
June 1, 2004 17:42 00193

International Journal of Neural Systems, Vol. 14, No. 3 (2004) 1–8
c© World Scientific Publishing Company

EFFICIENT TRAINING OF RBF NETWORKS

FOR CLASSIFICATION

IAN T. NABNEY
Neural Computing Research Group,

Aston University, Birmingham, B4 7ET, UK

i.t.nabney@aston.ac.uk

Received 10 February 2003
Revised 29 Octcber 2003

Accepted 28 April 2003

Radial Basis Function networks with linear outputs are often used in regression problems because they
can be substantially faster to train than Multi-layer Perceptrons. For classification problems, the use
of linear outputs is less appropriate as the outputs are not guaranteed to represent probabilities. We
show how RBFs with logistic and softmax outputs can be trained efficiently using the Fisher scoring
algorithm. This approach can be used with any model which consists of a generalised linear output
function applied to a model which is linear in its parameters. We compare this approach with standard
non-linear optimisation algorithms on a number of datasets.

Keywords: Author to provide.

1. Introduction

Radial Basis Function (RBF) networks with linear

outputs are often used in regression problems be-

cause they can be substantially faster to train than

Multi-layer Perceptrons (MLP). This is because it is

possible to choose suitable parameters for the basis

function parameters by an unsupervised technique

(such as selecting a subset of the data for centres,

using a clustering algorithm such as K-means, or

training a mixture model with EM) so that the hid-

den unit activations model the unconditional input

data density p(x). With the hidden unit parame-

ters fixed, and a sum of squared error function, the

optimisation of the outputs weights is a quadratic

problem that can be solved using the methods from

numerical linear algebra.

In classification problems, rather than directly

outputting a classification it is advantageous to

estimate posterior probabilities p(Ck|x), since this

allows us to compensate for different prior prob-

abilities, combine the outputs of several networks,

make minimum risk classifications under different

cost functions and to set rejection thresholds.1 For

classification problems, the use of linear outputs is

less appropriate as then the network outputs are not

guaranteed to represent probabilities. With MLPs it

is common practice to use logistic (for two class) and

softmax (for multiple classes) output nodes and ap-

propriate cross-entropy error function so as to en-

sure that the outputs sum to one and all lie in the

interval [0, 1]. This does not add significantly to the

time taken to train an MLP since even with linear

outputs, general purpose optimisation routines must

be used.

However, an RBF with logistic or softmax out-

puts no longer has a quadratic error surface for

the output layer. If general purpose optimisation

algorithms are used, much of the speed advan-

tage over MLPs is lost. In this paper we show

how RBFs with logistic and softmax outputs can

be trained efficiently using algorithms derived from

Generalised Linear Models. We compare these mod-

els with standard RBF’s on both synthetic and real

datasets.

1

June 1, 2004 17:42 00193

2 I. T. Nabney

2. Training Generalised Linear Models

A generalised linear model is one where a non-linear

output function is applied to a standard linear re-

gression model. In this section, we first discuss the

choice of the output function and then a particularly

efficient parameter estimation algorithm.

2.1. Generalising linear regression

This brief outline of generalised linear models is

based on that in McCulagh and Nelder.2 In linear

regression theory, it is assumed that the errors fol-

low a normal distribution with constant variance σ2.

The output of the model represents the mean condi-

tioned on the input vector x:

µ = xβ . (1)

In a generalised linear model we replace the normal

distribution for the target random variable Y by a

distribution from the exponential family, which has

the form:

PY (y, θ, φ) = exp{(θy−b(θ))/a(φ)+c(y, φ)} , (2)

where θ is the “natural parameter” and φ is the

“dispersion parameter”. It is easy to show that the

mean µ of PY is a function of θ: µ = b′(θ). For

the normal distribution, θ = µ and φ = σ2. The

generalised linear model has the form

η = xβ and θ = f(η) , (3)

where f is the link function. If η = θ (i.e.. f is the

identity), then the output of the generalised linear

model is the natural parameter of the noise model,

and f = b′ is the canonical link. Both of the gener-

alised linear models we consider in this paper use a

canonical link function.

