
Defining the Fluid Framework

Anthony Jones
Knowledge Engineering Group

School of Engineering and Applied Science
Aston University

Birmingham, B4 7ET, UK
d.cornford@aston.ac.uk

Dan Cornford

Abstract

In this position paper we present the developing Fluid
framework, which we believe offers considerable advan-
tages in maintaining software stability in dynamic or evolv-
ing application settings. The Fluid framework facilitates the
development of component software via the selection, com-
position and configuration of components. Fluid’s compo-
sition language incorporates a high-level type system sup-
porting object-oriented principles such as type description,
type inheritance, and type instantiation. Object-oriented re-
lationships are represented via the dynamic composition of
component instances. This representation allows the soft-
ware structure, as specified by type and instance descrip-
tions, to change dynamically at runtime as existing types
are modified and new types and instances are introduced.
We therefore move from static software structure descrip-
tions to more dynamic representations, while maintaining
the expressiveness of object-oriented semantics. We show
how the Fluid framework relates to existing, largely com-
ponent based, software frameworks and conclude with sug-
gestions for future enhancements.

1 Introduction

Component based software development (CBSD) fo-
cusses on the use of existing independent binary ‘parts’
called components to build software applications[10].
CBSD maximises implementation reuse, amortizing devel-
opment costs over many applications. CBSD is realised
by component frameworks, which provide an environment
for the development, deployment, and assembly of compo-
nents. Component frameworks typically stipulate a com-
ponent model, which defines the requirements for compo-
nent implementations to be compatible with (and thus de-
ployable within) the framework, and provide the means by

which components may communicate at runtime. Compo-
sition languages allow component software developers to
describe the structure of component software consisting of
component deployments and their connections. The high-
level composition languages, often providing an abstraction
of an underlying component model, are used to drive the de-
ployment, connection, and thus creation of component soft-
ware.

We are developing a prototype component framework
and composition language, collectively referred to as
Fluid[5]. Fluid’s composition language includes an expres-
sive object-oriented type system, extending existing tech-
nologies first applied in the computer games industry, which
focus on the reuse of component implementations and high-
level composition descriptions.

This paper is organised as follows: we first define the
Data Driven Programming (DDP) paradigm in Section 2,
and then briefly describe in Section 3 how Fluid builds upon
existing DDP concepts. Section 4 outlines our contributions
to the field of stable and adaptable software. Finally, Sec-
tion 5 presents a discussion of our work, including its rela-
tion to relevant research in the field of CBSD and possible
future extensions.

2 Data Driven Programming

DDP is extensively applied to game development, where
it provides a software structure that is flexible to changing
requirements and is accessible to non-programmers via a
variety of tools. Examples appear in related literature[8, 9].
In this paper, we refer to Data Driven Programming as Ob-
ject Oriented Data Driven Programming (OODDP) in or-
der to highlight its use of features from the object-oriented
paradigm (such as type definition, inheritance, and instanti-
ation), and to distinguish it from data-driven concepts used
elsewhere (for example, in operating systems[7]). Fluid
also uses an object-centric approach to implementing data
driven programming, which has closer semantics to the

object-oriented paradigm, rather than the data-centric ap-
proach, which focusses on object attributes, and is often
implemented using a database.

In describing his motivations for developing OODDP,
Scott Bilas states[2]:

To meet changing design needs, one can’t just
data-drive the object properties, one must data-
drive the structure (schema) of the objects.

The term schema here refers to the objects, the objects’ at-
tributes, and the relationships between objects. In OODDP,
this schema may be data-driven by replacing static inheri-
tance relationships with dynamic composition relationships
and then driving dynamic composition at runtime using
data.

For example, consider the following simplified object
oriented software structure, which provides the basis for a
running example that will be referenced throughout the pa-
per: A Vehicle type forms the root of an object oriented
inheritance hierarchy, providing common behaviour (e.g.
the ability to belong to a traffic network simulation, and
to travel between locations in that network), and common
attributes (such as engine size, average speed and so on).
The PassengerVehicle type extends the Vehicle type by pro-
viding seats for passengers, plus the behaviour for boarding
and alighting. The Car type extends PassengerVehicle in or-
der to provide a concrete type for cars and similar vehicles,
while the LightAircraft type provides a PassengerVehicle
that can transport passengers by air. If this scenario were
implemented in code, runtime objects would be instances
of the child classes - that is, one would declare instances
of the Car and LightAircraft types as part of the code, and
each runtime object would be identified via its correspond-
ing variable declaration.

