Novel biological roles for pyrimidines

Griffin, Roger J. (1986). Novel biological roles for pyrimidines. PHD thesis, Aston University.

Abstract

The development of classical and lipophilic inhibitors of dihydrofolate reductase (DHFR) as antitumour agents is reviewed and the advantages and problems associated with each class are discussed. The antitumour activity, pharmacokinetics and metabolism of m-azido-pyrimethamine (MZP), a novel lipophilic inhibitor, are considered and compared with metoprine, the prototype lipophilic antifolate. Evidence for a folate-independent target for lipophilic DHFR inhibitors is presented. Synthetic studies centred on three principal objectives. Firstly a series of structural analogues of MZP were prepared encompassing alkoxy, chloro and alkylamino substituents and evaluated, as the ethanesulphonate salts, for activity against mammalian DHFR. Inhibitory constant (KI) determinations were conducted by a Zone B analysis, the corresponding 4'-azido isomer of MZP proving more potent than the parent compound. Secondly, to facilitate metabolism and stability studies on MZP, a range of possible reference compounds were synthesised and characterised. Finally, a series of diaminopyrimidine derivatives were synthesised embracing structural features incompatible with DHFR inhibitory activity, in order that such compounds may serve as biochemical probes for the unidentified folate-independent target for lipophilic diaminopyrimidines discussed previously. Inactivity against DHFR was achieved via introduction of an ionic or basic group into a normally hydrophobic region of the molecule and compounds were screened against a mammalian DHFR and thymidylate synthase to confirm the abolition of activity. Several derivatives surprisingly proved potent inhibitors of DHFR exhibiting KI values comparable to that of methotrexate. Analogues were screened for antitumour activity in vitro and in vivo against murine leukaemia cell lines in order to identify potential lead compounds. Several derivatives virtually inactive against DHFR exhibited a disparate cytotoxicity and further biochemical studies are warranted. The nobreak hitherto unreported debenzylation of 2,4-diamino-5-(N-alkyl-benzylaminophenyl) pyrimidines was discovered during the course of the synthetic studies, treatment of these compounds with nitrous acid affording the corresponding benzotriazoles.

Additional Information: Department: Pharmaceutical Sciences http://ethos.bl.uk Digitised thesis available via EThOS
Institution: Aston University
Uncontrolled Keywords: Novel biological roles,pyrimidines
Completed Date: 1986

Download

Full text not available from this repository.

Export / Share Citation


Statistics

Additional statistics for this record