NEURAL COMPUTING Neural Computing Research Group
Dept of Computer Science & Applied Mathematics

Aston University

Birmingham B4 7ET

United Kingdom

RESEARCH GROUP Tel: +44 (0)121 333 4631

Fax: +44 (0)121 333 4586
http://www.ncrg.aston.ac.uk/

Mixture Density Network Training by
Computation in Parameter Space

David J. Evans

evansdj@aston.ac.uk

Technical Report NCRG/98/016 August 3, 1998

Abstract

Training Mixture Density Network (MDN) configurations within the NETLAB framework takes time
due to the nature of the computation of the error function and the gradient of the error function.
By optimising the computation of these functions, so that gradient information is computed in
parameter space, training time is decreased by at least a factor of sixty for the example given.
Decreased training time increases the spectrum of problems to which MDNs can be practically
applied making the MDN framework an attractive method to the applied problem solver.

Mixture Density Network Training by Computation in Parameter Space

1 Introduction

Mixture Density Networks (MDNs) provide a framework for modelling conditional probability
densities p(t|xz) (Bishop, 1995). The distribution of the outputs, ¢, is described by a parametric
model whose parameters are determined by the output of a neural network, which takes x as its
inputs. The general model is described by equation 1 below:

p(tjz) = ZaJ x)¢;(t|x) (1)

Were oj(x) represent the mixing coefficients (which depend on x) and ¢;(t|) are the kernel
distributions of the mixture model whose parameters also depend on x.

Training of mixture density networks for modelling wind vectors requires data sets of at least three
thousand examples, with a MDN complexity of at least two centres and fifteen hidden units. Using
the NETLAB! toolbox for MATLAB, training MDNs of this complexity takes at least a week, but
can be longer dependent on the machine configuration and loading.

The majority of training time is spent computing two functions, the gradient of the error function
and the error function. The bottle neck in these functions is the MATLAB for loop which is poorly
optimised. These two functions are re-engineered to take advantage of the MATLAB optimised
matrix functionality.

2 Software Techniques for Computation in Parameter Space

This section describes software techniques used to facilitate computation of the error and error
gradient of a MDN by matrix operations. For a complete discussion of the implementation of
MDNs see (Bishop, 1994)2. The parameter space is defined as the outputs of the Multi-Layer
Perceptron (MLP), after the inputs x have been forward propagated through the network. The
outputs of the MLP are vectors which contain the parameters that define the coefficients of the
mixture model conditional on the inputs «. For spherical Gaussian mixture models the coefficients?
are, a; , the mixing coefficient for the ji" kernel of pattern n, u;x » the k*" element of the centre of
the j* kernel of pattern n and o7, the width or variance of the j** kernel of pattern n. The order
of the coefficients in the parameter vector have been changed from that in the current NETLAB
implementation of the MDN to clarify the notation of the problem. The parameter vector for the
h pattern is now described as:

[alma A2 py sy Qiny s M ny

M mixing coefficients

M11,ny H12,n5° " 5 Hicmy *° 7,ujl,n; Mj?,n; e ;/ijc,na MMy BM2,my 0t s MMeyns 0
15t kernel centre jt" kernel centre Mth kernel centre
2 2 2 2
O1m102ms" " 905" " ’UM7n] (2)
«)
M widths

where M is the number of kernels (mixtures) in the model and c is the dimension of the target
space (when modelling wind vectors ¢ = 2). For all patterns we have a matrix of parameters P,

L Available from http://www.ncrg.aston.ac.uk/netlab/

2 Available from http://www.ncrg.aston.ac.uk/Papers/

3Throughout this document the subscript identifies the model parameter and the pattern for which the model
parameter refers too. For example a; , is the mixing coefficient of the 4t kernel for the nt" pattern.

Mixture Density Network Training by Computation in Parameter Space

which is split into three sub-matrices defined by P the mixing coefficients, P# which describes
the centres of each kernel and P? the parameters defining the variance of each kernel. Each row
corresponds to a training pattern (total N):

dimension M
(061,1 €5 T aM,lW
1,2 Qo QM2
pe — : : : : (3)
a1,n (¢S R e QM n
LOM,N Qa N aM,NJ
dimensionM ¢
(Mm M12,1 0 Ml ottt MM MHMm2,1 M Med
U11,1 ui2,2 - Ule,2 *°+ MM1,2 MM22 r HUMe2
ph — : : : : : : : : : (4)
Mil,n Hi2n ** Hien 0 MMin MM2n t MMen
Llll,N MH12,. Nt Mle,N tt MUMI,N HMHM2,N *** HMc,N|]
dimension M
2 2 2
(‘71,1 021 *°° Oma
2 2 2
012 022 **° Ouppo
- _ : : : :
P7 = o2 o2 e o2 (5)
1,n 2,n M,n
2 2 2
Lal,N 02N "' Om,N

