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Abstract 

The spreading time of liquid binder droplet on the surface a primary particle is analysed 

for Fluidized Bed Melt Granulation (FBMG). As discussed in the first paper of this series 

(Chua et al., 2010a) the droplet spreading rate has been identified as one of the 

important parameters affecting the probability of particles aggregation in FBMG. In this 

paper, the binder droplet spreading time has been estimated using Computational Fluid 

Dynamic modeling (CFD) based on Volume of Fluid approach (VOF). A simplified 

analytical solution has been developed and tested to explore its validity for predicting the 

spreading time. For the purpose of models validation, the droplet spreading evolution 

was recorded using a high speed video camera. Based on the validated model, a 

generalized correlative equation for binder spreading time is proposed. For the operating 

conditions considered here, the spreading time for Polyethylene Glycol (PEG1500) 

binder was found to fall within the range of 10-2 to 10-5 s. The study also included a 

number of other common binders used in FBMG. The results obtained here will be 

further used in paper III, where the binder solidification rate is discussed. 
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1. Introduction 
In Fluidized Bed Melt Granulation (FBMG) processes, primary particles are fluidized with 

air while hot molten liquid binder is sprayed into the fluidized bed. The binder droplets 

come into contact with the primary particles or granules and rapidly spread before 

solidifying on the particle surface. If a particle or granule collides with another, while some 

of the binder is wet, the two might stick, thus giving rise to an increase in size.  

 

The granulation rate is related to the granule-granule collision rate, droplet spreading rate 

and droplet solidification rate. In series I of this study we have shown that granule-granule 

collision rate in a typical FBMG occurs in a time scale in the range of 0.01 second. In this 

series, we are mainly interested in identifying the liquid droplet spreading time and the 

corresponding final spreaded area at an equilibrium state. If the binder spreading rate is 

much faster than the granule-granule collision rate, the droplet will have sufficient time to 

spread over the particle surface before collision occurs, hence, the aggregation probability 

is higher. On the other hand, if the binder spreading rate is much slower than granule-

granule collision rate, the primary particles are more likely to collide on a dry surface, 

hence, reducing the aggregation efficiency.  

 

Binder spreading time relative to binder solidification time determines the dynamic of 

binder wetting process. If the spreading time scale is shorter than solidification time 

scale, the binder droplet will be able to spread to its equilibrium contact angle. If 

spreading time scale is longer than solidification time scale, the binder droplet will start 

to solidify before the droplet completes the spreading process. In the second case, the 

application of equilibrium contact angle to predict wetted area per droplet will not be 

appropriate. Therefore, it is necessary to determine spreading time scale in order to gain 

better understanding of the granulation process. 

 

Spreading of macroscopic drops of Newtonian liquids on smooth surfaces has been 

studied experimentally and theoretically in detail during the past few decades (Tanner, 

1979; Chen, 1988; Brenner and Bertozzi, 1993; Rafaï et al. 2004). Tanner (Tanner 1979) 

described the evolution of the droplet radius,  d  on a planar surfaces as function of time, 
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 nCtd  , where the value of the power n depends on the dominance of forces on 

spreading. When capillarity dictates the spreading 101n , while the gravity dominates 

when 81n . Experimental evidence (Ausserré, 1986; Cazabat and Cohen-Stuart, 1986; 

Chen, 1988) supports the universality of Tanner’s laws. Rafaï et al. (2004) showed that 

Tanner's law could also be derived from droplet spreading measurements of non-

Newtonian polymer droplets. 

 

Modeling of liquid droplet spreading on solid surfaces has been studied in the past, 

particularly that of relevance to the field of printer inkjet printing (e.g. Clarke et al., 2001). 

