Incorporation and release of macromolecules from biodegradable polymer vehicles

Peacock, Sarah J. (1995). Incorporation and release of macromolecules from biodegradable polymer vehicles. PHD thesis, Aston University.

Abstract

The initial objective of this work was to evaluate and introduce fabrication techniques based on W/0/W double emulsion and 0/W single emulsion systems with solvent evaporation for the incorporation of a surrogate macromolecule (BSA) into microspheres and microcapsules fabricated using P(HB-HV}, PEA and their blends. Biodegradation, expressed as changes in the gross and ultrastructural morphology of BSA loaded microparticulates with time was monitored using SEM concomitant with BSA release. Spherical microparticulates were successfully fabricated using both the W/0/W and 0/W emulsion systems. Both microspheres and microcapsules released BSA over a period of 24 to 26 days. BSA release from P(HB-HV)20% PCL 11 microcapsules increased steadily with time, while BSA release from all other microparticulates was characterised by an initial lag phase followed by exponential release lasting 6-11 days. Microcapsules were found to biodegrade more rapidly than microspheres fabricated from the same polymer. The incubation of microparticulates in newborn calf serum; synthetic gastric juice and pancreatin solution showed that microspheres and microcapsules were susceptible to enzymatic biodegradation. The in vitro incubation of microparticulates in Hank's buffer demonstrated limited biodegradation of microspheres and microcapsules by simple chemical hydrolysis. BSA release was thought to ocurr as a result of the macromolecule diffusing through either inherent micropores or via pores and channels generated in situ by previously dissolved BSA. However, in all cases, irrespective of percentage loading or fabrication polymer, low encapsulation efficiencies were obtained with W/0/W and 0/W techniques (4.2±0.9%- 15.5±0.5%,n=3), thus restricting the use of these techniques for the generation of microparticulate sustained drug delivery devices. In order to overcome this low encapsulation efficiency, a W/0 single emulsion technique was developed and evaluated in an attempt to minimise the loss of the macromolecule into the continuous aqueous phase and increase encapsulation efficiency. Poly(lactide-co-glycolide) [PLCG] 75:25 and 50:50, PEA alone and PEA blended with PLCG 50:50 to accelerate biodegradation, were used to microencapsulate the water soluble antibiotic vancomycin, a putative replacement for gentamicin in the control of bacterial infection in orthopaedic surgery especially during total hip replacement. Spherical microspheres (17.39±6.89~m,n=74-56.5±13.8~m,n=70) were successfully fabricated with vancomycin loadings of 10, 25 and 50%, regardless of the polymer blend used. All microspheres remained structurally intact over the period of vancomycin release and exhibited high percentage yields( 40. 75±2 .86%- 97.16±4.3%,n=3)and encapsulation efficiencies (47.75±9.0%- 96.74±13.2%,n=12). PLCG 75:25 microspheres with a vancomycin loading of 50% were judged to be the most useful since they had an encapsulation efficiency of 96.74+13.2%, n=12 and sustained therapeutically significant vancomycin release (15-25μg/ml) for up to 26 days. This work has provided the means for the fabrication of a spectrum of prototype biodegradable microparticulates, whose biodegradation has been characterised in physiological media and which have the potential for the sustained delivery of therapeutically useful macromolecules including water soluble antibiotics for orthopaedic applications.

Additional Information: Department: Pharmaceutical and Biological Sciences If you have discovered material in Aston Research Explorer which is unlawful e.g. breaches copyright, (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our Takedown Policy and contact the service immediately.
Institution: Aston University
Uncontrolled Keywords: microspheres and microcapsules,biodegradation of poly(α,β esters),O/W, W/O/W and W/O emulsion with solvent evaporation,poly(lactide-co-glycolide),poly(hydroxybutyrate/hydroxyvalerate)
Completed Date: 1995-04

Download

[img]

Export / Share Citation


Statistics

Additional statistics for this record