There is the corresponding matrix ¢ which describes the target values for each pattern:

dimension M
(t1,1 taq ot tea |
t12 ta2 o teo
t= 6
tl,n t2,n e tc,n ()
Ltl,N taN o le,N|

2.1 Computing the Gaussian activations and probabilities

Each kernel within the MDN framework is implemented using a ¢ dimensional Gaussian. The
computation of a Gaussian requires the squared distance between the targets and the centres of
the Gaussian to be computed. For each centre for each pattern we require:

djn = lItn — p;(20) | (7)

Mixture Density Network Training by Computation in Parameter Space

In computing the squared distance we are interested in the parameters which correspond to the

centres of the Gaussian.

To compute the distance the following operation is computed for each centre of each Gaussian for

each pattern:

tl,n
t2,n

tcm

This operation can be completed as one matrix operation as follows:

Hj1,n
Hj2,n

Mje,n

dimensionM ¢
t11 ta1 ccr o ler o0 tin t2n1 c,ﬂ
t12 t22 0 leo o t1o ta22 .2
D=)
th t2,n ot tc7n e tl,n t2,n tc,n
ti,N to,N te,N ti,Nn to,N tc,NJ
dimensionM ¢
H11,1 H12.1 Mic,1 MM HM21 HKMe,1
U11,1 U12,2 Uie,2 1234 Hr2,2 HKMe,2
,ull,n ,u12,n /Jllc,n /J/Ml,n ,UMQ,n ,uMc,n
LM11,N HM12,N Mie,N MM1,N HM2,N HMe,N |
That is
dimensionM ¢
t10 t21 o lep t11 t21 tc,ﬂ
t10 t22 o lep2 t10 22 .2
D= : _ P;Uf
th t2,n tre tc7n th t2,n tc,n
lti,N taN - teN ti,N taN t(;NJ

Inspection of equation (9) reveals that the target data is repeated for each centre, and so by re-
shaping the target matrix the distances can be computed as matrix operations within MATLAB.
The following MATLAB code reshapes the ¢ vector into the form required in equation (9).

% Build t that suits parameters,
% that is repeat t for each centre

t = kron(ones(1,ncentres),t);

Mixture Density Network Training by Computation in Parameter Space

% Which gives results like the following

t =
1 2 3
4 5 6
7 8 9

t =
1 2 3 1 2 3 1 2 3
4 5 6 4 5 6 4 5 6
7 8 9 7 8 9 7 8 9

The following code the completes the squared distance operation.

% Do subtraction

diff = t - centres;

% Square each result

diff2 = diff."2;

% reshape and sum each component

diff2 = reshape(diff2’,dim_target, (ntarget*ncentres))’;
% This is the transformation after the reshape

% centres are zero for this illustration
% diff2 =

h 16 25 36 16 25 36 16 25 36
" 49 64 81 49 64 81 49 64 81

% diff2 =

YA

YA 1 4 9
YA 1 4 9
YA 1 4 9

% 16 25 36
% 16 25 36
% 16 25 36
yA 49 64 81
yA 49 64 81
% 49 64 81

sum2 = sum(diff2,2);

% Calculate the sum of distance, and reshape
% so that we have a distance for each centre per target

Mixture Density Network Training by Computation in Parameter Space

% i.e. ntarget * ncentres

dist2 = reshape(sum2,ncentres,ntarget)’;
% This is the transformations after the reshape

% sum2 =
%

% 14
% 14
% 14
% 77
% 77
% 77
% 194
% 194
% 194
%

%

% dist2 =

%

yA 14 14 14
% 77 77 77
% 194 194 194

Where
dimension M
[diq don -+ dMJW
dia dao - dmoe
dist2 = : : : : 11
18 dl,n d2,n e de ()
ldi,n don - dM,NJ

and the equation (7) is now in matrix form. Now that the distance has been computed it is a
natural progression to compute the activations of each Gaussian kernel.