This was usually modeled in two dimensions using lubrication approximations where the 

flow is heavily simplified (Hocking, 1992). Nowadays,  there are many efforts to model 

the spreading characteristics computationally using fully nonlinear system equations 

such as the Volume of Fluid (VOF) method (e.g. Gopala and van Wachem, 2008) and 

the Overall Energy Balance (OEB) method (e.g. Gu and Li 1998). The OEB method 

models liquid spreading process on solid surfaces by considering the potential energy 

due to interfacial tension and kinetic energy balanced by the energy dissipation during 

spreading. The VOF, on the other hand, includes four common methods: (1) Flux-

corrected transport by Boris and Book (1973), (2) Lagrangian piecewise linear interface 

construction by van Wachem and Schouten (2004), (3) Compressive interface capturing 

scheme for arbitrary meshes (CICSAM) by Ubbink(1997) and (4) inter-gamma scheme 

by Jasak and Weller (1995). Each of these methods employs a different approach to 

track the phase interface. In a recent comprehensive review by Gopala and van 

Wachem (2008) it was shown that the CICSAM and inter-gamma scheme are the most 

accurate in conserving mass and tracking the interface. CICSAM and inter-gamma 

scheme were also found to be flexible in terms of arbitrary mesh usage, as they do not 

require direction splitting for higher geometric dimensions.  

 

In this paper, liquid binder droplet spreading is studied using three different 

complementary methods; a commercial CFD package (Fluent Ver. 6.3), high speed 

digital video recording and “theoretical” dimensional analysis. The binder spreading on 

flat surface is simulated using CICSAM VOF method built in the Fluent package. The 
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CFD predictions are compared with the spreading behavior of Polyethylene Glycol 

(PEG1500) droplet captured by a high speed camera. The validated model is then used 

to simulate the droplet spreading behavior on a smooth curved surface, in a similar 

scale and condition typically found in a spray FBMG. Finally, a dimensional analysis is 

conducted to derive a predictive equation of the spreading rate in terms of the binder 

physical parameters and the primary particle size. Using this equation, the binder 

spreading time for different binder characteristics in FBMG processes is presented. 

 

2. Simplified theory 
We wish to know the time required for a drop of binder, of diameter od , to spread over 

the surface of a single primary particle, of diameter pD  (see Fig 1). For this purpose, we 

propose that the spreading process is driven by the effective surface tension,  cos , 

and resisted by the viscosity of the binder,  . In Fig. 1, we represent the spreading drop 

as a cylinder of radius, a , and height, h , and neglect the curvature of the granule. The 

surface tension force acting to spread the drop is  cos2 a .  The velocity gradient of 

the liquid in the drop is approximately ha / , so the shear stress is ha / , and the 

retarding force haa /2  . Neglecting inertia requires that these two forces be equal such 

that haaa /cos2 2   , which can be combined with a statement of conservation of 

volume 6/3
0

2 dha  , to give, 
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Spreading ceases when the spreading front reaches equilibrium contact angle. 

Spreaded radius at equilibrium, fa  can be approximated using the geometrical model of 

a droplet at equilibrium resting on a flat surface proposed by Clarke et al. (2001):  
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where fd  is the final spreaded diameter, dV  is the droplet volume and   is liquid-solid 

contact angle. For a given liquid-solid contact angle, fd , is proportional to od , thus, Eq. 

2 reduces to 

owf dKd                (3) 

where  wK  is the constant of proportionality given as function of the contact angle as 

follows: 
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Now, in integrating Eq. 1, we take the initial condition to be 2/00 da  , and the final 

condition to be 2owf dKa  , this gives a spreading time,  

 1
cos64
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

            (5) 

 

For PEG1500, at around 55 oC, we measured the contact angle to be o35 , giving 

2wK , thus according to Eq. 3, the diameter of the final wetted area is of dd 2 . 

Substituting for a droplet size of 40 m diameter, along with the PEG1500 physical 

parameters given in Table 1, Eq. 5 gives a spreading time of 9.510-6 seconds. 

 

Since the above represents a simplified solution, which assumes constant physical 

properties of the spreading binder and neglects the effect of particle curvature and  , 

we seek to explore more accurate solution by numerical simulations as shown in the 

following section.  

