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ABSTRACT In this paper, we adopt a basis function approach to elirinat

In this paper, we present a framework for Bayesian infer:“m? dlsscr$t|za;|on. first f lat th tical setti ¢

ence in continuous-time diffusion processes. The new ndetho n Section 2, we lirst formulate a matnematical Seting o
Bayesian inference in diffusion processes. Next, the VGPA

's directly related to the recently proposed variationaliSa Hamework is briefly introduced in Section 3. Following this
sian Process approximation (VGPA) approach to Bayesmwe outline a basis function approach to VGPA in details (Sec-

smoothing of partially observed diffusions. By adoptingza b Eion 4). In Section 5, the new method is validated by numeri-

sis function expansion (BF-VGPA), both the time-dependen | : twith an Ornstein-Uhlenbeck Wi
control parameters of the approximate GP process and its mg& experimentwith an rnstein-L/hienbeck process. ¥ie con-
lude with some discussion (Section 6).

ment equations are projected onto a lower-dimensional sulf-
space. This allows us both to reduce the computational com-

plexity and to eliminate the time discretisation used ingtes 2. BAYESIAN SMOOTHING

vious algorithm. The new algorithm is tested on an Ornstein- ) - )

Uhlenbeck process. Our preliminary results show that BpMathematically, a diffusion process is often represented b
VGPA algorithm provides a reasonably accurate state estim&tochastic differential equation (SDE) [9]:

tion using a small number of basis functions. dx(t) = £(x, t)dt + DY2(1)dW (¢), 1)

Index Terms— Stochastic differential equations, data as-

d i dxd j _
similation, variational approximation, model reduction wherex(t) € R is the state vectoD € R Is the so

called diffusion term, and represents a deterministic dy-
namical process, generally called the drift. The drivingsao
1. INTRODUCTION process is represented by a Wiener prodd53). The state

e . _ . . is observed via some measurement funcligr at discrete
Diffusion processes are vyldespread m.ocljels in phygc;—, b'O{imes, say{ty}r_1.. 1. The observations are assumed con-
ogy and environmental science. There is increasing irteres taminated by i.i.d Gaussian noise:

developing computational methods for Bayesian inference i

partial_ly obs_erved dif_fus_ions. Example_s are, to name hwt fe yr = h(x(t)) + Rz - 13 2)
four-dimensional variational data assimilation (4DVAR],[ e ) d
Hybrid Monte Carlo (HMC) [2], Ensemble Kalman Smooth- Wherey, € R is thek-th observationR € R® *“ is the
ing (EnKS) [3], and Variational Gaussian Process Approxi-covariance matrix of measurement errors, gneepresents
mation (VGPA) [4]. standard multivariate Gaussian white noise.

For variational methods, a major concern about their effi- A Bayesian approach to smoothing is typically adopted in
ciency is the dimension of the control space. To reduce com¥hich the posterior distributiop(x([0, ) {y1, ...,y }) is
putational complexity, so-called reduced-order straisgyi-  formulated as follows:
t_en adopted through the projection of the s_tate space ontoa o The prior [10]
linear space spanned by a small set of basis functions [5, 6].

In this paper, we adppt a similar strategy to VGPA. p(x(t)) = p(xo) - oJo — % [F—£)]D T [F—£(x)] "t
Most of inferential methods for diffusion processes are . . o

formulated in continuous time but do make use of time dis- wherep(xo) is the prior on the initial state;

cretlgatlon in the|r.|mpler.nentat|on [2_, 4]. Recently, qraek e The likelihood

algorithm for the simulation of a particular class of dififus

processes has been proposed [7]. This leads to the develop- M —[h<x<tkj>fyj}rl [h(xakj)—yj '

ment of likelihood estimation procedures and particleriitig (Y1, Ym|x(t)) o € 2

algorithms that are both free from discretization errordJ, j=1



3. THE VGPA FRAMEWORK system of ODEs fo® and ), so-called adjoint equations as

follows [12],
The starting point of the Variational Gaussian Process Ap-
proximation (VGPA) method is to approximate Eq. 1 by a aw(t) _ 2W(1)A (L) — OFqe (®)
linear SDE: dt 08
d)\(t) - T aEﬂsde
dx(t) = f1(x, {)dt + DY2(1)dW (1), @3) a A DA - ©