dimension M

(01,1 2,1 aM,l-
a1,2 22 t GM2
A= (12)
ai,n azn aMn
Lal,N az,N -° QM,N |
where
1 djn
Qjn = ¢j (tn|wn) = - < exp{ 7 } (13)
o7)% 1202,

The probabilities of each Gaussian are then computed by multiplying each activation by the re-

Mixture Density Network Training by Computation in Parameter Space

spective mixing coefficient:

dimensionM
A

(a1,101,1 Q21021 s ap1aM,1
Qaq,201,2 Q2 202 2 ap2GM,2
Pr =
Qa1,nQ1,n Q2 nA2.n e AM nAM,n
LOQ,NCU,N Qa N2 N ‘' OM,NAM N]

(14)

These principles are implemented in a function called £f_prob listed below. Where mixparams.vars
refers to the matrix P7, line 12 computes the squared distance, line 22 computes the matrix A

and finally line 28 is the computation of Pr

1 function [prob,al = f_prob(net,mixparams,t)

2

3 ncentres = net.mix.ncentres;

4 dim_target = net.mix.nin;

5 nparams = net.mix.nparams;

6 ntarget = size(t, 1);

7

8

9

10 % Calculate squared norm matrix, of dimension (ndata, ncentres)
11 % vector (ntarget * ncentres)

12 dist2 = f_dist2(net,mixparams,t);

13

14 % Calculate variance factors

15 variance = 2.*mixparams.vars;

16

17

18 % Compute the normalisation term

19 mnormal = ((2.*pi).*mixparams.vars).” (dim_target./2);
20

21 % Now compute the activations

22 a = exp(-(dist2./variance))./normal;

23

24

25 % Accumulate negative log likelihood of targets
26

27

28 prob = mixparams.mixcoeffs.*a;

29

2.2 Computing the probability of a point, 7;

The probability of a point is defined as:

Mixture Density Network Training by Computation in Parameter Space

a;jo;

B Zln;1 aidy (15)

Ty

The computation of equation (15) is implemented using row and column operations on the matrix
described by equation (14):

DTjn

Tjn = (16)

Prin +pr2,n + e +prM,n
and
dimension M

(ﬂ'l,l 2,1 TM,1
1,2 722 ot TTM2

= (17)
T1,n T2,n e TM,n
Lﬂ'l,N T2,N *** TM,N]

which is implemented in MATLAB as follows;

1 function [post, al] = f_post(net, mixparams, t)
2 h

3 % Check that inputs are consistent

4

5 [prob a] = f_prob(net,mixparams,t);

6

7 s = sum(prob, 2);

8 % Set any zeros to one before dividing

9 s = s + (s==0);

10 post = prob./(s*ones(1l, net.mix.ncentres));

2.3 Reshaping the parameter matrix

OB,
Bsz
centres is operated on by its respective variance and posterior. To facilitate this operation as a
single matrix operation one further reshape is required. This takes a matrix (say P?) and rebuilds
the columns so that the dimensions are the same as P#, and populated such that for each p;; p
there is a corresponding ain. An example would be as follows where each of the centre parameters

When computing the derivative its is necessary that each of the components of the kernel

Mixture Density Network Training by Computation in Parameter Space

is matched to their corresponding width parameter.

dimensionMec¢

(M11,1 MHi2,1 0 Mleal ot MM11 Knm21 MMc,lW
U11,1 U12,2 '+ Ule2 't HM12 MmMm22 ot HMc,2
pr=| - : (18)
/Jlll,n /J/12,n cte ,ulc,n cte ,uMl,n /J/M2,n cte /J/Mc,n
Lull,N Mi2,N *** Mle, N 0 MMI,N O MM2,N ,UMc,NJ
dimensionM ¢
2 2 2 2 2 2
(‘71,1 0tqn 't 011t Opm1 Opma o UMJW
2 2 2 2 2 2
012+ G912 " Opmo Opyo "0 Oppo
corresponding widths = | 4 5 o 5 o 9 9 o 9 (19)
Ul,n Ul,n Ul,n UM,n aM,n UM,n
2 2 2 2 2 2 J
leN 01N 01N OMN OM,N OM,N

The following MATLAB code shows how to reshape the parameter matrix into the desired form,

z=1[123;456; 7 8 9]
z = kron(ones(dim_target,1),z);
z = reshape(z,ntarget, (ncentres*dim_target));

% Gives results like this

hz =

yA

YA 1 2 3

YA 4 5 6

YA 7 8 9

%

yA

hz=

yA

YA 1 1 1 2 2 2 3 3 3
YA 4 4 4 5 5 5 6 6 6
YA 7 7 7 8 8 8 9 9 9

3 Computing the error function in parameter space

The negative log likelihood error function for a MDN is defined as (Bishop, 1995; Bishop, 1994):

m

B = XNj—ln{Zaj(xnm(tnxn)} (20)

n=1 j=1

10

Mixture Density Network Training by Computation in Parameter Space

Then each element in equation (14) is defined as follows :
Prjn = aj(Xn)d;(tn|xn) (21)

and the implementation becomes row and column operations in MATLAB. The following code
shows the function £f_mdnerr, which implements equation (20).