OODDP replaces inheritance with composition in order
to replace static relationships in the software structure with
dynamic relationships that can be driven by data at run-
time. In order to achieve this, related classes in the in-
heritance hierarchy must be represented using independent
classes, which are then combined to provide the function-
ality previously represented by the static software structure.
For example, the PassengerVehicle class no longer inher-
its from Vehicle, but is written as an independent class. If
the parent (Vehicle) class from our earlier example provides
any common behaviour to its children, then it will also be
represented by an independent class that encapsulates this
commonality. If the OODDP scenario were implemented
in code, runtime objects would be represented by simple
containers of instances of the independent child class types.
For example, an instance of the Car class would be repre-
sented in the OODDP scenario as the composition shown
in Figure 1, incorporating the functionality of the Vehicle
class, plus that provided by the SeatingCapacity class. Each

OODDP instance (that is, the container instance represent-
ing the corresponding class instance) is uniquely identified
via a runtime identifier.

Container
Vehicle

SeatingCapacity

Figure 1. The PassegengerVehicle type is rep-
resented as an OODDP hierarchy of container
and independent class instances.

In OODDP, each hierarchy of container object and
contained class instances may be described using an
OODDP type description. Type descriptions drive the run-
time instantiation and composition of container and class
instances in order to form an OODDP hierarchy as illus-
trated by the example in Figure 1.

Each type description includes an identifier for the
OODDP type currently being described, and specifies
which classes should be instantiated and inserted into the
container. Each specified class instance is also given an
identifier so that the various parts of an OODDP hierarchy
may be uniquely identified. Class instance specifications
may also include an optional configuration, which is used
to customize the class instance and can be regarded as syn-
onymous with class constructor parameterization (although
in practice the configuration may not necessarily be used as
such).

Figure 2, written in XML, describes the type Passen-
gerVehicleType, which contains a Vehicle class instance
and a SeatingCapacity class instance, both of which include
configuration elements.

Furthering its incorporation of the object-oriented para-
digm, OODDP re-introduces inheritance via manipulations

<Type i d ="PassengerVehicleType">
<V e h i c l e i d ="vehiclePart">
<!−− V e h i c l e c o n f i g u r a t i o n −−>
<AverageSpeed>50mph</ AverageSpeed>
<!−− e t c −−>

</ V e h i c l e>
<S e a t i n g C a p a c i t y i d ="seatingPart">
<!−− S e a t i n g C a p a c i t y c o n f i g u r a t i o n −−>
<S e a t s>5</ S e a t s>
<!−− e t c −−>

</ S e a t i n g C a p a c i t y>
</ Type>

Figure 2. An example OODDP type descrip-
tion for the OODDP hierarchy from Figure 1.

<Type i d ="LightAircraftType"
p a r e n t ="PassengerVehicleType">
<!−− L i g h t A i r c r a f t T y p e i n h e r i t s s e a t i n g P a r t from t h e
P a s s e n g e r V e h i c l e T y p e OODDP t y p e d e s c r i p t i o n −−>
<!−− L i g h t A i r c r a f t T y p e p r o v i d e s i t s own d e s c r i p t i o n f o r

t h e v e h i c l e P a r t , which o v e r r i d e s t h a t i n
P a s s e n g e r V e h i c l e T y p e −−>
<V e h i c l e i d ="vehiclePart">
<AverageSpeed>150mph</ AverageSpeed>

</ V e h i c l e>
<!−− L i g h t A i r c r a f t T y p e e x t e n d s P a s s e n g e r V e h i c l e T y p e by
i n c l u d i n g an i n s t a n c e o f t h e F i x e d W i n g F l i g h t c l a s s −−>

<F i x e d W i n g F l i g h t i d ="flightPart">
<C e i l i n g>15000 f t</ C e i l i n g>

</ F i x e d W i n g F l i g h t>
</ Type>

Figure 3. An OODDP type description for the
LightAircraftType type, which makes use of
OODDP inheritance to both include and ex-
tend the definition of the PassengerVehicle-
Type type description given in Figure 2.