With the moment and adjoint equations, the non-linear shmoot

where
B ing is reduced to a non-linear optimisation problem with its
fu(x,t) = —AL)x(t) + b(t). (4) control parameteA andb.
The matrixA (t) € R?*¢ and the vectob(t) € R¢ are two
variational parameters to be optimised. 4. THE BASIS FUNCTION APPROACH TO VGPA

The approximation made by Eq. 4 implies that the true
posterior process, i.@(x(t)|y1, ...,y ), is approximated by  For clarity, we here consider one-dimensional systems. only
a Gaussian Markov procesgx(t)). Its moment equations An extension to multivariate systems is straightforward.
are [11] First, we project the space of control functioss(t) and

dm(t) b(t), onto a linear subspace spanned by a set of basis func-
at —A(t)m(t) + b(), () tions, {¢x(¢)}2_, say. This means
and N N
—dfz?) =—A()S(t) -S(t)AT(t) +D.  (6) At) =D ac-du(t) and bit)=> b ult),
k=1 k=1

As in [12], ¢(x(t = 0)) is fixed toNV (xq|myg, Sp). Note that
mg andS, are also the initial values of the above equations.

The optimalA(¢t) andb(t) are obtained by minimising
the KL divergence [13] o§(-) andp(-) which is given by

whereN is the number of basis functions. Note that the co-
efficientsA = (ay,...,an)" andb = (by,...,by) T are now
control parameters.
Similarly, we approximate the auxiliary functioma(t)
dg T andS(t) by another set of basis function&/y (t)}_, say.
KL[g||lp] = /dq In = / E(t)dt + const. (7)  For simplicity, the number of these basis functiongvigoo.
P 0 To account for the fact thah(¢) andS(t) are fixed at = 0,

With E(t) = Eyge(t) + Eops(t), where we requirey (0) = 0 for all k. Accordingly, we have
N N
Eye(t) = % (f(x) —fr, (x)) ' D7(f(x) - f (x))>qt m(t) = m0+z me-(t) and S(¢) = SO+Z Stk ().
k=1 k=1
and

B where the coefficients; = (my, ...,my)" andS = (S, ..., Sy) "
Eops(t) = (= log(p(y1, ..., ym[x()))g, - are the corresponding auxiliary parameters.
Note that<>,, denotes the expectation w. r. t. the marginal  Following this, we project the moment equations onto each

distribution of the approximate posterior process at time ~ of those basis functiong(t)};_,, which are assumed to
t,i.e, N(x/m(t), S(t)). be linearly independent with each other. This givesNis
constraint equations fofi and N constraint equations fa§.

The moment equations imply that the péin(t),S(¢))  Matrix-wise, they are

is not independent dfA(t), b(t)). Accordingly, we find op- . = .o
timal (A(t) andb(t)), (m(t), andS(t)) by looking for the Km=B and PS=D
stationary points of the following Lagrangian with
,c—/ {E—tr{W(§+As+SAT—2D)} = T
B dt (B)i =Y (bj —mg-a,)- /O ¢ (t)pi(t)dt
—/\T(Cii—r? + Am) — b}dt !

T T
where¥(t) € R4 and A\(t) € R< are Lagrange multi- (D)i =D '/O pilt)dt = 2So - Z i ./0 ¢5(O)pu(t)dt
pliers. By definition,®(7") = 0 andA(T') = 0. By taking ’
the derivatives ofC with respect tom and S, we obtain a K=M'+M? and P=M!'+2-M?



where
d(pi (t)
dt

T
M;; =/0 ©;(t) - dt

and

5 T
Mi; = ijak /O ¢i(t)o; () (t)dt.

Now, the Lagrangian approximatingcan be defined as

ﬁBF

= EBE(A b,m,S)+EEE(m, S)

sde obs

+ X-(KM - B)+9-(PS—D)
with Lagrangian parameters = Aty dy)T and @ =
(Uy,...,¥y)". Note thatEBE, EBE andEPY = EBE +
EZBI are the approximation to the integralsiofy. (t), Eops (t),
andE(t) over|0, T'], respectively.