The normal distribution is not an appropriate er-

ror model for classification problems, for which the

output variable is discrete and not continuous. For a

two-class problem, we use a Bernoulli distribution

P (y) = πy(1 − π)1−y

= exp{ηy − ln(1 + eη)} , (4)

where π, the probability of “success” is the mean,

and η = ln(π/(1 − π)). This corresponds to using a

logistic function π = 1/1 + exp(−η) at the output of

the generalised linear model.

For an m-class problem, we use the multinomial

distribution on m variables:

P (y1, y2, . . . , ym)

=
M !

(y1!)(y2!) · · · (ym!)
py1

1 py2

2 · · · pym

m , (5)

where pi is the probability of the ith class and

M =
∑m

i=1 yi is generally taken to be equal to one.

This implies that the class is represented with a one-

of-m encoding, so that each vector contains zeros

everywhere except for the correct coordinate which

is 1. The model has m outputs and the canonical link

function is the familiar softmax function:

pi =
eηi

m∑

j=1

eηj

, (6)

where η1, . . . , ηm are the natural parameters. In the

statistical literature this is known as multiple logistic

regression.

2.2. Parameter estimation

The obvious starting point for training these models

is to use maximum likelihood. For linear regression,

this is equivalent to minimising the quadratic form

(Y −Xβ)T (Y −Xβ) (7)

with respect to beta, where X is the (input) data ma-

trix and Y is the target matrix. Equating the deriva-

tive to zero yields the normal equations

(XT X)β = XT Y , (8)

which can be solved efficiently by computing the

pseudo-inverse X† of X and setting β = X†Y. This

is numerically more stable than computing explicitly

the inverse of the square matrix XT X.

The error function derived from maximum like-

lihood for both generalised linear models we are

considering is not a quadratic form, and there is

no direct solution using linear algebra; iterative

methods are used instead. In principle, there is no

reason why general purpose nonlinear optimisation

algorithms should not be used, but it is more effi-

cient to take advantage of the special “near-linear”

form of the model. Let L denote the log likelihood of

the observed variables,

L = P (Y|X, β) =

N∏

n=1

P (y(n)|x(n), β) , (9)

June 1, 2004 17:42 00193

Efficient Training of RBF Networks for Classification 3

making the usual assumption that the observations

are independent and identically distributed. Let H =

(∂2L/∂β∂βT) denote the Hessian of L. The Fisher

scoring method is an iterative algorithm for deter-

mining the parameter estimates β; at the rth step

the update formula is

βr+1 = βr − {E[H]}−1 ∂L

∂βr

. (10)

This is the same as the Newton-Raphson algorithm,

except that the expected value of the Hessian re-

places the Hessian.a Normally taking a full Newton

step in nonlinear optimisation is not a good idea,

since it is easy to overshoot the optimum. However,

there are two special features of the generalised linear

model that make this procedure work well in prac-

tice: the log likelihood of logistic models has a single

maximum, and it is possible to initialise the param-

eter vector β reasonably close to the maximum.

The Hessian of the log likelihood for the logistic

model is equal to −XT WX, where W is a diago-

nal weight matrix whose elements are π(n)(1 − π(n))

(where π is defined just after (4)). The gradient of

the log likelihood is equal to XT We, where the nth

row of e is given by

e(n) = (y(n) − π(n))/f ′(η(n)) . (11)

We form the variable zr = Xβr + e, which is the

linearisation of the link function around the current

value of the mean. Then (10) reduces to:

