration of the omplete set of trials. A total of 1000-10000trials (for larger and smaller systems respetively) were re-arranged in a desending order aording to their magneti-sation values. The fration of perfetly retrieved bloks in-reases with system size (thik lines). Inset - log-log plots ofmean onvergene times � for R = 1=3 and N = 10000 (4),R = 1=4, N = 10000 (2) and N = 30000 (�), R = 1=5 andN = 36000 (Æ). The f1 values were alulated by �ttingexpressions of the form � / 1=(f1 � f) through the data(dashed lines for the larger systems).The results shown so far are based on �nite-N simula-tion results. However, as Shannon's bound itself is basedon in�nitely long messages, one annot expet to sat-urate the bound ompletely for �nite-N messages. Toassess the ritial ip rate ahievable by our method inthe limit of in�nitely large systems, f1 , we monitor tworitiality indiators: a) The dependene of the blok er-ror distribution on the system size - the transition fromperfet(pB(f) = 1) to no blok retrieval (pB(f) = 0), asa funtion of the ip-rate f , is expeted to beome astep funtion (at f1 ) as N !1. If the perentage ofperfetly retrieved bloks in the sample, for a given iprate f , inreases (dereases) with N one an dedue thatf <f1 (or f >f1 ). b) Convergene times as a funtionof f - onvergene times near ritiality usually diverge

as 1=(f1 � f); by monitoring average onvergene timesfor various f values and extrapolating one may deduethe orresponding ritial ip rate.In Fig.2 we ordered the samples obtained for R = 1=5,f=0:236; 0:237 (solid and dashed lines respetively) andN = 12000; 36000 aording to their magnetisation; re-sults with higher magnetisation appear on the left andthe x axis was normalised to represent frations of theomplete set of trials. One an easily see that the fra-tion of perfetly retrieved bloks inreases with systemsize (thik lines) indiating that f < f1 . Repeatingthe same exerise for higher f values we obtained anestimate of f1 reported in table 1. In the inset one�nds log-log plots of the mean onvergene times � forR=1=3; 1=4; 1=5 and di�erent N values, arried out onperfetly retrieved bloks with less than 2 error bits. Theoptimal �tting of expressions of the form � / 1=(f1 �f)through the data provides another indiation for the f1values, whih are onsistent with those obtained by the�rst method.To onlude, we have shown that through a suessivehange in the onnetion values, while keeping the on-netivity low (� 5), one an boost the performane ofmatrix based error-orreting odes, getting ever loserto saturating the theoretial bounds set by Shannon. It isquite plausible that the performane reported here maybe improved upon by �ne tuning the hoie of arhite-ture, whih is urrently under way. Moreover, it is highlylikely that several arhitetures will provide similar per-formane in the thermodynami limit; it would be worth-while to examine their �nite size behaviour above andbelow saturation whih is of great pratial signi�ane.[1℄ C.E. Shannon, Bell Sys.Teh.J., 27, 379 and 623 (1948).[2℄ R.G. Gallager, Low density parity hek odes Researhmonograph series 21 (MIT press), 1963.[3℄ T.M. Cover and J.A. Thomas, Elements of InformationTheory (Wiley), 1991.[4℄ A.M. Mihelson and A.H. Levesque, Error-Control Teh-niques for Digital Communiations (Wiley), 1985.[5℄ C. Berrou and A. Glavieux IEEE Trans.Comm., 44, 1261(1996).[6℄ D.J.C. MaKay, IEEE Trans. IT, 45, 399 (1999).[7℄ M.C. Davey and D.J.C. MaKay, IEEE Comm. Lett., inpress (1999).[8℄ M. Luby, M. Mitzenmaher, A. Shokrollahi and D. Spiel-man, in IEEE proeedings of the International Sympo-sium on Information Theory ISIT98 (1998).[9℄ B.J. Frey, Graphial Models for Mahine Learning andDigital Communiation (MIT Press), 1998.[10℄ N. Sourlas, Nature, 339 693 (1989).[11℄ Y. Kabashima and D. Saad, Euro.Phys.Lett., 45 97(1999); Y. Kabashima, T. Murayama and D. Saad,Phys. Rev. Lett., 84, 1355-1358, (2000).[12℄ I. Kanter Phys.Rev. A, 38, 5972 (1988), and I. Kanterand H. Sompolinsky, Phys.Rev.Lett. 58, 164 (1987).4