<I n s t a n c e i d ="myCar" p a r e n t ="PassengerVehicleType" />

Figure 4. Declaring an instance of the OODDP
PassengerVehicleType type description, as
given in Figure 2.

on its type descriptions. New OODDP type descriptions
can be described based on existing OODDP type descrip-
tions, allowing for description re-use and thus more expres-
sive power for OODDP software designers. In a similar
way to traditional object-oriented paradigms, OODDP in-
heritance forms a relationship between a pair of parent and
child type descriptions. For example, Figure 3 makes use of
a parent type description (PassengerVehicleType from Fig-
ure 2) and describes a child type description (LightAircraft-
Type). The LightAircraft type describes PassengerVehicle-
Type type that uses flight as its mode of travel, as repre-
sented by its additional FixedWingFlight class instance.

An OODDP type description may be instantiated via the
definition of an OODDP instance description. An instance
description typically has a similar appearance to an OODDP
type description, and provides an identifier for the instance.
Figure 4 describes an instance of the PassengerVehicleType
type given in Figure 2. After OODDP inheritance is applied,
the ‘myCar’ instance description will include the contents
of the PassengerVehicleType type description as given in
Figure 2.

OODDP inheritance, as described above, may also be
applied to instance descriptions. For example, Figure 5 de-
scribes another instance of the PassengerVehicleType type
given in Figure 2, although this time we override the Seat-

<I n s t a n c e i d ="anotherCar" p a r e n t ="PassengerVehicleType">
<S e a t i n g C a p a c i t y i d ="seatingPart">
<S e a t s>8</ S e a t s>

</ S e a t i n g C a p a c i t y>
</ I n s t a n c e>

Figure 5. Declaring another instance of the
OODDP PassengerVehicleType type descrip-
tion, as given in Figure 2, although in this
example the instance description overrides
the PassengerVehicleType type description
by providing a custom SeatingCapacity class
description for a custom number of seats.

ingCapacity class instance with a custom instance having a
different configuration.

OODDP has become a popular methodology for game
developers, who use OODDP to replace static inheritance
relationships in software structures with ownership rela-
tionships that can be dynamically driven by data at run-
time. However, OODDP remains an applied methodology,
with no formal theory and no explicit connections to re-
lated fields. In the Fluid framework, we form a link be-
tween OODDP and CBSD by applying an adapted OODDP
methodology to CBSD in order to provide an expressive
composition language with high-level object-oriented se-
mantics.

3 The Fluid Framework

The Fluid framework builds upon OODDP, in order to
provide a component language which facilitates the defini-
tion of software structure, via the runtime selection, com-
position and configuration of components. We use the de-
finition of component as given by Szyperski[10]:

A software component is a unit of composition
with contractually specified interfaces and ex-
plicit context dependencies only. A software
component can be deployed independently and is
subject to composition by third parties.

In the context of Fluid, a component is defined as a single
class, synonymous with the OODDP classes (e.g. Vehicle)
from Section 2, although such classes may provide a façade
to more complex or multi-class components.

To facilitate component selection, we assume an exist-
ing repository of deployable components, where each Fluid
component implementation is provided as a dynamically
linked library (DLL) exporting two functions: a create func-
tion to create an instance of the wrapped component class,
and a destroy function to destroy a given component in-
stance. Each component implementation is accompanied

by a specification document, which describes the compo-
nents’s exposed (or exported) and required (or imported)
functions and events, in order to facilitate inter-component
communication and collaborative runtime behaviour.

For example, Figure 6 provides the Vehicle component’s
specification, which states that each Vehicle component in-
stance exposes a function named ‘fuelLevel’ (returning how
much fuel the given Vehicle instance has in its fuel tank).
Additionally, each Vehicle component instance subscribes
to an event named ‘onRefuel’ (which is triggered when a
given Vehicle is told to refuel by the traffic network).

Exported function descriptions include an identifier,
which allows other component instances to refer to, and
thus make use of, the exported functionality. Imported func-
tion descriptions include an identifier by which the imported
function is known to the component’s implementation. Both
exported and imported function descriptions include a type
description providing information related to the function’s
signature, and this information is used to perform type-
checking during component composition.