(XT WrX)βr+1 = XT Wrzr , (12)

which is the normal form equation for a least squares

problem with input matrix XT W
1/2
r and dependent

variables W
1/2
r zr (compare with (8). The weight ma-

trix W changes at each iteration, since it is a func-

tion of the parameter vector at the rth step βr. The

algorithm is known as Iterated Re-weighted Least

Squares (IRLS); see McCullagh and Nelder.2

The reduction of the Newton step to the nor-

mal form Eq. (12) depends on being able to find a

square root of W (which is easy in this case, as it

is non-negative diagonal), and to compute XT W1/2

efficiently (which can be done without a full ma-

trix multiplication as W is diagonal). We initialise

the procedure by using the values (y(n) + 0.5)/2.0

as a first estimate for π(n) and from this deriving

the other quantities needed. The uniqueness of the

maximum of L was shown in Auer et al.3

The case of multiple logistic or softmax regression

is a little more complicated (and not so well docu-

mented in the literature). The gradient and Hessian

of the log likelihood of a single input pattern x are

given by

∂L

∂βki
= (pk − yk)xi

∂2L

∂βki∂βlj
= (plδkl − plpk)xixj ,

(13)

where δkl is the Kronecker delta. To show that there

is a unique maximum, it is sufficient to prove that

the Hessian H is positive semi-definite. If a is an ar-

bitrary vector, and we write C = (plδkl −plpk), then

aT Ha = aT xCxT a = (xT a)T C(xT a) ≥ 0 , (14)

since C is the covariance matrix of the multinomial

distribution and is therefore positive semi-definiteb.

The next step in developing an algorithm similar

to that used for a logistic model is to write the Hes-

sian in the form ΞT WΞ. However, when we do this Ξ

is a (mn)×(mp) block matrix containing m copies of

X along the diagonal (and p is the input dimension),

and the matrix W is an m×m block matrix, where

each block is an n×n diagonal matrix containing the

corresponding entries from C for each input pattern.

(See Williams and Barber4 for details). Thus, unlike

the case of the logistic model, W is not diagonal. To

compute the square root of W, we need only find a

Cholesky decomposition of C. However, because C

has m2 non-zero entries, it is no longer clear that

this representation of the problem offers any practi-

cal advantage (in terms of efficiency) and so we have

not taken this approach.

Instead, we have chosen to implement two alter-

native algorithms. In the first we calculate the exact

Hessian by summing terms given by Eq. (13) for each

row in the dataset. The resulting matrix is usually

very ill-conditioned, but using singular value decom-

position, it is numerically tractable to solve the orig-

inal Fisher scoring equation (10). Alternatively, in a

simplified algorithm, we treat each output as inde-

pendent, which yields the same update rule as for the

logistic model (this is no surprise, since the marginal

aIn any case, for the canonical link, the Hessian coincides with its expected value.
bThanks to Chris Williams for pointing this out.

June 1, 2004 17:42 00193

4 I. T. Nabney

distribution for a single output in a multiple logistic

model is binomial with probability pi), although this

is not a good approximation to the true Hessian as

it ignores all off-diagonal terms.

In either case, we initialise the parameters us-

ing the same procedure as for logistic regression, but

treating each output independently. For convenience,

we shall refer to these algorithms as IRLS, though

strictly speaking the “weight” matrix approach is not

used.

3. Nonlinear RBF Networks for

Classification

The output of RBF networks is usually given as a

linear combination of basis functions:

ok(x) =
∑

j

φj(‖x − x(j)‖)wjk , (15)

where x(j) is the “centre” of the jth basis func-

tion. Once the parameters of the basis functions are

fixed, the computation of the output weights is a lin-

ear regression problem, Y = ΦW, with Φ denoting

the design matrix, and W the output layer weights.

(These are completely unrelated to the weights in

Eq. (12). As in Eq. (7), this is solved by computing

the pseudo-inverse of Φ. Because of the form of the

solution, any linear constraint on the training tar-

gets is necessarily satisfied by the network outputs.5

For a multi-class classification problem, where a 1-of-

m encoding is used, the network outputs will sum to

one just as the targets do. However, the network out-

puts need not lie in the range [0, 1] and so it may not

always be possible to interpret them as probabilities.

Instead, we can replace the linear output layer

with logistic (for two-class) and softmax (for more

than 2 classes) models. The parameters of the ba-

sis functions can be learned from the training data,

as it is best to choose Φ to approximate the input

data density.1 We can then use the appropriate

Fisher scoring algorithm from Sec. 2.2 to estimate

the output layer weights W. Software implementing

this model was developed using Netlab,6 a neural

network toolbox written in Matlab
c.