For computing\ and¥, we derive

K'X=VzEP" and PT¥ =V EPF

by taking the derivative o.3% w. r. t. 7 andS. Note

that the matrixiK and P here are the same as those in the

approximate constraint equations. The transpod€ ahdP

Note that all indexI(-), J(-), K(-), and L(-) run from 1
to N. Moreover,nu, ny, n, andng are non-negative in-
teger. For a Ornstein-Uhlenbeck process and a double-well
potential system, we haves + ny + n.,, + ng < 4 and
na + ny + ny + ng < 6, respectively. We can compute
x2 for all possible index configurations prior to the optimiza-
tion but need to update; at each step of the optimization for
each index configuration. This makes the above algorithm not
feasible if the number of basis function, is not very small.

The above problem can be sorted out in two ways. First,

we can make use of sparsity. If a set of localised basis func-
tions is usedy- is in fact vanishingly small for most of in-
dex configurations. Secondly, we can approximate the power
of those control and auxiliary functions directly by a linea
combination of basis functions, for example,

N
m2(t) = Z Kk - Ok ().
k=1

To guarantee that the projection nf?(¢) is consistent with
the square of the projection ef(¢) itself, we getN addi-

tional constraint equations Ky< = C with &= (Kiyo )T

plays the same role as the backward integration of the atdjoil’?nd

equations folr andA.
The algorithm so far can be outlined as follows:

step 1 computeﬁ and initialise ([1' 5);
step 2 compute’, K andP using (, b);

step 3 computer andS by solvingKri = B and PS =
D;

step 4 computeE””, vz EPF, and V ;EPT using (4, b)
and @, S);

step 5 computeX and ¥ by solvingK™ X = V,;EPT and
P = V EBF

step 6 compute gradients{ ;£5F, V;£5F) and updateq,
5) by gradient-based optimisation algorithm,

step 7 return to step 2.

In the above algorithm, we need to compute a number

summations which can generally be expressed as follows:

)SD SH DS DI SIS S SN S EReH

I(1)  I(na)J(k)  J(np) K(k) K(nm)L(k) L(ng)
with
nA ny MNom, ns
X1 = H a1(k) H b (k) H MK (k) H SL(k)
k=1 k=1 k=1 k=1
and

np

11 ¢5

k=1

m

ng
H Vi (k) H Vi k)dt.
k=1 k=1

T MA
Xz = / 11610
0 k=1

C= <Zmimj /O ¢i(t)¢j(t)¢1(t)dt,...> ,

In doing so, we can guaranteg + n, + n,, + ng < 3 for
all diffusion processes with a polynomial drift.

5. NUMERICAL EXPERIMENTS

In this work, we validate the method outlined in Section 4
with an Ornstein-Uhlenbeck process, i.e.

dx = (A-z+b)dt + odw,

with A =-3,b=0.5,0 = 0.3, andry =0.17. For smoothing,
the window sizeT is set to 5. We have one observation per
time unit and the observation error variance is 0.01. Far thi
result, 30 Gaussian RBF are used. Their centre are equally lo
cated within the window and the width is set to 0.125. Fig. 1
0?hows that we obtain very accurate estimate of mean path
rom the RBF-VGPA with a small number of RBF. The ratio
of control parameters between the original- and RBF-VGPA
is 15:1. However, we also observe that there is some discrep-
ancy in estimating marginal variance.

6. DISCUSSION

In this paper, we have presented an extension to the varia-
tional Gaussian Process approximation framework for Bapes
inference in partially observed diffusions. The methodak v
idated by numerical experiments with an Ornstein-Uhlekbec
process.
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