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1 Abstract

Very large spatially-referenced datasets, for example, those derived from
satellite-based sensors which sample across the globe or large monitoring
networks of individual sensors, are becoming increasingly common and more
widely available for use in environmental decision making. In large or dense
sensor networks, huge quantities of data can be collected over small time pe-
riods. In many applications the generation of maps, or predictions at specific
locations, from the data in (near) real-time is crucial. Geostatistical opera-
tions such as interpolation are vital in this map-generation process and in
emergency situations, the resulting predictions need to be available almost
instantly, so that decision makers can make informed decisions and define
risk and evacuation zones. It is also helpful when analysing data in less time
critical applications, for example when interacting directly with the data for
exploratory analysis, that the algorithms are responsive within a reasonable
time frame.

Performing geostatistical analysis on such large spatial datasets can present
a number of problems, particularly in the case where maximum likelihood.
Although the storage requirements only scale linearly with the number of ob-
servations in the dataset, the computational complexity in terms of memory
and speed, scale quadratically and cubically respectively. Most modern com-
modity hardware has at least 2 processor cores if not more. Other mechanisms
for allowing parallel computation such as Grid based systems are also becom-
ing increasingly commonly available. However, currently there seems to be
little interest in exploiting this extra processing power within the context of
geostatistics.

In this paper we review the existing parallel approaches for geostatistics.
By recognising that different natural parallelisms exist and can be exploited
depending on whether the dataset is sparsely or densely sampled with respect
to the range of variation, we introduce two contrasting novel implementations
of parallel algorithms based on approximating the data likelihood extending
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the methods of Vecchia [1988] and Tresp [2000]. Using parallel maximum
likelihood variogram estimation and parallel prediction algorithms we show
that computational time can be significantly reduced. We demonstrate this
with both sparsely sampled data and densely sampled data on a variety of
architectures ranging from the common dual core processor, found in many
modern desktop computers, to large multi-node super computers. To highlight
the strengths and weaknesses of the different methods we employ synthetic
data sets and go on to show how the methods allow maximum likelihood based
inference on the exhaustive Walker Lake data set.

2 Introduction

The problem of large datasets was once considered a solved issue Schaben-
berger and Gotway [2005]. By using method–of–moments variograms and
moving window kriging, all but the very massive dataset are computationally
tractable. In recent years the popularity of and interest in maximum likeli-
hood based algorithms has grown. Problems are encountered computationally
with likelihood based methods when more than a few thousand observations
are encountered.

Parallel geostatistics is not a new topic and has been considered previously
by Pedelty et al. [2003], Gebhardt [2003] and Kerry and Hawick [1998]. The
basis of these existing techniques is to perform moving window kriging by as-
signing a prediction area to each processor and predict at the locations for a
given area. The authors neglect to discuss parameter estimation in a parallel
context. Practically, computing the variogram using a method–of–moments
estimator provides few challenges when compared to the computational com-
plexity of prediction since computing the variogram is a O(n2) process.

The motivation for this study lies in a shift in computer microproces-
sor design, where uniprocessor microprocessors are being replaced by multi–
processor or multi–core architectures. Although this new design does not al-
ways result in a speed–up for many geostatistical algorithms. Software typi-
cally needs to be written to utilise such architectures. If the software is built
upon existing libraries such as BLAS1, LAPACK2 and ATLAS3, then these
libraries can be replaced with parallel equivalents. The current version of LA-
PACK comes with configuration options to create multi–threaded versions
where the number of threads can be specified. One warning however is that
some users have noted decreased computational speeds due to synchronisation
and communication between different threads.

In this paper we discuss data parallelism approaches for performing geo-
statistics. In contrast to task parallelism, data parallelism relies on splitting

1 http://www.netlib.org/blas/
2 http://www.netlib.org/lapack/
3 http://math-atlas.sourceforge.net/
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the data into a number of smaller clusters and performing calculations across
a number of processors.

We utilise the Message Passing Interface (MPI) for intra–node commu-
nication since this is the de facto standard for parallel programming. Im-
plementations of MPI can be found for most architectures from the largest
massively parallel super–computers to a standard desktop with a dual–core
processor. During the development of this software we used the Matlab com-
patible application Octave4 and MPITB [Fernández et al., 2004] which is a
MPI implementation compatiable with Matlab and Octave. Octave does not
have the licensing restrictions that Matlab has so is ideal for using on a mul-
tiple processor machine.