Event descriptions are similar to function descriptions,
with the exception that events have publisher/subscriber se-
mantics. A component instance publishes an event by ex-
porting it. The event’s element in the component specifi-
cation document must provide a name for the event, plus
the type of the event’s payload. An event’s payload is the
single parameter passed to subscribing event handler func-
tions. When the event is triggered by its owning component
instance, its payload will be passed to the Fluid framework,
which will in turn invoke each subscribing event handler,
passing a copy of the payload as the function’s only para-
meter. A component instance may subscribe to a published
event by importing it; the subscribing component instance
must include an appropriate event handler function.

Each component implementation must also be accom-
panied by a configuration specification, which describes
what the component implementation may expect in terms
of instantiation configuration. For example, a configura-
tion specification may stipulate that a given configuration
must contain an ‘AverageSpeed’ element providing the av-
erage speed of each Vehicle instance in the traffic network.
Component configurations are validated against their cor-
responding configuration specification prior to component
instantiation. As Fluid makes extensive use of XML, our
configuration specifications are written as XML schemas,
and we leverage XML schema validation to provide the re-
quired runtime checks. Figure 7 illustrates the selection of
two components as part of an OODDP type description. The
components in this example are identified by a ‘component’
attribute, and are located using a relative path to the required
DLL implementation.

In Fluid, component composition is the runtime process
of instantiating components and deploying interconnected

<S p e c i f i c a t i o n i d ="Vehicle">
<E x p o r t s>
<F u n c t i o n i d ="fuelLevel">
<S i g n a t u r e>
<!−− t y p e i n f o r m a t i o n f o r t h e "fuelLevel" f u n c t i o n
s i g n a t u r e −−>

</ S i g n a t u r e>
</ F u n c t i o n>
<!−− o t h e r e x p o r t s , i n c l u d i n g a d d i t i o n a l f u n c t i o n s and

e v e n t s −−>
</ E x p o r t s>
<I m p o r t s>
<Event i d ="onRefuel">
<Pay load>
<!−− t y p e i n f o r m a t i o n f o r an e x p e c t e d "payload"
(parame te r) t o be d e l i v e r e d t o t h i s component when
t h e "onRefuel" e v e n t o c c u r s −−>

</ Pay load>
</ Event>
<!−− o t h e r i m p o r t s , i n c l u d i n g a d d i t i o n a l

f u n c t i o n s and e v e n t s −−>
</ I m p o r t s>

</ S p e c i f i c a t i o n>

Figure 6. A Fluid component specification for
the Vehicle component. Vehicle exports one
function and imports (or subscribes to) one
event. Type information, and additional pos-
sible imports and exports, are not given due
to space restrictions.

OODDP hierarchies. OODDP hierarchies are deployed
by associating the container instance with the instance de-
scription’s identifier attribute. Deployed OODDP hierar-
chies may be subsequently referred to via their identifier
attributes. For example, the OODDP instance given in Fig-
ure 4 is associated with the identifier ‘myCar’, and its com-
ponent parts may be referred to as ‘myCar.vehiclePart’ ‘my-
Car.seatingPart’ and so on.

OODDP hierarchies are interconnected by allowing
component instances to refer to, and thereby make use of,
the exported functions and events of other component in-
stances. For example, given the component specification
document in Figure 6 (and corresponding specification doc-
uments for any other components), Figure 8 illustrates the

<Type i d ="PassengerVehicleType">
<V e h i c l e i d ="vehiclePart"

component="components/vehicle.dll" />
<P a s s e n g e r s i d ="seatingPart"

component="components/seatingCapacity.dll" />
</ Type>

Figure 7. A Fluid OODDP type description, il-
lustrating component selection. The paths
given for the component attributes corre-
spond to component implementation DLLs in
Fluid’s component repository.

<Type i d ="PassengerVehicleType">
<V e h i c l e i d ="vehiclePart">
<I m p o r t s>
<Event e v e n t H a n d l e r ="onRefuel"

e v e n t ="trafficNetwork.onRefuel" />
</ I m p o r t s>
<C o n f i g u r a t i o n>
<AverageSpeed>50mph</ AverageSpeed>

</ C o n f i g u r a t i o n>
</ V e h i c l e>
<S e a t i n g C a p a c i t y i d ="seatingPart">
<I m p o r t s />
<C o n f i g u r a t i o n>
<S e a t s>5</ S e a t s>

</ C o n f i g u r a t i o n>
</ S e a t i n g C a p a c i t y>

</ Type>

Figure 8. A Fluid OODDP type description, il-
lustrating component composition (Import el-
ements) and configuration (Configuration el-
ements).

connection of the Vehicle type’s imported ‘onRefuel’ func-
tion to the exported function (similarly named ‘onRefuel’)
of another component.