We note that this approach can be used for any

model which applies a logistic or softmax output

activation to a function which is linear in its parame-

ters, provided that there is a way of determining the

matrix Φ.

4. Experimental Results

In this section we present the results of using our

method of training logistic output RBF networks on

classification problems. Their performance is com-

pared with linear output models, and the training

algorithm with scaled conjugate gradient (SCG) and

quasi-Newton optimisation algorithms (Bishop1 is a

useful reference). The RBF networks used thin plate

splines as basis functions (for the reasons given in

Lowe7). The centres were determined using either

K-means or the EM algorithm (so that they approx-

imate the unconditional density of the input data).

The initial output layer weights for the logis-

tic models trained by SCG and quasi-Newton algo-

rithms are taken from a linear output model trained

with a pseudo-inverse, which is an efficient way to

get a much better than random start point. The

initialisation of the output weights for IRLS train-

ing was discussed in Sec. 2.2 and applies IRLS to a

“smoothed” version of the targets.

Note that in all the results reported here, the

reported computational effort does not include the

centre selection phase and is solely for the training

of the output layer weights and biases. All algorithms

had the same stopping criterion; both the absolute

change in the weight vector and the error function

should be less than 1× 10−4.

4.1. Synthetic datasets

Two simple synthetic datasets have been created

with a two-dimensional input space. In the two

class case, data is drawn from a mixture of three

Gaussians, two of which are assigned to one class.

The generating parameters were selected so that the

decision boundaries are non-linear.

The graph in Fig. 1 shows that with linear out-

puts, there are regions of the input space where the

outputs are not confined to the interval [0, 1], and

that this can occur even for training data. The learn-

ing curves in Fig. 2 show that the IRLS training

algorithm is significantly faster than either SCG or

quasi-Newton; this result is confirmed in Table 1.

cAvailable from http://www.ncrg.aston.ac.uk/netlab/index.html The software used in this paper is available from
the “Contributions” section.

June 1, 2004 17:42 00193

Efficient Training of RBF Networks for Classification 5

−4 −3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4

5

 0
 0

 0

 0

 0

 0

 0

0.5

0.
5

0.
5

0.5 0.5

0.
5

0.5

0.5

0.5

 1

 1

 1

 1

−4 −3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4

5

0.1

0.
1

0.1

0.1

0.1

0.5
0.5

0.5

0.
5

0.50.5

0.5

0.9

0.9

0.9

0.9

0.9

0.9

(a) (b)

Fig. 1. Two-class synthetic data. (a) Contour plot of linear output RBF. Contours at 0, 0.5 and 1.0. In the shaded region
the output cannot be interpreted as a probability. (b) Contour plot of logistic output RBF.

0 5 10 15

x 10
5

34

36

38

40

42

44

46

48

50

52

54

IRLS
SCG
quasi−Newton

Fig. 2. Learning curves for logistic output RBF on
two-class synthetic data. Negative log likelihood (y-axis)
against flops ×105 (x-axis).

To test the generality of this result, 10 replicated

datasets were created by randomly sampling from

the same mixture model. Table 2 contains the re-

sults of training 10 networks on these datasets. The

error ratio is computed for each training set by di-

viding the test set error (i.e., negative log likelihood)

of each algorithm by the minimum error across all

the algorithms.

Table 2 shows that the IRLS is on average 6

times faster than the other two algorithms, and the

computational effort is more consistent. It also finds

Table 1. Results on a two-class synthetic
dataset.

Algorithm Flops Error

Linear outputs 22323 —

IRLS 122087 35.2262

SCG 1467342 35.3275

quasi-Newton 1142511 35.2262

Table 2. Results on replicated two-class synthetic
dataset.