 

3. Simulation 

3.1. VOF model (Fluent) 
The so called “Volume of Fluid” model, built in the Fluent simulation package, was used 

to simulate the binder spreading process. The crux of the VOF method is to track the 
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binder-air interface, without inter-penetration of the two media, by solving continuity, 

momentum and energy equations within a control volume with bulk phase of binder and 

air. The continuity equation for the dispersed phase volume fraction l  within the control 

volume can be written as follows: 
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In the problem considered here, Eq. 6 is solved for the both dispersed phases, i.e. the 

liquid binder and air, and the volume fraction of the continuous phase is computed such 

that the sum of all volume fractions in each cell is unity.  This allows the estimation of 

physical properties within each cell. For instance, the effective density and viscosity are 

obtained as follow: 
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This approach permits a single momentum balance equation throughout the 

computational domain providing the coupling between the volume fractions and the flow 

through local physical properties. The momentum balance equation,  
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is solved within the domain. The viscosity  and density  are effective values computed 

using Eq. 7. Note that in Eq. 8 the gravity force is omitted, because the droplet length 

scales are below the capillary length scale. The term F


 in Eq. 8 represent volume 

forces. Following Brackbill et al. (1992), the surface tension forces, modeled using 

Continuum Surface Force (CSF) method, is implemented in the momentum equation as 

a volume force via divergence theorem. This approach gives, 
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where   is the curvature of the interface. Since the interface is tracked through the 

propagation of the volume fraction l , the curvature,   can be defined as,  
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where n̂  is the surface normal vector. 

 

Liquid volume fraction at the liquid-air interface is tracked using CICSAM-scheme 

(Compressive Interface Capturing Scheme for Arbitrary Meshes) proposed by Ubbink’s 

(1997). Surface adhesion of the binder (liquid phase) forms a contact line with contact 

angle  . Following Brackbill et al. (1992), the contact angle is used to estimate the 

curvature of the surface near the wall. The surface normal at the live cell next to the wall 

is defined using the contact angle as follows: 

 sinˆcosˆˆ ww tnn                      (11) 

 

where wn̂  and wt̂ are the unit vectors normal and tangential to the wall, respectively. The 

surface normal vector is used to determine the local curvature of the interface used in 

Eq. 10.   

 

A heat transfer model was incorporated in the VOF solution to track the temperature 

changes in the spreading liquid binder. One energy equation is shared among the 

phases, as shown below: 

      TkPEvE
t eff

  

         (12) 

where isothermal boundary condition is implemented on the granule surface. The effect 

of temperature variation on the binder physical properties (except on binder viscosity) 

are assumed negligible.  

 

Eqs. 6 to 12 are all solved simultaneously using Fluent (version 6.3) simulation package. 

Similar application of Fluent,  where liquid droplet spreading behavior is studied 

numerically, can be found in Gunjal et al. (2003) and Lunkad et al. (2007). This study 

however, is a rather more complicated case in which a droplet at a microscale level 

undergoes simultaneous dynamic spreading and solidification in a typical range of 

operating conditions considered in fluidized bed granulation. 
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3.2. Simulation procedure 
Spreading of a spherical liquid droplet of PEG1500 on a flat and curved surface is 

considered in this simulation. The simulations on the flat surface are used to validate the 

VOF model with experimental data. The validated model is then considered for curved 

surface to mimic the spreading of liquid droplet on the surface of a suspended particle in 

a typical droplet and particle sizes that exist in a FBMG. 

 

The simulation of a droplet touching a planar glass surface was carried out using a 

three-dimensional rectangular box with a Cartesian grid. The grid size is set at 10 cells 

per radius. Previously Bussmann (2000) studied the effect of the grid resolution using 10, 

16 and 25 cells per radius, where it was concluded that a grid resolution of 10 cells per 

radius was sufficient to capture accurately the dynamics of droplet spreading. The 

computational domain size used in the zyx ,,  coordinates is od2 , od2 , and od15.1  

respectively,  where od  represents the initial droplet diameter.  

 

In the model boundaries, no slip condition is specified at the spreading surface and all 

the remaining faces are defined as pressure inlets. Also on the spreading surface, 

isothermal boundary condition is specified and the liquid-surface static contact angle 

(determined from experimental measurement) was imposed in the model solution.  