Component configuration takes place during compo-
nent instantiation and composition. Each component se-
lection described in an OODDP type description may in-
clude a number of configuration elements. For example,
the PassengerVehicleType type given in Figure 7 provides
a configuration for both of its Vehicle and SeatingCapacity
components’ selections. During component composition,
but prior to the component selection DLL’s create function
being called, the given configuration elements are checked
against the component selection’s configuration specifica-
tion document. If a conflict is found between the given con-
figuration elements and the component selection’s config-
uration specification document, then a component instance
will not be created and component composition fails. Oth-
erwise, the configuration elements are passed to the compo-
nent selection DLL’s create function to configure the con-
struction of a component instance. The resulting configured
component instance will form part of the OODDP hierarchy
being generated by the enclosing component composition
process.

4 Contributions to Stable and Adaptable
Software

In many fields of software engineering, stability in one
place provides adaptability in another. In object-oriented
approaches, interfaces represent a fixed contract, while
derived implementations provide polymorphic behaviour
via type inheritance. In component based approaches, a
common framework embodies a predetermined component

model, while component composition may change in order
to meet varying functional and non-function requirements.

Fluid offers stability via its component model and com-
position framework, and provides an expressive composi-
tion language for application adaptability. Using Fluid’s
OODDP manipulations, one can easily define a family
of component selections, compositions and configurations.
The resulting OODDP type system may be rapidly altered,
via object-oriented overriding, to drive runtime software
structure. We therefore move from static software structure
descriptions to more dynamic representations, while main-
taining the expressiveness of object-oriented semantics.

We feel that Fluid is particularly suited to situations
where its OODDP representations provide a valuable ad-
ditional level of abstraction. By encapsulating repeated pat-
terns of component composition and parameterization, we
isolate change to the definition of overriding deltas in de-
rived OODDP types. The resulting information hiding may
make adaptable software more accessible to non-specialist
programmers and visual tools.

5 Discussion

Due to its use of an XML-based language for component
description and composition, Fluid is perhaps most closely
related to CoML [3]. Fluid’s composition language shares
CoML’s design principles, particularly the use of an XML-
based declarative language with connection-oriented pro-
gramming model. Fluid builds upon these principles by in-
troducing a composition language type system via OODDP
manipulations, and instance configuration (parameteriza-
tion) during component composition. Furthermore, CoML
includes function invocation and event response as part of
the composition language, while Fluid relies upon black-
box components to determine runtime application behav-
iour. We have yet to explore the implications of including a
behavioural aspect in Fluid’s composition language.

Fluid’s incorporation of OODDP emphasizes the use of
component configuration to drive runtime behaviour. Com-
ponent hooks [1] place a similar emphasis on parameter-
ization, and operate at a similar level of abstraction us-
ing object-oriented traits such as inheritance and prototype-
based operations such as instance extension. However,
whereas component hooks facilitate white-box develop-
ment time parameterizations, Fluid operates on black-box
components at composition time.

Fluid’s composition language may be considered similar
in appearance to architecture description languages (ADLs)
such as Darwin[6], which are used to describe architectural
design as a communication tool for further development as
part of the software development process. ADLs operate at
a higher level than composition languages, which describe
the deployment and connection of components in order to

drive the runtime structure of the software during applica-
tion execution.

Additionally, Fluid’s composition language provides the
means by which dynamic composition relationships in the
software structure may be described using object oriented
inheritance semantics. While Fluid’s composition language
may be used during application execution to drive the initial
structure of component software, the same representations
may be used to dynamically manipulate the software struc-
ture at runtime at a high level of abstraction.

