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ABSTRACT

In this paper, we present a framework for Bayesian infer-
ence in continuous-time diffusion processes. The new method
is directly related to the recently proposed variational Gaus-
sian Process approximation (VGPA) approach to Bayesian
smoothing of partially observed diffusions. By adopting a ba-
sis function expansion (BF-VGPA), both the time-dependent
control parameters of the approximate GP process and its mo-
ment equations are projected onto a lower-dimensional sub-
space. This allows us both to reduce the computational com-
plexity and to eliminate the time discretisation used in thepre-
vious algorithm. The new algorithm is tested on an Ornstein-
Uhlenbeck process. Our preliminary results show that BF-
VGPA algorithm provides a reasonably accurate state estima-
tion using a small number of basis functions.

Index Terms— Stochastic differential equations, data as-
similation, variational approximation, model reduction

1. INTRODUCTION

Diffusion processes are widespread models in physics, biol-
ogy and environmental science. There is increasing interest in
developing computational methods for Bayesian inference in
partially observed diffusions. Examples are, to name but few,
four-dimensional variational data assimilation (4DVAR) [1],
Hybrid Monte Carlo (HMC) [2], Ensemble Kalman Smooth-
ing (EnKS) [3], and Variational Gaussian Process Approxi-
mation (VGPA) [4].

For variational methods, a major concern about their effi-
ciency is the dimension of the control space. To reduce com-
putational complexity, so-called reduced-order strategyis of-
ten adopted through the projection of the state space onto a
linear space spanned by a small set of basis functions [5, 6].
In this paper, we adopt a similar strategy to VGPA.

Most of inferential methods for diffusion processes are
formulated in continuous time but do make use of time dis-
cretization in their implementation [2, 4]. Recently, an exact
algorithm for the simulation of a particular class of diffusion
processes has been proposed [7]. This leads to the develop-
ment of likelihood estimation procedures and particle filtering
algorithms that are both free from discretization error [7,8]

In this paper, we adopt a basis function approach to eliminate
time discretization.

In Section 2, we first formulate a mathematical setting of
Bayesian inference in diffusion processes. Next, the VGPA
framework is briefly introduced in Section 3. Following this,
we outline a basis function approach to VGPA in details (Sec-
tion 4). In Section 5, the new method is validated by numeri-
cal experiment with an Ornstein-Uhlenbeck process. We con-
clude with some discussion (Section 6).

2. BAYESIAN SMOOTHING

Mathematically, a diffusion process is often represented by a
stochastic differential equation (SDE) [9]:

dx(t) = f(x, t)dt + D1/2(t)dW(t), (1)

wherex(t) ∈ Rd is the state vector,D ∈ Rd×d is the so-
called diffusion term, andf represents a deterministic dy-
namical process, generally called the drift. The driving noise
process is represented by a Wiener processW(t). The state
is observed via some measurement functionh(·) at discrete
times, say{tk}k=1,...,M . The observations are assumed con-
taminated by i.i.d Gaussian noise:

yk = h(x(tk)) + R
1
2 · ξ (2)

whereyk ∈ Rd′

is thek-th observation,R ∈ Rd′
×d′

is the
covariance matrix of measurement errors, andξ represents
standard multivariate Gaussian white noise.

A Bayesian approach to smoothing is typically adopted in
which the posterior distributionp(x([0, T ])|{y1, ...,yM}) is
formulated as follows:

• The prior [10]

p(x(t)) = p(x0) · e
R

T

0
−

1
2 ·[

dx
dt

−f(x)]D−1[ dx
dt

−f(x)]
⊤
·dt

wherep(x0) is the prior on the initial state;

• The likelihood

p(y1, ...,yM |x(t)) ∝
M
∏

j=1

e
−

»

h(x(tkj
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–
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–
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3. THE VGPA FRAMEWORK

The starting point of the Variational Gaussian Process Ap-
proximation (VGPA) method is to approximate Eq. 1 by a
linear SDE:

dx(t) = fL(x, t)dt + D1/2(t)dW(t), (3)

where
fL(x, t) = −A(t)x(t) + b(t). (4)

The matrixA(t) ∈ Rd×d and the vectorb(t) ∈ Rd are two
variational parameters to be optimised.

The approximation made by Eq. 4 implies that the true
posterior process, i.e.p(x(t)|y1, ...,yM ), is approximated by
a Gaussian Markov process,q(x(t)). Its moment equations
are [11]

dm(t)

dt
= −A(t)m(t) + b(t), (5)

and
dS(t)

dt
= −A(t)S(t) − S(t)A⊤(t) + D. (6)

As in [12], q(x(t = 0)) is fixed toN (x0|m0,S0). Note that
m0 andS0 are also the initial values of the above equations.