3 Methodologies

We discuss and implement two methods in this paper. The first method we
consider is that of Vecchia [1988] which can be used to approximate the likeli-
hood function. The second method, the Bayesian Committee Machine (BCM)
is used for prediction using all of the data. We compare the results with tradi-
tional geostatistics that such as method–of–moments variograms and moving
window kriging.

3.1 Vecchia’s approximation

Vecchia [1988] approximation is based on the multiplicative theorem which
states for any number of N events: z1, . . . , zN the following relationship holds:

p (z1 ∩ z2 ∩ . . . ∩ zN ) = p (z1) · p (z2|z1) · . . . · p (zN |z1, z2, . . . , zN−1) (1)

where p (za|zb) is the conditional probability of za given zb Pardo-Igúzquiza
and Dowd [1997].

In the case of a multivariate probability density function, the following
relationship is obtained:

p (Z (x)) =
N∏

i=1

p (Z (xi) |Z (x1) , . . . , Z (xi−1)) (2)

One then assumes that some of the information in the dataset is redundant
and hence instead of conditioning on the whole dataset the observations are
conditioned on smaller subsets of size m < (i − 1) where i is the current
observation of the dataset. This gives the following relationship:

p (Z (xi) |Z (x1) , . . . , Z (xi−1)) ∼= p (Z (xi) |Z (x1) , . . . , Z (xm)) (3)

4 http://www.octave.org
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where the approximation becomes almost exact as m approaches the number
of observations in the dataset.

Assuming that data is a zero mean multivariate Gaussian, the conditional
probability p (Z (xi) |Z (xj)) where j = 1, . . . ,m is also Gaussian for any
observation i and any conditioning subset size m and is given by

N
(
ΣijΣ

−1
jj Z (xj) , Σii −ΣijΣ

−1
jj Σji

)
(4)

where Σij refers to the covariance between the observation i and the obser-
vations in the conditioning subset j. The following give the mean:

Σi|j = Σii −ΣijΣ
−1
jj Σji (5)

and covariance:
µi|j = ΣijΣ

−1
jj Z (xj) (6)

conditioned on a subset of j observations where Σjj is a j × j covariance
matrix between the points of vector yj , Σij is a vector of covariances between
the ith observation and m points of the vector yj and yj are m observations
at locations chosen for each subset.

This leads to the following log likelihood approximation:

L (θ) = −N
2

log (2π)− 1
2

n∑
i=1

log
∣∣∣Σ (θ)i|j

∣∣∣− 1
2

n∑
i=1

Z (x)T Σ (θ)−1
i|j Z (x) (7)

which instead of depending the inverse of a covariance matrix Σ (θ)−1 of size
N , depends on i covariance matrices of maximum size m. Hence the smaller
size m the more computationally efficient the algorithm is but at the expensive
of yielding a poorer approximation to the true probability density function.

Although Vecchia [1988] notes that the orderings of the data makes a dif-
ference to the approximation, this is not considered a significant issue and it
is not dealt with. A number of years after this approximation method was
proposed, Stein et al. [2004] suggested a number of improvements to the al-
gorithm. Firstly it is suggested that the approximation gives better results
when the observations are ordered so as to give clustered data. Secondly, by
not only conditioning on observations near, but also on some observations far
away, the approximation is further improved.

Since the approximate maximum likelihood approach has reduced the cal-
culation to a sum of a number of independent calculations, a parallel imple-
mentation follows trivially. A further desirable feature is that all the data
need not be sent to each process in the parallel system. How much data sent
to each process depends on m, the size of the conditioning data. Particularly
accurate approximations to the likelihood can be achieved with large m.