1 function err = f_mdnerr(net, x, t)

2 %F_MDNERR Evaluate error function for Mixture Density Network.
3

4 % Check arguments for consistency

5

6 errstring = consist(net, ’f_mdn’, x, t);

7 if “isempty(errstring)

8 error(errstring) ;

9 end

10

11 % Get the output mixture models

12 mixparams = f_mdnfwd(net, x);

13 probs = f_prob(net,mixparams,t) ;

14 err = sum(-log(max (eps,sum(probs,2))));

Line 13 returns a matrix of probabilities, and so the computation of the error for each pattern
is a summation along the rows of probs, and the total error becomes a summation of the vector
resulting from sum(probs,2)

4 Computing the gradient of the error function in parame-
ter space

First forward propagate the inputs & through the MLP, which returns a matrix containing the
parameters for each pattern (see Appendix A for source code listing)

[mixparams, z] = f_mdnfwd(net, x);

mixparams is a structure containing three matrices P®, P* and P of the form described in
equations (3), (4) and (5) respectively. Using techniques similar to those described in Section 2 all
the derivatives are then computed with matrix operations.

4.1 Computing the error gradient with respect to the mixing coeffi-

cients, &

The standard result for each centre is:

Mixture Density Network Training by Computation in Parameter Space

11

is simply computed as

9En _ \a _pa
e =AY =PI (23)
4.2 Computing the error gradient with respect to the kernel centres,
OE,
9z*,
Ik

The general result is

o0E, Mjk — tr
_ 24
82;‘,4 ”J{ UJZ' (24)

Using techniques described in Section 2.3 matrices P? and II can be reshaped, and the following
operation is computed within MATLAB:

_8% — AP —
Bz].k

dimensionM ¢

Bi1,1—t1,1 1—t1 1
7T11
0'11

o] -
]
oo
-

Biin —tin n —ti,n

0'1n

7T1N

M11N th}

0'1N

4.3 Computing the error gradient with respect to the kernel widths %f;’
The general result:

O, i [It — (@)

R B i) 9

is computed using the functions and matrices defined previously. Using the MATLAB operator ./
and . *, for element-wise division and multiplication respectively, the computation becomes:

_c}

where C is a matrix of dimension (npatterns, ncentres) with each element taking the value c, the
dimension of the target space.

0E, _ AT — H{dlstQ (27)

92 - E Po

J

12

Mixture Density Network Training by Computation in Parameter Space

A full listing of the MATLAB function to compute the gradient of the error function is given in
Appendix B

5 Testing

5.1 Training Accuracy

Tests using ‘gradcheck’ from NETLAB toolbox show that, for the configurations tested, the im-
plementation of the gradient function performs to specification.

Comparison of demmdn1 and f_demmdni1 produces interesting results. Initially the training errors
appear to be identical (to the 6t decimal place). After the 36" iteration (demmdni trains for 200)
the errors diverge in the 6" decimal. Comparing scale, they are identical (to the 6! decimal place)
until the 105" iteration, where f _demmdn1 remains static for one iteration, there after the one step
lagged scale of f_demmdni is the same as demmdni. An explanation of these differences is offered
by inspecting the average delta® and the average of the modulus of delta for the results returned
by gradcheck as shown in table 1.

MDN type | mean(delta) | mean(abs(delta))
f_demmdn -3.4169e-009 4.0190e-008
demmdn -1.6406e-009 4.1471e-008

Table 1: Results of running gradcheck

The mean delta for £f_demmdn1 is at least twice that of demmdn1, whilst the mean(abs(delta))
are of the same magnitude but differ in the 9** decimal place. The scaled conjugate gradients
optimisation algorithm (Bishop, 1995) uses information on the gradient of the error function to
minimise the error function. It is suggested that the differences in computed gradient accumulates
during training and accounts for the divergence of training errors between demmdn1 and f_demmdn1.