The optimalA(t) andb(t) are obtained by minimising
the KL divergence [13] ofq(·) andp(·) which is given by

KL[q||p] =

∫

dq ln
dq

dp
=

∫ T

0

E(t)dt+ const. (7)

with E(t) = Esde(t) + Eobs(t), where

Esde(t) =
1

4

〈

f(x) − fL(x))⊤D−1(f(x) − fL(x))
〉

qt

and
Eobs(t) = 〈− log(p(y1, ...,yM |x(t))〉qt

.

Note that<>qt
denotes the expectation w. r. t. the marginal

distribution of the approximate posterior processq(·) at time
t, i.e.,N (x|m(t),S(t)).

The moment equations imply that the pair(m(t),S(t))
is not independent of(A(t),b(t)). Accordingly, we find op-
timal (A(t) andb(t)), (m(t), andS(t)) by looking for the
stationary points of the following Lagrangian

L =

∫

{E − tr{Ψ(
dS

dt
+ AS + SA⊤ − 2D)}

−λ⊤(
dm

dt
+ Am) − b}dt

whereΨ(t) ∈ Rd×d andλ(t) ∈ Rd are Lagrange multi-
pliers. By definition,Ψ(T ) = 0 andλ(T ) = 0. By taking
the derivatives ofL with respect tom andS, we obtain a

system of ODEs forΨ andλ, so-called adjoint equations as
follows [12],

dΨ(t)

dt
= 2Ψ(t)A(t) −

∂Esde

∂S
(8)

dλ(t)

dt
= A⊤(t)λ(t) −

∂Esde

∂m
. (9)

With the moment and adjoint equations, the non-linear smooth-
ing is reduced to a non-linear optimisation problem with its
control parameterA andb.

4. THE BASIS FUNCTION APPROACH TO VGPA

For clarity, we here consider one-dimensional systems only.
An extension to multivariate systems is straightforward.

First, we project the space of control functions,A(t) and
b(t), onto a linear subspace spanned by a set of basis func-
tions,{φk(t)}N

k=1 say. This means

A(t) =

N
∑

k=1

ak · φk(t) and b(t) =

N
∑

k=1

bk · φk(t),

whereN is the number of basis functions. Note that the co-
efficients ~A = (a1, ..., aN )⊤ and~b = (b1, ..., bN )⊤ are now
control parameters.

Similarly, we approximate the auxiliary functionsm(t)
andS(t) by another set of basis functions,{ψk(t)}N

k=1 say.
For simplicity, the number of these basis functions isN too.
To account for the fact thatm(t) andS(t) are fixed att = 0,
we requireψk(0) = 0 for all k. Accordingly, we have

m(t) = m0+

N
∑

k=1

mk·ψk(t) and S(t) = S0+

N
∑

k=1

Sk·ψk(t).

where the coefficients~m = (m1, ...,mN )⊤ and~S = (S1, ..., SN )⊤

are the corresponding auxiliary parameters.
Following this, we project the moment equations onto each

of those basis functions,{ψk(t)}N
k=1, which are assumed to

be linearly independent with each other. This gives usN

constraint equations for~m andN constraint equations for~S.
Matrix-wise, they are

K~m = ~B and P~S = ~D

with

( ~B)i =
∑

j

(bj − m0 · aj) ·

∫ T

0

φj(t)ϕi(t)dt

( ~D)i = D ·

∫ T

0

ϕi(t)dt − 2S0 ·
∑

j

·aj ·

∫ T

0

φj(t)ϕi(t)dt

K = M1 + M2 and P = M1 + 2 ·M2



where

M1
ij =

∫ T

0

ϕj(t) ·
dϕi(t)

dt
dt

and

M2
ij =

∑

k

ak ·

∫ T

0

φi(t)φj(t)ϕk(t)dt.

Now, the Lagrangian approximatingL can be defined as

LBF = EBF
sde ( ~A,~b, ~m, ~S) + EBF

obs (~m, ~S)

+ ~λ · (K ~M − ~B) + ~Ψ · (P~S − ~D)

with Lagrangian parameters~λ = (λ1, ..., λN )⊤ and ~Ψ =
(Ψ1, ...,ΨN)⊤. Note thatEBF

sde , EBF
obs , andEBF = EBF

sde +
EBF

obs are the approximation to the integrals ofEsde(t),Eobs(t),
andE(t) over[0, T ], respectively.

For computing~λ and~Ψ, we derive

K⊤~λ = ∇~mEBF and P⊤~Ψ = ∇~SEBF

by taking the derivative ofLBF w. r. t. ~m and ~S. Note
that the matrixK andP here are the same as those in the
approximate constraint equations. The transpose ofK andP

plays the same role as the backward integration of the adjoint
equations forΨ andλ.

The algorithm so far can be outlined as follows:

step 1 compute~D and initialise (~A,~b);

step 2 compute~B, K andP using (~A,~b);

step 3 compute~m and~S by solvingK~m = ~B and P~S =
~D;

step 4 computeEBF , ∇~mEBF , and∇~SEBF using (~A, ~b)

and (~m, ~S);

step 5 compute~λ and ~Ψ by solvingK⊤~λ = ∇~mEBF and
P⊤~Ψ = ∇~SEBF

step 6 compute gradients (∇ ~AL
BF , ∇~bL

BF ) and update (~A,
~b) by gradient-based optimisation algorithm,

step 7 return to step 2.