One serial implementation of the approach of Vecchia [1988] was presented
by Pardo-Igúzquiza and Dowd [1997]. Since the computation of the condition-
ing subsets is an embarrassingly parallel problem, it can be easily parallelised.
Figure 1 shows a simple pseudo code parallel algorithm.
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1 . Master to broadcast covar iance parameters to each proce s s
( MPI Bcast )

2 . Master to s c a t t e r t r a i n i n g data to each proce s s
( MPI Scatter )

3 . Each node to c a l c u l a t e l i k e l i h o o d o f each supp l i ed
obs e rva t i on s cond i t i oned on a subset o f the data

4 . Master to c o l l e c t l og l i k e l i h o o d s and sum ( MPI Reduce )

Fig. 1. Pseudo code for Vecchia approximation

3.2 Bayesian Committee Machine

The Bayesian Committee Machine was proposed by Tresp [2000] as an alter-
native method for reducing the computational complexity of prediction and
has been frequently applied in the context of machine learning. Using this
model, the data is split up into submodels or committees and weighted by
the inverse variance or precision at the prediction location. The BCM has an
equivalence to kriging with a number of additional assumptions.

One important feature to note about the BCM is that it is a transductive
method rather than an inductive method. The term transductive means that
the method computes a model dependent on a user specified set of prediction
locations [Schwaighofer and Tresp, 2003]. In this way, knowledge about the
covariance between the prediction locations is exploited in the approximation.

It has been shown by Schwaighofer and Tresp [2003] that the BCM method
is equivalent to assuming a low–rank covariance matrix where the exact block
diagonal structure of the full covariance is retained. As with many low–rank
matrix approximations or their equivalents the concept of knots, pseudo inputs
or active points are used. For example, assuming a dataset of observations,
(xi, yi) : i = 1, . . . , n, where a subset of the locations (xj) : j = 1, . . . ,m are
selected and termed the active set. The low–rank covariance, Σ̂ or approxi-
mation to the full covariance matrix Σ is given by:

Σ̂ = c(d)C−1c(d)′ (8)

where c(·) is the approximate covariance function and C is the covariance
matrix between the locations selected for inclusion in the active set.

The BCM assumes that the prediction locations compose the active set
which we will denote as Σpred. The apparent limitation of having to compute
the covariance matrix (and the inverse) of the prediction locations is not too
restrictive since smaller prediction covariance matrices can be created and
the BCM equations can be repeatedly calculated without a growth of the
algorithm complexity.

The predictive distribution equations are calculated as:

Ẑbcm = Σbcm

W∑
w=1

Σ̃−1
w Ẑw (9)
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where Σbcm is the predictive covariance is given by:

Σ−1
bcm = − (W − 1)Σ−1

pred

W∑
c=1

Σ̃−1
w (10)

where W is the number of committees used and Σpred is covariance matrix
between the prediction locations [Tresp, 2001]. An interesting observation is
that the BCM predictive mean is constructed from a weighted sum of the
individual committee members predictive means:

Ẑw = c(d)T
wΣ−1

w Zw (11)

where the matrix Σw is the covariance matrix of the observations assigned to
committee w. The covariance between the prediction locations and the loca-
tions assigned to the committee is denoted by c(d)w. The prediction locations
are conditioned on the observed data assigned to a committee w by:

Σ̃ = Σpred − c(d)T
wΣ−1

w c(d)w. (12)

Another observation is that the weights are obtained by the inverse predictive
covariance (or predictive precision) at the prediction location. Effectively the
BCM scales the contribution of each committee based on how confident it is
about the prediction from each committee. Substituting the individual com-
mittee members predictive means and variances gives full expressions for the
full predictive mean:

Ẑbcm = Σbcm

W∑
w=1

(
Σpred − c(d)T

wΣ−1
w c(d)w

)−1
c(d)T

wΣ−1
w Zw (13)

and predictive variance:

Σbcm =

(
− (W − 1)Σ−1

pred

W∑
w=1

(
Σpred − c(d)T

wΣ−1
w c(d)w

)−1

)−1

. (14)

Equations 13 and 14 indicate that there are a number of matrix inversions
needed for this calculation. Some of these matrix inversions can be performed
independently of other calculations and hence in parallel. The iterations in
the sum calculation are completely independent of each other. By assigning
these iterations to other processors in a parallel system it is proposed that
speed–ups can be achieved since the main bottleneck in this algorithm (and
many other geostatistical algorithms) is the matrix inversion.