IRLS SCG q-N

Mean flops (×106) 0.1635 1.0036 1.0623

S.d. flops (×105) 0.2137 4.0293 1.1322

Mean error ratio 1.000 1.0042 1.000

S.d. error ratio 0.000 0.0028 0.000

the minimum error consistently, as does the quasi-

Newton algorithm, while scaled conjugate gradient

usually converges slightly further away from the min-

imum and is slightly less consistent. The results for

quasi-Newton and scaled conjugate gradient are in

line with those achieved on other neural network

training problems.6

The three-class synthetic dataset is drawn from

a mixture of five Gaussians. Again, a linear output

June 1, 2004 17:42 00193

6 I. T. Nabney

−4 −3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4

5

−4 −3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4

5

(a) (b)

Fig. 3. Three-class synthetic data. (a) Non-probabilistic predictions from linear output RBF (dotted region). (b) Decision
boundaries of softmax output RBF.

Table 3. Results on three-class synthetic data.

Algorithm Flops Error

Linear outputs 59687 —

Softmax: exact Hessian 2050376 94.95

Softmax: simplified 478152 95.60

SCG 11031430 95.01

quasi-Newton 11370906 94.95

Table 4. Results on replicated three-class synthetic
dataset.

Softmax
exact H SCG q-N

Mean flops (×107) 0.2271 1.0586 1.2256

S.d. flops (×106) 0.3024 3.0739 0.6538

Mean error ratio 1.000 1.0042 1.000

S.d. error ratio 0.000 0.0013 0.000

RBF can have non-probabilistic outputs in regions

of input space where the density of training data is

high (see Fig. 3a).

The specialised training algorithms were an order

of magnitude more efficient than SCG and quasi-

Newton (see Table 3). The “simplified” algorithm

was fastest to converge, but tends to take a large

up-hill step when close to the maximum likelihood,

0 2 4 6 8 10 12

x 10
6

90

100

110

120

130

140

150

160

IRLS
SCG
quasi−Newton

Fig. 4. Learning curves for logistic output RBF on
three-class synthetic data. Negative log likelihood (y-
axis) against flops ×106 (x-axis).

so that the algorithm terminates at a sub-optimal

value.

The results from 10 replicas of the three-class

data are given in Table 4. The IRLS algorithm is on

average more than 4.6 times faster than SCG, and

the computational effort is again more consistent.a

As for the two-class problem, the IRLS algorithm

found the minimum reliably. For 7 of the 10 datasets,

the approximate Hessian failed to improve on the

initial weights, and so the results are not tabulated.

June 1, 2004 17:42 00193

Efficient Training of RBF Networks for Classification 7

Table 5. Results on crab data.

Test Set
Algorithm Flops Misclassifications

RBF: Linear outputs 48733 6
RBF: IRLS 364836 4
SCG 3330815 4
quasi-Newton 3245640 4
MLP — 3
Linear Discriminant — 8
Logistic Regression — 4
Gaussian Process — 3
MARS — 8

4.2. Real datasets

We have tried out our method on three well-known

classification problemsd. Leptograpsus crabs, dia-

betes in Pima women and forensic glass.

In the Leptograpsus crabs problem, the task is to

determine the sex of crabs on the basis of 6 mea-

surements. Using the same procedure reported in

Ripley,8 we took 80 training examples and 120 test

examples. The results, with some selected compar-

isons from Barber and Williams,9 are reported in

Table 5. Note that SCG remained stuck in a local

minimum despite several restarts, while IRLS and

quasi-Newton achieved a similar much lower train-

ing set error value. Ten hidden units were used, since

this was the smallest number for which the logistic

RBF trained to a sufficiently low error.

In the diabetes diagnosis problem, the task is to

diagnose whether a subject has diabetes or not on

the basis of 8 variables measuring various disease in-

dicators. There are 200 training examples, and 332

test examples. The default classifier (assigining ev-

ery subject to the healthy class) has an error rate of

33%. The optimal RBF network (chosen using cross-

validation) had 8 hidden units: its results are com-

pared with those achieved by other models (as given

in Ripley10) in Table 6.

In the forensic glass problem, the task is to de-

termine the type of a glass sample from the re-

fractive index and composition (weight fraction of

eight oxides). There are 214 examples with 6 classes,

so performance is estimated using 10-fold cross-

validation.10 To improve performance, a committee

of 10 networks was used for each partition, as was

Table 6. Results on diabetes data.