 

The viscosity of PEG1500 is incorporated in the model using experimentally determined 

correlation as discussed in section 4.1. Following Bicerano (2002), the surface tension 

of PEG1500 is considered to be independent of temperature. 

 

4. Validation experiment 

4.1. Experimental set up and procedure 
PEG1500 (supplied by BP Chemicals, UK) is solid at room temperature; therefore the 

solid flakes were heated to the desired temperature above the melting temperature in a 
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controlled reservoir using a hot plate. Two different initial droplet temperatures of 50o C 

and 67o C were considered. A glass plate, cleaned with acetone and water and dried 

with lint-free tissue, was used as the spreading surface. The droplet of the melt was 

dispensed using a calibrated syringe, 0.97 mm inside diameter (KDS1812P, Kahnetics) 

and allowed to fall freely from the height of 3 cm above the flat glass surface.  A high 

speed camera (FastCam Pro1024, Photron) was orientated toward the glass surface to 

capture the evolution of the droplet spreading. A total of 2000 images were captured at a 

frame rate of 500 frames per second. The resolution of the camera used was 1024×512 

pixels. For illumination, a soft light with color temperature scale of 3100K (KL1500-LCD, 

Zeiss) was placed facing the camera lens and directly behind the spreading area to 

enhance the image quality. The experimental arrangement is shown in Fig. 4. 

 

The variation of PEG1500 viscosity as function of temperature was determined 

experimentally using magnetic bearing rheometer (AR-G2 Rheometer, TA Instruments, 

USA).  For this purpose, 4 mg of solid PEG1500 flakes was used. From experiments 

with 1/10 to 1/1000 shear rates, viscosity of the liquid PEG1500 was found to be 

independent of the shear rate. The variation of viscosity as function of temperature at an 

applied shear rate of 1/10 s-1 is shown in Fig. 5. This experimental data was fitted to a 

power law function to give the PEG1500 viscosity as function of temperature. 

 

4.2. Data analysis method 
In analyzing the liquid droplet spreaded area, a threshold method was used to determine 

the droplet diameter and height from the captured images.  The images were loaded into 

image processing software (ImageJ, version 1.38x) to segment each image into droplet 

area and background. This was done by identifying the pixels with grayscale values 

greater than the droplet region. The total identified segments compromise a spherical 

cap shape which was then used to determine the instantaneous diameter of the 

spreading droplet in a given snapshot.     
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4.3. Validation of the VOF model 
In order to mimic the experimental conditions, the numerical simulations were 

considered for the exact initial droplet size and initial temperature used in the 

experiment. The simulation results for a droplet spreading on a flat glass surface in 

comparison with experimentally captured images are shown in Fig. 6. It is worth noting 

that in the experiments, the droplet was left to fall freely to the surface from a very close 

distance, such that the inertia of impact can be safely ignored. The results shown in Fig. 

6 show a remarkable qualitative agreement between the experimental images and the 

simulation. 

 

A quantitative validation of the model predictions is shown in Fig. 7. The variation of the 

spreaded distance, expressed in terms of odd , is shown as function of time for two 

different initial droplet temperatures. odd  is the ratio of dynamic to initial diameter of the 

projected droplet cross-section. In these figures, the final spreaded area is higher for 

higher initial droplet temperature. odd  is found to fall between 1.9 and 1.8 for the initial 

temperature range of 50° and 67° respectively. Despite the slight discrepancy between 

the model and experiment at early stage of spreading shown in Fig. 7b, the model 

provides reasonably accurate description of the spreading behavior and hence accurate 

estimation of the spreading time given that the melt temperature is high enough to reach 

the equilibrium contact angle before solidification.   

 

Here, there is an argument that, the spreading progression might have ceased due to 

binder solidification. However, the predicted temperature profile at the liquid binder-

granule surface interface shown in Fig. 8 indicates less than 20° C drop in temperature 

throughout the spreading time, thus eliminating any possibility of solidification within this 

time scale. In part III of this series, our experimental evidence, and indeed the simulation 

results for solidification time of PEG1500 droplet, confirm a rapid spreading with the time 

scale well below the solidification time scale.  