For the BCM parallel implementation, the individual committee predictive
mean and predictive variance will be performed on separate processors. The
calculations of the predictive mean and predictive variance require the inverse
of a matrix of the same size as the number of observed data assigned to each
committee. A further inversion is needed to calculate the inverse of the pre-
dictive variance which is a matrix of the same size as the number of prediction
locations. The basic algorithm for a parallel BCM is given in Figure 2.
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1 . Master to broadcast committee parameters to each proce s s
( MPI Bcast )

2 . Master to broadcast t e s t data l o c a t i o n s to each proce s s
( MPI Bcast )

3 . Master to s c a t t e r t r a i n i n g data to each proce s s
( MPI Scatter )

4 . Each node to c a l c u l a t e the c o n t r i b u t i o n o f a s s i gned
committee

5 . Master to c o l l e c t the mean and var iance at the t e s t
l o c a t i o n s from each proce s s and sum r e s u l t s ( MPI Reduce )

Fig. 2. Pseudo code for parallel Bayesian Committee Machine.

3.3 Moving window kriging

One approach to performing kriging with large datasets was introduced
by David [1976]. A specified search radius from the prediction location is used
to select a local neighbourhood of observations to use in the kriging system.
This neighbourhood moves according to the location which is being predicted.
An alternative approach for selecting the neighbourhood is to select a prede-
termined number of near observations for each prediction location. As noted
by Davis and Culbane [1984], these methods produce spurious behaviour in
some of the estimates and hence should be used with caution, this is appar-
ent as observations are added or removed from the moving window. Ad–hoc
methods of subsetting the data were formalised by the moving-window ap-
proach of Haas [1995], although the local covariance functions fitted within
the window may yield incompatible covariances at larger spatial lags. Cressie
[1993] states that for datasets that are large, the general feeling is that krig-
ing is impossible and ad–hoc local kriging neighbourhoods are typically used.
Isaaks and Srivastava [1989] devote a whole chapter to choosing an effective
search strategy. Implementations of kriging tend to use this approach for per-
forming kriging efficiently. Here we use the moving window kriging approach
as a means of benchmarking the BCM.

4 Experimental setup

4.1 Datasets

To test these methods we simulate two large spatial datasets, each with 40,000
observations on a grid of 200 × 200 points. To do this we use the Turning
Bands method of simulation [Emery and Lantuéjoul, 2006] since large datasets
can be simulated without prohibitive running times. Figure 3 shows the two
simulated fields. Both datasets were simulated with an exponential covari-
ance function. The first dataset was simulated with an effective range of 15m
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and the second dataset has an effective range of 150m. We sample 20,000 ob-
servations from each dataset using simple random sampling. We use this for
learning the model parameters and prediction. We use the remaining 20,000
observations for cross–validation to test our model.

Fig. 3. Plots of simulated datasets with exponential covariance and (left) short
range parameter (right) long range parameter.

4.2 Software

For the experiments in this paper we used an 8 node tightly coupled parallel
system where we compared the performance using 1, 2, 4 and 8 processors.
We choose LAM/MPI5 implementation of the MPI standard.6 ATLAS was
compiled with the thread support disabled. The software was written using
the Matlab language and executed in Octave although we hope to release a
standalone implementation soon.

5 Results

The results from the experiments are split into two tables. Table 1 shows
the Mean Average Error (MAE) of using the Vecchia method to estimate the
covariance parameters and then we predict at the cross–validation locations.
The first thing to notice is how the prediction results do not change depending
on the number of processors used which is to be expected. As the number of
5 http://www.lam-mpi.org/
6 http://www-unix.mcs.anl.gov/mpi/
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observations used in the conditioning subset, the MAE decreases with both
datasets. The effect seems less pronounced with Dataset 2 however. The tim-
ings are taken after 10 iterations of the conjugate gradient minimisation of
the approximate likelihood. For the BCM algorithm we compare this directly

Table 1. Performance of parallel maximum likelihood using Vecchia’s method

Processors Subset Size Time (s) MAE Dataset 1 MAE Dataset 2

1 50 50.84 34.44 36.23
2 50 30.75 34.44 36.23
4 50 20.74 34.44 36.23
8 50 16.44 34.44 36.23