Because of its ability to modify software structure at run-
time in response to changing application state, the Fluid
framework may have a number of potential applications in
Dynamic Data Driven Application Systems[4] (DDDAS).
DDDAS use data obtained via measurements to inform an
internal representation or simulation of a given domain.
The simulation may be used to dynamically adapt the mea-
surement process in order to predict how the domain may
change and what its future state may be. While typical
DDDAS adapt the measurement process via the modifica-
tion of existing application parameters and algorithms, a
Fluid DDDAS would be able to dynamically change or in-
troduce new runtime behaviour by manipulating the com-
position of the application’s software structure.

The Fluid framework is currently being developed, and
so our immediate goal is to complete its implementation.
We will apply the Fluid framework to visualization and sim-
ulation in the context of Geographic Information Systems as
a proof of concept. In the longer term, we aim to enhance
the Fluid framework with an additional level of abstraction
that can be used to express evolving software requirements.
We thus hope to be able to apply the Fluid framework to
evolving and dynamic applications: for example, a traffic
simulation that dynamically adjusts its software structure
(via OODDP manipulations) to incorporate additional vehi-
cle types and behaviours, for example governed by revised
traffic regulations, that were not in the original design. A
further consideration is how requirements could be repre-
sented in Fluid’s OODDP descriptions, and if such repre-
sentations would allow us to incorporate model-driven ap-
proaches.

Finally, we are also interested in looking at dynamic situ-
ations where the software structure evolves according to its
own output, allowing the software to guide its own evolu-
tion according to predefined goals or requirements. In this
case we extend methods from DDDAS allowing the mea-
surement process to observe some defined aspects of the
software reliability itself, and the run-time evolution then
being guided to maintain software robustness in this dy-
namic setting.

CBSD focusses on the development of component soft-
ware via the assembly of existing binary implementations
with collaborative behaviour. The flexibility of component

deployment, typically driven by the use of composition lan-
guages, provides component software developers with an
opportunity to adapt an otherwise static software structure
to changing application requirements during software de-
sign and component deployment.

By bridging the gap between CBSD and OODDP, we in-
troduce additional flexibility and adaptability to component
software by allowing software structure to be modified dy-
namically in response to changing application requirements
at runtime.

Acknowledgements

We would like to thank Rami Bahsoon for his help with
improving the communication of the ideas presented in this
paper. We would also like to thank the reviewers for their
constructive input regarding the paper content.

References

[1] U. Aßmann. Beyond generic component parameters. In
CD ’02: Proceedings of the IFIP/ACM Working Conference
on Component Deployment, pages 141–154, London, UK,
2002. Springer-Verlag.

[2] S. Bilas. A data-driven game object system. In Game De-
velopers Conference Proceedings, 2002.

[3] D. Birngruber. CoML: Yet another, but simple component
composition language. In Proceedings of First Workshop on
Composition Languages, Vienna, Austria, Sept. 2001.

[4] F. Darema. Dynamic data driven applications systems:
A new paradigm for application simulations and measure-
ments. In M. Bubak, G. D. van Albada, P. M. A. Sloot, and
J. Dongarra, editors, International Conference on Computa-
tional Science, volume 3038 of Lecture Notes in Computer
Science, pages 662–669. Springer, 2004.

[5] A. Jones and D. Cornford. Advanced data driven visualisa-
tion for geo-spatial data. In V. N. Alexandrov, G. D. van Al-
bada, P. M. Sloot, and J. Dongarra, editors, Computational
Science ICCS 2006: 6th International Conference, Read-
ing, UK, May 28-31, 2006. Proceedings, Part III, volume
3993, pages 586 – 592, 2006.

[6] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Speci-
fying distributed software architectures. In Proceedings of
the 5th European Software Engineering Conference, pages
137–153, London, UK, 1995. Springer-Verlag.

[7] E. S. Raymond. The Art of Unix Programming, chapter 9,
pages 249–250. Addison-Wesley, September 2003.

[8] B. Rene. Component based object management. In K. Pallis-
ter, editor, Game Programming Gems 5, chapter 1.3, pages
25–37. Charles River Media, February 2005.

[9] C. Stoy. Game object component system. In M. Dickheiser,
editor, Game Programming Gems 6, chapter 4.6, pages 393–
403. Charles River Media, Inc., Rockland, MA, USA, Feb-
ruary 2006.

[10] C. Szyperski. Component Software: Beyond Object-
Oriented Programming. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA, 2002.