 

It is also interesting to note that in Fig. 7, the spreading behavior can well be described 

by the simple exponent law of Tanner, nCtd  , where the exponent n  and coefficient C  
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are functions of the initial droplet volume or mass (Tanner, 1979; Summ and Samsonov, 

1999). From these figures, it can be deduced that the exponent coefficient n  falls within 

the range of 0.9-0.13, which is reasonably close to the values reported in Summ and 

Samsonov (1999). The coefficient C  can be expressed in terms of the droplet mass, 

such that pMC  , where the exponent p  deduced from these figure is found to be 

equal to 0.53. 

 

5. Simulation results 

5.1. Effect of contact angle 
Fig. 9 shows the simulation results of the time required to reach equilibrium versus cos  

for various contact angles ranging from 30° (high spreading) to 120° (non-spreading). A 

straight line appears to provide a good fit, indicating that the spreading time is 

proportional to the power law   53.1cos . The spreading time for a small contact angle is 

longer because the binder has a larger spreading distance before the liquid front 

reaches equilibrium.  For large contact angle (non-spreading), the time required to reach 

equilibrium is extremely fast due to the limited spreading distance. 

 

5.2. Effect of particle curvature (Dp/d0) 
In FBMG, the initial droplet size can be varied via the atomizing air pressure. Therefore 

a range of droplet size usually considered in FBMG process has been used here. Fig. 

10 shows simulation results of the spreading time versus a range of particle diameter to 

initial droplet size ratios, op dD . Here, the spreading time appear to linearly decrease 

with increasing the ratio op dD . This could be attributed to (i) curvature effect at 

decreasing particle size (ii) inertia effects at increasing droplet size. A straight line of 

slope equal to -0.5 appear to fit well the simulation data, indicating that the spreading 

time is inversely proportional to the square root of op dD .  
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5.3. Effect of binder surface tension  
The surface tension has a direct effect on the spreading rate, since the liquid front 

velocity is proportional to   cos . Therefore, a higher surface tension implies a faster 

spreading rate. Fig. 11 shows the simulation results of spreading time as function of 1  

for various binder surface tension values between 0.01 and 1.0 N/m. From these 

simulation data, a straight line was fitted, indicating that the spreading time is linearly 

dependent on the inverse of the surface tension.  

 

5.4. Effect of binder viscosity 
Opposite to the effect of surface tension, binder viscosity is a retarding force working 

against the liquid spreading. Fig.12 shows the simulation results of spreading time for a 

range of binder viscosities between 0.01 and 1.0 Pa.s. From the data, the spreading line 

appears to be directly proportional to the viscosity.    

 

6. Generalized correlation of spreading time 
The simplified theory presented in section 2 suggests that the spreading time, w  may 

be related to the following variables: 

  ,,,, pow Ddf             (13) 

 

Using dimensional analysis and the results of numerical simulation shown in section 5, 

we propose that, w  can be expressed in terms of dimensionless variables, such that: 
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where WK  is a constant to be found by plotting the simulation results for the spreading 

time against the value of the term between the main bracket in Eq. 15. For the whole 
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range of conditions considered in Table 2, Fig. 13, shows that the constant of 

proportionality is WK   29.0.  

  

Figs. 14a-d show the spreading time calculated from the above generalized correlation 

in comparison to the values obtained from the VOF model and the simplified analytical 

solution given by Eq. 5. The proposed generalized correlation (Eq. 15) proved to provide 

a good match with the spreading time predicted by the VOF model over a wide range of 

operating conditions. The analytical solution, however, underestimates the spreading 

time, roughly by a factor of 10. This deviation appears to slightly increase as the droplet 

size increases as shown in Fig. 14a. This may be attributed to the fact that the proposed 

analytical solution ignores the effects of the particle curvature and droplet inertia, which 

both becomes important as the droplet size becomes large relative to the particle size. 