1 100 240.12 31.71 34.83
2 100 130.47 31.71 34.83
4 100 70.33 31.71 34.83
8 100 40.34 31.71 34.83

1 200 1290.38 30.43 34.01
2 200 640.69 30.43 34.01
4 200 340.91 30.43 34.01
8 200 180.34 30.43 34.01

to MWK (Moving Window Kriging). By increasing the size of each commit-
tee, it can be seen that the computational complexity increases. However,
increasing the number of processors reduces the computational burden. As to
be expected and as the previous results, the MAE does not change depend-
ing on the number of processors used. In this experiment, by increasing the
committee size seems to reduce the MAE for Dataset 2 more markedly than
with Dataset 1.

The results for MWK show that for Dataset 1, where the range parameter
is short with respect to the overall scale of the dataset, that MWK out per-
forms the BCM in terms of prediction accuracy, although the computational
speed is significantly slower. This can reduced of course by applying MWK to
a parallel processor computer. With Dataset 2 where the range parameter is
long with respect to the overall scale of the data, the effect seems less severe.
The BCM seems to perform equally as well as MWK in terms of prediction
accuracy, however in terms of prediction speed, the BCM is many more times
more efficient.

6 Conclusions

In this paper we have considered two methods for applying parallel geostatis-
tics. Firstly we looked at approximating the likelihood using a well known
technique in geostatistics [Stein et al., 2004]. We showed how this was partic-
ularly effective when the range parameter was short when compared with the
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Table 2. Performance of parallel BCM and moving window kriging

Processors Subset Size Time (s) MAE Dataset 1 MAE Dataset 2

1 250 1.84 27.92 22.15
2 250 2.05 27.92 22.15
4 250 1.92 27.92 22.15
8 250 2.14 27.92 22.15
MWK 250 224.23 22.10 22.19

1 500 3.67 27.83 21.62
2 500 3.27 27.83 21.62
4 500 2.84 27.83 21.62
8 500 2.34 27.83 21.62
MWK 500 573.74 21.95 21.22

1 1000 11.90 27.53 20.76
2 1000 6.75 27.53 20.76
4 1000 3.98 27.53 20.76
8 1000 2.85 27.53 20.76
MWK 1000 1473.34 22.01 20.90

overall scale of the area of interest. When applied to Dataset 2, with a long
range parameter, the performance was poorer. Increasing the number of pro-
cessors reduced prediction time. Using two processors does not exactly half
the calculation time due to overheads of distributing the data to the other
processor. In terms of the computational complexity of this algorithm, the
distribution of data will cause a short delay (depending on the architecture of
the system.

The second technique we looked as was the BCM. This was shown to
be equivalent to a low–rank covariance matrix approximation with the exact
diagonal structure of the true covariance matrix retained. Low–rank methods
are particularly useful when the range parameter of the dataset is long when
compared with the overall scale of the dataset. Hence it is to be expected
that the BCM performs better on Dataset 2. The BCM provides an effective
alternative to moving window kriging when large datasets are encountered. For
the BCM experiments the covariance function parameters were determined
a–priori. Another advantage of using the BCM method is that all the data
in the dataset is used for prediction rather than a subset. We are aware of
an unpublished work that provides an approximation to the BCM likelihood
using a Laplace propagation technique. This will be implemented in future
versions.

The methods presented here are effective when applied to a specific geosta-
tistical problems. They enable principled geostatistics to be applied to large
datasets.



Parallel geostatistics for sparse and dense datasets 11

Acknowledgements

This work is funded by the European Commission, under the Sixth Framework
Programme, by the Contract N. 033811 with the DG INFSO, action Line IST-
2005-2.5.12 ICT for Environmental Risk Management. The views expressed
herein are those of the authors and are not necessarily those of the European
Commission.

References

Noel A.C. Cressie. Statistics for Spatial Data. John Wiley and Sons, New York,
1993.

M. David. The practice of kriging. Advanced Geostatistics in the Mining Industry,
31:461, 1976.

M. W. Davis and P. G. Culbane. Contouring very large data sets using kriging.
Geostatistics for Natural Resources Characterization, 2:599–619, 1984.
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