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Abstract 
It is generally assumed when using Bayesian inference methods for 

neural networks that the input data contains no noise or corruption. 
For real-world (errors in variable) problems this is clearly an unsafe 
assumption. This paper presents a Bayesian neural network framework 
which allows for input noise given that some model of the noise process 
exists. In the limit where this noise process is small and symmetric it 
is shown, using the Laplace approximation, that there is an additional 
term to the usual Bayesian error bar which depends on the variance 
of the input noise process. Further by treating the true (noiseless) 
input as a hidden variable and sampling this jointly with the network’s 
weights, using Markov Chain Monte-Carlo methods, it is demonstrated 
that it is possible to infer the unbiased regression over the noiseless 
input. 

1 Introduction 
It can generally be assumed that any data produced in the real world will 
have some degree of uncertainty. It is, therefore, a necessary requirement for 
any learning system to be able to cope with such uncertainty. A number of 
techniques have been put forward to  deal with this. For instance it is possible 
to  place error bars on the output of certain neural networks. Such methods 
allow the predicted distribution of the output, given the model parameters 
and data, to  be estimated. In the majority of cases these estimates only 
take into account the uncertainty in the target data (i.e. target noise and 
uncertainty in the model parameters) [l], [7]. Usually no allowance is made 
for what is termed “errors in variables” or uncertainty in the input data. 
Allowing for such uncertainty is important where it is necessary to understand 
the underlying function of the network, such as in regression. There are other 
instances where allowing for input noise is desirable. Consider the situation 
where noise is introduced into a system by a sensor. Here the sensor noise may 
change and so the output of the system becomes a function of the sensor’s 
dynamics if it is not allowed for. In other circumstances it may be necessary to 
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fuse data from more than one sensor. Here allowing for the true uncertainty 
is advantageous since one sensor may have a different noise characteristic 
than the other. 

A number of researchers have considered the errors in variable problem 
for neural networks. Tresp et a1 [6], in considering the issue of missing input 
data, show that for an input with additive Gaussian noise the expectation of 
the network's output will be biased and the error bar increased. Townsend 
and Tarassenko [5] have produced a similar result by taking a perturbative 
approach. Their method also allows for the error induced in the weights. 
They show that for small additive Gaussian noise the output error bar ac- 
quires an extra term which is proportional to the covariance of the input 
noise process. 

Here a Bayesian approach to the calculation of the predictive distribution 
for the network has been taken. It is shown that, given a model of the input 
noise process, it is possible to obtain an estimate of the posterior distribution 
on the output which allows for the uncertainty due to the input noise. A 
result which in the limit where the input noise is additive, symmetric and 
small, agrees with the results of Townsend and Tarassenko. Although both 
these approaches give a more accurate estimate of the uncertainty Tresp et a1 
show that the final regression will be biased. However, it is shown here that 
by sampling using a Markov Chain Monte-Carlo (MCMC) method [4] over 
the noiseless input variable it is possible, given an appropriate prior over the 
noiseless data, to infer the unbiased regression (i.e. that given the noiseless 
input). 

2 Neural Network Regression with Noisy In- 
put 

Consider the regression problem with a set of inputs a" = 21,. . . , ZN (where 
a is a vector) and a corresponding set of target tn = tl , . . . , t N .  Here D = 
{t",  a"} forms a data set from which inference about the relationship between 
t and a can be made. If the targets are related to the inputs through some 
deterministic function f(a) with additive noise 

t = f(z) + E  

where e is a Gaussian (N(O,c?)), the probability density o f t *  given some 
new input a* is: 

Given that the regression can be undertaken by a model (e.g. a neural 
network) with an output, y(x*; w), which depends on the new input and a set 
of model weights w then, using the Laplace approximation [l], the predictive 
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distribution may be approximated as: 

Here WMP is the most probable weight vector obtained through the expansion' 
and minimisation of 

with respect to w ,  p = l/a? and similarly a is the inverse of the varience in 
w. It has been assumed that p(w) c( exp(311wl12). The variance 

iTd = - + g T A - ' g ,  
B ( 3 )  

where g = V,y(z*; w)lw=w,, and A is the Hessian A = V,V,S(WMP), 
provides an unbiased estimate of the uncertainty (or "error bar") about the 
predicted mean y ~ p  = E[t* Iz* , D].  

Unfortunately for many real problems this estimate of uncertainty is in- 
complete, as it is likely that the input will also be uncertain. To allow for 
this it is necessary to look at how it would enter the inferencing system. As- 
sume that the random vector 2, the true input, is hidden and so cannot be 
observed but samples from another random vector z ,  the noisy input, can 
where, z = fz(zly).  Here y is a random noise vector, independent of 2, with 
distribution p7(y). In general, since only z can be observed then only data 
D' = {t", z " }  exists, where tn = t l ,  . . . , t N  and zn = z1,. . . , z ~ .  However, 
if there is some model of the input noise process then the inference system 
can be represented as two separate components. 