Another factor which may have contributed to this deviation is that in the simplified 

analytical solution, the viscosity, as well as the surface tension, is assumed constant, 

while the VOF model incorporates accurate viscosities in term of temperature variations. 

A change in viscosity, as a result of heat loss, leads to slower binder front velocity; 

consequently, the analytical model underestimates the spreading time compared to the 

VOF predictions. 

 

6.1. Spreading time for commonly used binders in FBMG 
PEG1500, CMC and HPC are common binders used in granulation of tablets. Using the 

generalized correlation of Eq. 15, Table 3 shows the spreading time for a droplet size of 

40 µm spreading over a 200 µm diameter particle. The values of surface tension, 

contact angle and viscosity were obtained from reported literature. The spreading time 

for all binders considered is found to fall within the range of 10-5 to 10-3 seconds. 

 

Recalling the particle-particle collision rates discussed in first part I of this study (2.5×10-3 

to 10-2 s), the spreading rates for all of the above discussed binders are sufficient to 

ensure rapid binder spreading rate in a fluidized bed granulator. However, any 

deviations in the binder physical properties from the ranges considered here, such as 

increasing the viscosity beyond 0.2 Pa.s or decreasing the surface tension below 0.01 



 14

N.m−1 may result is significantly longer spreading time, thus, limiting the overall 

granulation efficiency. For successful aggregation, it is desirable to have rapid spreading 

relative to collision and solidification rates. 

 

7. Conclusions 
In this paper, the binder spreading time in the context of fluidized bed granulation 

process is analyzed using an experimentally verified computational fluid dynamic 

modeling based on Volume of Fluid approach (VOF). A simple analytical solution is also 

developed. The VOF predictions are validated with experimental data obtained from 

high speed video recording of droplet spreading.  

 

A generalized relationship for binder spreading time as function of contact angle, droplet 

size, binder contact angle, surface tension and viscosity is obtained by conducting a 

series of parametric analysis using the VOF predictions. Based on this generalized 

relationship, the spreading time for a number of commonly used binders in FBMG 

(PEG1500, CMC 1% and HPC 5-10%) is estimated to fall within the range of 10-5 to 10-3 

s. Due to its simplicity, and the fact that it neglects the particle curvature and possible 

variation in spreading binder physical properties, the proposed analytical solution under 

estimates this spreading time, roughly by a factor of 10. However, this robust method is 

a viable tool for establishing relation between spreading time and operating conditions 

for a microscopic phenomenon that may well be extremely difficult to measure 

experimentally. 
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Notation 
a   instantaneous radius of spreaded droplet (m)

a  velocity of droplet spreading front (m s-1) 

fa final  droplet spread radius (m) 

TC constant defined in Eq. 1 (-) 

1c  constant defined in Eq. 1 (-) 

0d  initial droplet diameter (m) 

fd  final spreaded droplet diameter (m) 

pD primary particle diameter (m) 

E  energy (J) 

F


 continuum surface force, kg m-2 s-2 
g  gravity acceleration constant (m s-2) 

h  instantaneous height of spreaded droplet (m) 

effk  effective thermal conductivity (kg m-1 s-1) 

  constant defined in Eq. 9 (-) 

WK  constant defined in Eq. 3 (-) 
n  constant defined in Eq. 10 (-) 
n  surface normal vector 

n̂  unit normal 

P  pressure (N m-2) 
t  time (s) 
v  velocity (m s-1) 

dV  volume of droplet (m3) 

 
Greek symbols 

w  spreading time (s) 
  liquid fraction (-) 
  viscosity (N m-2 s) 
  density (kg m-3) 
  surface tension (N m-1) 

  contact angle (degrees) 

  radius of curvature (m) 

 
Subscripts 
g  gas phase 
l  liquid phase 
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Fig. 1.  Schematic of the droplet-particle collision process leading to the wetting of the 
particle. 
 