5.2 Training Speed

The programme demmdn1 was also used to illustrate the improvement in training time by comparing
the results of the MATLAB profile function for each implementation. Two examples of profile
reports are shown in Appendix C. Ten profile reports of each method where collected by running
batch jobs (on a Silicon Graphics Challenge L, holding 4 x 200MHz R10000 CPUs, 512 Mb RAM,
and running IRIX 6.2.). The summaries of these reports are tabulated in table 2. Note although
the standard deviation of demmdn1 seems large, both standard deviations relative to their means are
of the same order. The difference in mean execution time illustrates the improvement in training
time by computation of the error and error gradient functions in parameter space.

4delta is the difference between the computation of the error derivatives obtained from the analytic expressions
and those calculated using finite differences (Bishop, 1994).

Mixture Density Network Training by Computation in Parameter Space

13

MDN type | mean(execution time) s | std(execution_time) s
f_demmdni 10.99 0.23
demmdn1i 723.18 51.52

Table 2: Summary results of running demmdnl NETLAB package ten times.

6 Conclusions

The techniques presented here for training Mixture Density Networks show that training in pa-
rameter space leads to substantial gains in training time without loss of accuracy. Examination
of the gradient information shows that differences in training errors are due to small differences
in the computation of the gradient information. The example presented in this report shows an
improvement in mean training time of at least a factor of sixty. The decreased training time allows
us to tackle more complicated problems, which previously took too long to train to be of any prac-
tical use. Such an example, modelling wind vectors conditional on satellite information, discussed
briefly in Section 1, shows training times improved from several days to a few hours.

Acknowledgements

I thank Dan Cornford, for his patient reading and constructive comments on the draft versions
of this report, and Tan Nabney, for his constructive comments on the second draft of this report
and suggesting to change mixparams from a matrix to a MATLAB data structure and to use the
MATLAB function kron instead of complex matrix reshapes implemented in the first version of the
software.

Appendices

A Listing of MDN forward propagation function

function [mixparams, z, a] = f_mdnfwd(net, x)
%F_MDNFWD Forward propagation through Mixture Density Network.

% Description

% MIXPARAMS = MDNFWD(NET, X) takes a mixture density network data

% structure NET and a matrix X of input vectors, and forward propagates
% the inputs through the network to generate a structure MIXPARAMS which

YA describe the parameters of a mixture model. Each row of X represents
YA one input vector and the corresponding row of MIXPARAMS represents the
YA data structure vector of the corresponding mixture model parameters

YA for the conditional probability of target vectors.

h

% [MIXPARAMS, Z] = MDNFWD(NET, X) also generates a matrix Z of the
% hidden unit activations where each row corresponds to one pattern.

14

Mixture Density Network Training by Computation in Parameter Space

% [MIXPARAMS Z, A] = MLPFWD(NET, X) also returns a matrix A giving the
% summed inputs to each output unit, where each row corresponds to one
% pattern.

h

% See also

%» GMM, MDN, F_MDNERR, F_MDNGRAD, MLPFWD, MDNMIX

h

t
t

Copyright (c) Christopher M Bishop, Ian T Nabney (1996, 1997)
Copyright (c) David J Evans (1998)

% Check arguments for consistency
errstring = consist(net, ’f_mdn’, x);
if “isempty(errstring)

error (errstring) ;
end

% Extract mlp and mixture model descriptors
mlpnet = net.mlp;
mix = net.mix;

ncentres = mix.ncentres; % Number of components in mixture model
dim_target = mix.nin; % Dimension of targets
nparams = mix.nparams; % Number of parameters in mixture model

% Propagate forwards through MLP
[y, z, a] = mlpfwd(mlpnet, x);

% Compute the postion for each parameters in the whole
% matrix. Used to define the mixparams structure
mixcoeff [1:1:ncentres];

centres [ncentres+1:1: (ncentres*(1+dim_target))];
variances = [(ncentres*(1+dim_target)+1):1:nparams];

% Convert output values into mixture model parameters

% Use softmax to calculate priors

% Prevent overflow and underflow: use same bounds as glmfwd
% Ensure that sum(exp(y), 2) does not overflow

maxcut = log(realmax) - log(ncentres);

% Ensure that exp(y) > O

mincut = log(realmin) ;

temp = min(y(:,1l:ncentres), maxcut);

temp = max(temp, mincut);

temp = exp(temp);

mixpriors = temp./(sum(temp, 2)*ones(1,ncentres));