0 A generative component from which the noisy inputs are produced given 
unknown noiseless inputs. This could be obtained off line through some 
calibration process. 

0 The regression model which takes the noiseless inputs and generates an 
appropriate output. 

Given these two components the predictive distribution p ( t *  I%*, 0') for the 
noisy input regression can be expressed in terms of the marginal distribution 

where now z* is the new (noiseless or latent) input. After some manipulation 
expanding the integral over the latent data points zn and exploiting the 

'A quadratic regularisation function for the form of the prior in the weights has been 
used here. 
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independence of w on x* and tn on Z" given xn then: 

p( t* l r * ,W = ~ S p ( t * I W , 2 * ) p ( r * l x * ) p ( x * )  

p ( t n ) z n ,  z">p(z"~x")p(z")p(~) dw dzndz*. 

where Z,, = p(z*)p(tn, rn) is a normalising constant. 
Thus the posterior of the output of the model conditioned on the noisy 

input z* can be expressed as the integral over the model parameters 20, 
the perfect (but hidden) input z* and perfect (but hidden) input data xn. 
Considering the different components of equation 5 is possible to see how 
they contribute to the posterior and so to the uncertainty of the expectation 
E[t*lz*,D'].  The integral over 20, in the usual way, may be interpreted 
as providing contributions to the posterior which allows for the uncertainty 
in the target vectors and the density of the training data upon which the 
inference is based. The integration over z" represents the contribution to the 
posterior from training the model on uncertain inputs while the integration 
over x* gives the contribution to the predictive distribution that allows for 
the uncertainty in the new input. 

2.1 Laplace approximation of the predictive distribu- 
tion 

Generally the integral in equation 5 can only be effectively estimated by using 
MCMC methods. However, it is instructive to  evaluate analytically the error 
bars using the Laplace approximation. To do this it is necessary to  make 
certain assumptions to make the calculation more tractable. Consider the 
integrals over xn and x* in equation 5. These are of the form 

1, = p(tImfi)p(zlz)p(z) d z .  (6) J 
If p(z) is assumed' to vary much more slowly than the other distributions and 
the noise process is additive Gaussian N(0, U:) then the integral simplifies to 

Furthermore, if it is assumed that the noise process is small then it is possible 
to linearise y(z; w) around z .  Neglecting second order terms this gives the 
result 

I - -exp --{t-y(z;w)} , (8) - 2, ( C  '> 
where Z, is anormalisingconstant, 8 = g+ui hT h and h = V,y(z; w)lz=z. 

2For the demonstration used in this paper this is a reasonable assumption since the 
prior ( p ( z ) )  is uniform over the training data. However, in general this this may not be 
the case. 
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Undertaking the integral over x* and x n  in equation 5, again using a 
quadratic regularisation term for the prior over the weights and the Laplace 
approximation, the predictive distribution may be approximated by the Gaus- 

However, now 

(10) 
i ~ d  2 1  = - + u2 hT h + g T A - ‘ g .  

P “  
Compared to the previous error bar (equation 3 )  this estimate of uncertainty 
contains an additional term. The term is related to the variance of the input 
noise process multiplied by the square derivative of the regression function 
y(z; w). For a neural network this gives the not too surprising result that the 
contribution to the uncertainty of the output due to a small level of Gaussian 
noise on the input is proportional to the variance of the noise multiplied by the 
square of the derivative of the output given the input. This agrees with the 
error bar calculated by Townsend and Tarassenko [5] who using a variational 
approach looked at the effect of perturbing the input to the network. 

As an illustration of the effect of this additional term the regression over 
20 data points generated from a sine wave (y  = s i n ( 2 ~ z ) ,  2 = [0,1]) with 
Gaussian additive noise on both the targets N(0,u:) (ut = 0.1) and the 
inputs N(0, u:) (ux = 0.1) was considered. Here the evidence approach [a] 
was used to  approximate the mean and variance of the output of an MLP 
with five hidden units and a linear output activation unit. From figure 1 
it can be seen that the regression allowing for the input noise has a much 
larger variance away from the peaks of the sine wave. This is to  be expected 
since the effect of the input noise will be to  broaden the data along the x-axis 
which will have greatest effect where the gradient of the curve is the steepest. 