 

 

 

 

 

 

 

 

 

Fig. 2.  Schematic of the approximate representation of a spreading drop. 
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Fig. 3. shows a typical mesh volume of the computational domain used for the case of 
droplet on curved surface. 
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Fig. 4. Schematic representation of the experimental set-up 
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Fig. 5. Experimentally determined PEG1500 viscosity as function of temperature 
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Fig. 6. Comparison of experiment with VOF simulation for a 3 mm PEG1500 droplet 
spreading on a flat glass surface with an initial droplet temperature of 67o C 
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Fig. 7. Model prediction versus experiment result for a 3 mm PEG1500 droplet 
spreading over a glass surface. Initial droplet temperature (a) 50° C (b) 67° C.  
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Fig. 8. Binder temperature profile at the binder spreading surface interface. Initial droplet 
condition of 40 m diameter and 67° C temperature. 
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Fig. 9. Binder spreading rate as function of Contact angle for 0.1 Pa.s viscosity, 0.01N/m 
surface tension, 3 D/d0. The points are VOF simulation results and the line is best fit. 
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Fig.10. Spreading time as function of op dD  for 0.1 Pa.s viscosity, 0.15 N/m surface 

tension, 60o contact angle. Full circle, , refers to VOF simulation results for various 
droplet diameters, od =10, 20, 30, 40, and 80, m at a fixed particle size, pD =120 m. 

Open circle, , refers to simulation results for various particle diameters,  pD = 175, 200, 

300 and 500 m, at a fixed droplet size, od =20 m. The line is best fit. 
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Fig. 11. Binder spreading rate as function of the inverse of the surface tension.  = 0.1 

Pa.s, op dD = 3 and  = 60°. The points represent VOF simulation results and the line is 

best fit. 
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Fig. 12. Binder spreading rate as function of the binder viscosity.  = 0.01 N/m, op dD = 

3 and  = 60°. The points represent VOF simulation results and the line is best fit. 
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Fig. 13. Generalization of spreading time. The symbols refer to different VOF simulation 
conditions as shown in Table  2, the line is best fit. 
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Fig. 14. A Comparison of binder spreading time obtained from the VOF, analytical 
solution and the generalized correlation (a) od =20 µm,  =0.1 Pa.s,  =0.15 N.m−1, 

 =60o (b) od =40 µm,  =0.1 Pa.s,  =0.01 N.m−1, pD =120o (c) od =40 µm,  =0.1 Pa.s, 

 =60o, pD =120o (d) od =40 µm, ,  =0.01 N.m−1,  =60o, pD =120o 
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Table 1. PEG1500 binder properties 

Material PEG1500 

Viscosity (Pa.s) 0.109 a 

Surface tension (N.m−1) 0.15 b  

Density (kg/m3) 1093 b 

Melting temperature (oC) ~ 45.0 
a Measured at 55 oC (This study) 
b Measured at 60 oC (Tan et al., 2006) 

 

Table 2. Simulation parameters used to estimate spreading time shown in Fig 13.  

      

   (Pa.s)  0.01 - 0.7 0.1 0.1 0.1 0.1 

   (N.m−1) 0.01 0.02 – 1.0 0.15 0.15 0.1 

Dp   (m) 120 120 175 - 500 120 120 

d0   (m) 40 40 40 20 40 

    (degree)  60 60 60 60 35 - 70 

 

 

Table 3. Properties of commonly used binders and the corresponding estimated 
spreading time using the generalized correlation Eq. 15 

Binder angle 

(degree) 

Surface tension 

(N.m-1) 

Viscosity 

(Pa.s) 

Spreading time 

(s) 

PEG1500  35 a 0.15 b 0.109 a  2.86×10-4 

CMC 1% c 72 0.72 0.112 1.38×10-5 

HPC 5% d 26 0.43 0.0195 2.06×10-5 

HPC 10% d 46 0.43 0.164 1.17×10-4 
a Measured at 55oC (This study) 
b Measured at 60 oC (Tan et al., 2006) 
c Obtained from Pont et al. (2001) 
d Obtained from Rajnaik et al. (2007)

 

 

 