% This is the dimension of the centres(l, ncentres*dim_target)
mixcentres = y(:, (ncentres+1) :ncentres*(1+dim_target));

% Variances are exp of network outputs
mixwidths = exp(y(:, (ncentres*(1+dim_target)+1) :nparams));
% Now build up all the mixture model weight vectors

Mixture Density Network Training by Computation in Parameter Space

15

ndata = size(x, 1);
% Return parameters
mixparams.mixcoeffs = mixpriors;

mixparams.centres = mixcentres;
mixwidths;

mixparams.vars

B Listing of the MDN error gradient implementation

function g = f_mdngrad(net, x, t)
%#F_MDNGRAD Evaluate gradient of error function for Mixture Density Network.

% Description

% G = F_MDNGRAD (NET, X, T) takes a mixture density network data

% structure NET, a matrix X of input vectors and a matrix T of target
% vectors, and evaluates the gradient G of the error function with

% respect to the network weights. The error function is negative log
% likelihood of the target data. Each row of X corresponds to one

% input vector and each row of T corresponds to one target vector.

% See also
% F_MDN, F_MDNFWD, F_MDNERR, MLPBKP, MDNMIX

% Copyright (c) Christopher M Bishop, Ian T Nabney (1996, 1997)
% Copyright (c) David J Evans (1998)

% Check arguments for consistency
errstring = consist(net, ’f_mdn’, x, t);
if “isempty(errstring)

error (errstring);
end

[mixparams, z] = f_mdnfwd(net, x);

% Compute gradients at MLP outputs: put the answer in deltas

ncentres = net.mix.ncentres;), Number of components in mixture model
dim_target = net.mix.nin; % Dimension of targets

nmixparams = net.mix.nparams; % Number of parameters in mixture model
ntarget = size(t,1);

deltas = zeros(ntarget, net.mlp.nout);

e = ones(ncentres, 1);
f ones(1, dim_target);

post = f_post(net,mixparams,t);

% Calculate prior derivatives
deltas(:,l:ncentres) = mixparams.mixcoeffs - post;

16

Mixture Density Network Training by Computation in Parameter Space

% Calculate centre derivatives
long_t = kron(ones(1,ncentres),t);

centre_err = mixparams.centres - long_t;

% Get

the post to match each ujk

% this array will be (ntarget, (ncentres*dim_target))
long_post = kron(ones(dim_target,1),post);
long_post = reshape(long_post,ntarget, (ncentres*dim_target)) ;

% Get

the variance to match each ujk

% this array will be ntarget*(ncentres*dim_target)

var =
var

var

mixparams.vars;
kron(ones(dim_target,1),var) ;
reshape(var,ntarget, (ncentres*dim_target));

% Compute delta
deltas(:, (ncentres+1): (ncentres*(1+dim_target))) = ...

(centre_err.*long_post)./var;

% Compute variance derivatives

dist2
c

= f_dist2(net,mixparams,t);
= dim_target*ones(ntarget,ncentres) ;

deltas(:, (ncentres*(1+dim_target)+1) :nmixparams) = ...

post.*((dist2./mixparams.vars)-c)./(-2);

g = mlpbkp(net.mlp, x, z, deltas);

C Timing comparisons

Example results from running profile function in MATLAB

Results for £_demmdni
Total time in "~/Netlab/netopt.m": 10.89 seconds

1007 of the total time was spent on lines:
[38 35]

34: J, Extract weights from network as single vector
0.01s, 0% 35: w = feval(pakstr, net);

36:

37: J Carry out optimisation
10.88s, 100% 38: [s{l:nargout}] = eval(optstring);

39: w = s{1};

Results for demmdni

Mixture Density Network Training by Computation in Parameter Space

17

Total time in "~/Netlab/netopt.m": 700.48 seconds

1007 of the total time was spent on lines:
[38 35]

34: J, Extract weights from network as single vector
0.02s, 0% 35: w = feval(pakstr, net);
36:
37: % Carry out optimisation
700.46s, 100% 38: [s{l:nargout}] = eval(optstring);
39: w = s{1};

References

Bishop, C. M. 1994. Mixture density networks. Technical Report NCRG/94/004, Department of
Computer Science and Applied Mathematics, Aston University, Birmingham, B4 7TET, UK.

Bishop, C. M. 1995. Neural Networks and Pattern Recognition. Oxford University Press.