2.2 Monte-Carlo Simulation 
For a non-symmetric input noise process it is necessary to  perform the in- 
tegrations in equation 5 using a MCMC approximation. Using Bayes’ rule 
equation 5 can be rewritten in terms of the joint distribution of w and zn 
given D’: 

p(t*lz*,D’) = J ’ p ( t “ ~ w , z * ) p ( r * ~ r ’ ) p ( z ” , u ~ ~ ’ )  dz* dw dzn. (11) 

Here the integral over the joint variables w and z” can be approximated 
using a Metropolis method [ 3 ] .  This leaves the line integral over z* which 
can be undertaken separately numerically. 

To demonstrate the MCMC approach the regression over the noisy sine 
wave problem with a five hidden unit MLP with linear activation output 
units was again considered. Samples of both zn and w were taken every 100 
iterations over a run of 150000 iterations which used the standard practice of 
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Figure 1: Figure showing the error bars determined by using a Laplace ap- 
proximation. Note that the error bars differ when the input noise is allowed 
for but the regression function remains the same. 

- 

discarding the first third of the iterations as “burn-in” . The hyper-parameters 
a! and p for the regression model and y = l/az for the noise model were re- 
estimated during this process by sampling from the posterior of the hyper- 
parameter using a gammadistribution for their prior as described by Neal [4]. 
Convergence of the method was aided by using separate Gaussian proposal 
distributions for both the weights (g = 0.01) and hidden input variables 
( a  = 0.05). This achieved a rejection rate of approximately 50% in all the 
results presented. 

It can be seen from figures 2 and 3 that allowing for the input noise 
has a marked effect on the prediction of the regression function and the 
estimate of the error bars. The error bars in figure 2 grossly underestimate 
the uncertainty, whereas figure 3 produces a similar result to that in figure 
1. In both cases poor estimates of the true regression are obtained. This is 
expected since it can be shown that the convolution of a sine wave with a 
Gaussian is a sine wave of the same frequency but with an amplitude inversely 
proportional to the exponent of the variance. 

It is possible to reconstruct the regression over the true noiseless input. 
Taking the right hand-side of equation 11 and considering the joint integral 
over w and xn gives the relationship, 

p ( t * I z * ,  0’) = p(t*lw,z*)p(a”, WID’) dw dx”. (12) J 
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Figure 2: Figure showing the regression over noisy input data where the noise 
has not been allowed for. Here U, = 0.1. 
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Figure 3: Figure showing the regression over the noisy data where the input 
noise has been allowed for. Here U, = 0.1. 
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Figure 4: Figure showing the reconstructed regression over the (true) noise- 
less input for where the training data had input noise B, = 0.1. 
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It  follows that by sampling over w and zn using the Metropolis method it 
is possible to calculate the expectation of the noiseless regression given the 
input corrupted data D’. Figure 4 shows the reconstructed regression over 
the noiseless hidden input calculated using the Metropolis method where 
the input noise has been allowed for. Here the error bars reflect only the 
uncertainty in the target noise and that induced in the weights. This can be 
seen by comparing these results with figure 5 which shows the regression for 
the same data but where there is no input noise present. 

3 Discussion 
This paper presents a Bayesian framework for the calculation of the predic- 
tive distribution for the output of the regression system where it is assumed 
not only that there is noise on the target vector but that there is also noise 
on the input. Here it is shown that provided the conditional distribution 
p(zlz) can be determined (e.g. via some off-line calibration process) then 
it is possible to calculate the predictive distribution p(t* I % * ,  0’). Further- 
more, in the limit where the noise process is additive Gaussian and small the 
Laplace approximation gives an additional term to the error bar. This term 
is proportional to the input noise variance and agrees with that predicted, 
for both the MLP and RBF networks, by Townsend et a1 [5] using a linear 
perturbative approach. 

The difficulty with this approach, and ultimately its limitation, is that 
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Figure 5: Regression where no noise has been added to  the input. 

it is necessary to have a model of the noise process and the prior over x. 
In practice the noise model is unlikely to  be Gaussian. In cases where the 
noise is large in magnitude and non-symmetric it is necessary to estimate 
the predictive distribution by sampling using MCMC methods. For the sim- 
ulations undertaken here the Metropolis algorithm was used to  sample the 
joint distribution over 20 and xn. Importantly by adopting this approach it 
is shown that it is also possible to  infer the unbiased regression, that  given 
for the noiseless input x*. 

In some circumstances it may not be possible to determine the exact na- 
ture of the distribution over the noise process. Here the “identification” of 
noise process may be accommodated by the re-estimation of hyper-parameters 
in the noise model. The determination of p(x) presents a different problem. 
Here it was assumed that the prior is uniform over the unit interval from 
which the training data was selected. This approximation breaks down at 
the edge of the sampled data,  as can be seen in figure 4. Generally a more 
complex model for the prior will be necessary. 
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