In the above algorithm, we need to compute a number of
summations which can generally be expressed as follows:
X

I(1)

...
X

I(nA)

X

J(k)

...
X

J(nb)

X

K(k)

...
X

K(nm)

X

L(k)

...
X

L(nS)

χ1 · χ2

with

χ1 =

nA
Y

k=1

aI(k)

nb
Y

k=1

bJ(k)

nm
Y

k=1

mK(k)

nS
Y

k=1

sL(k)

and

χ2 =

Z T

0

nA
Y

k=1

φI(k)

nb
Y

k=1

φJ(k)

nm
Y

k=1

ψK(k)

nS
Y

k=1

ψL(k)dt.

Note that all indexI(·), J(·), K(·), andL(·) run from 1
to N . Moreover,nA, nb, nm andnS are non-negative in-
teger. For a Ornstein-Uhlenbeck process and a double-well
potential system, we havenA + nb + nm + nS ≤ 4 and
nA + nb + nm + nS ≤ 6, respectively. We can compute
χ2 for all possible index configurations prior to the optimiza-
tion but need to updateχ1 at each step of the optimization for
each index configuration. This makes the above algorithm not
feasible if the number of basis functions,N , is not very small.

The above problem can be sorted out in two ways. First,
we can make use of sparsity. If a set of localised basis func-
tions is used,χ2 is in fact vanishingly small for most of in-
dex configurations. Secondly, we can approximate the power
of those control and auxiliary functions directly by a linear
combination of basis functions, for example,

m2(t) =
N

∑

k=1

κk · φk(t).

To guarantee that the projection ofm2(t) is consistent with
the square of the projection ofm(t) itself, we getN addi-
tional constraint equations byQ~κ = ~C with ~κ = (κ1, ..., κN )⊤

and

~C =

 

X

ij

mimj ·

Z T

0

φi(t)φj(t)φ1(t)dt, ...

!⊤

.

In doing so, we can guaranteenA + nb + nm + nS ≤ 3 for
all diffusion processes with a polynomial drift.

5. NUMERICAL EXPERIMENTS

In this work, we validate the method outlined in Section 4
with an Ornstein-Uhlenbeck process, i.e.

dx = (A · x+ b)dt+ σdw,

with A = −3, b = 0.5,σ = 0.3, andx0 = 0.17. For smoothing,
the window sizeT is set to 5. We have one observation per
time unit and the observation error variance is 0.01. For this
result, 30 Gaussian RBF are used. Their centre are equally lo-
cated within the window and the width is set to 0.125. Fig. 1
shows that we obtain very accurate estimate of mean path
from the RBF-VGPA with a small number of RBF. The ratio
of control parameters between the original- and RBF-VGPA
is 15:1. However, we also observe that there is some discrep-
ancy in estimating marginal variance.

6. DISCUSSION

In this paper, we have presented an extension to the varia-
tional Gaussian Process approximation framework for Bayesian
inference in partially observed diffusions. The method is val-
idated by numerical experiments with an Ornstein-Uhlenbeck
process.
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Fig. 1. Comparison of mean-path and conditional-variance
estimates between the original VGPA (Dashed) and RBF-
VGPA (Solid) method with a Ornstein-Uhlenbeck process.
Filled circles represent 5 observations with measurement
noise variance equal to 0.01. The mean paths are displayed
by solid lines, while each pair of dashed lines indicates an
envelope of mean path with 2× standard deviation.

Compared to the original approach, the new method can
significantly reduce the number of control parameters. In the
original framework, both the control functions and the mo-
ment equations must be computed numerically by time dis-
cretisation. Numerical experiments show that for many sys-
tems a time increment of 0.01 is often required. Therefore, an
improvement of computational efficiency can be achieved if
the number of basis functions required is much less than 100
per time unit which our numerical experiments show it is the
case.

As seen in the previous sections, the new method does
not need time discretisation. From a practical point of view,
the continuous-time treatment can improve the stability ofthe
VGPA framework. Although the framework is formulated in
continuous time, its implementation is however based on the
Euler discretisation scheme of a stochastic differential equa-
tion. If the time discretisation is not sufficiently small, the
Gaussian assumption of transition probabilities of the discre-
tised true and approximate SDE could fail. This could lead to
negative value of marginal covarianceS(t).

The key to computational efficiency of the proposed method
is to reduce the number of basis functions needed for a given
accuracy. Localised polynomial basis functions may be more
suitable than Gaussian RBF. In future work, we adopt a spline
approximation to control- and auxiliary function. An exten-
sive comparison of computational efficiency between the orig-
inal VGPA and the basis function approach to VGPA will be
presented in a longer paper.
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