Miclassification
Algorithm Flops Rate %

RBF: Linear outputs 96723 19.9
RBF: IRLS 436145 21.4
SCG 1469126 21.4
quasi-Newton 6493136 21.4
MLP — 22.6
Linear Discriminant — 20.2
Logistic Regression — 19.9
Gaussian Process — 20.5
MARS — 22.6

Table 7. Results on forensic glass data. The simplified
IRLS algorithm failed to converge.

Algorithm Misclassification Rate %

RBF: Linear outputs 31.4
RBF: IRLS 30.3
MLP 23.8
Linear Discriminant 36.0
Gaussian Process 23.3
MARS 32.2

done by Ripley10 for the MLP. The results are con-

tained in Table 7; for comparison, the default rule

(assigning to the largest class) has a misclassification

rate of 65%.

It should be noted that the computational effort

for both MLP and Gaussian Process methods on this

problem was very large (the latter required 24 hours

on an SGI Challenge) compared with the softmax

RBF approach (which took about 20 minutes on a

less powerful computer). On the third dataset, the

optimal number of hidden units for the linear out-

put RBF was 25, while it was 12 for the non-linear

output RBF.

5. Discussion and Conclusions

In this paper we have demonstrated that the benefits

of using non-linear output functions for classification

problems can be achieved with RBF networks while

still retaining their significant training speed advan-

tage over MLPs. This approach can be applied to any

dAvailable from http://markov.stats.ox.ac.uk/pub/PRNN

June 1, 2004 17:42 00193

8 I. T. Nabney

generalised linear regression model where the non-

linear function parameters can be estimated directly

from the input training data.

The IRLS algorithm is considerably faster than

using more general non-linear optimisation methods.

In our experiments, IRLS achieved the same final

error values as the quasi-Newton algorithm (to 4 dec-

imal places), while scaled conjugate gradient often

terminated at error values that were larger in the

third significant figure. A simplified, more efficient,

algorithm for multi-class problems, which approx-

imates the Hessian of the log likelihood, did not

converge in sufficiently many cases to be of practical

value.

In the future we hope to extend many useful re-

sults for RBFs that depend on the pseudo-inverse

solution for the output weights to the non-linear out-

put models considered in this paper using Eq. (12).

For example, Lowe11 explains the link between the

degrees of freedom of an RBF model and the eigen-

values of the design matrix and Webb and Lowe12

give an interpretation of the hidden units. The single

maximum of the log likelihood means that a Bayesian

approach to regularisation with the Laplace approx-

imation is likely to be effective and we intend to pur-

sue this further. In Hastie and Tibsharani13 there is

an explanation of how to calculate the degrees of free-

dom for a generalised additive model, and it should

be possible to apply this to RBFs.

Acknowledgments

This paper has benefitted from discussions with

David Lowe and Chris Williams.

References

1. C. M. Bishop, Neural Networks for Pattern Recogni-

tion (Oxford University Press, 1995).
2. P. McCullagh and J. A. Nelder, Generalized Linear

Models (Chapman and Hall, London, 1983).
3. P. Auer, M. Herbster and M. K. Warmuth, Expo-

nentially many local minima for single neurons, in
Neural Information Processing Systems 8, (1996),
pp. 316–322.

4. C. K. I. Williams and D. Barber, Bayesian classifi-
cation with Gaussian Processes, IEEE Transactions

on Pattern Analysis and Machine Intelligence, 20

(1998), 1342–1351.
5. D. Lowe and A. R. Webb, Optimized feature extrac-

tion and the Bayes decision in feed-forward classifier
networks, IEEE Transactions on Pattern Analysis

and Machine Intelligence 4 (1991), 355–364, .
6. I. T. Nabney, Netlab: Algorithms for Pattern Recog-

nition (Springer, 2002).
7. D. Lowe, On the use of nonlocal and non positive

definite basis functions in radial basis function net-
works in IEE ANN 1995, (1995), p. 206–211.

8. B. D. Ripley, Flexible non-linear approaches to clas-
sification, in From Statistics to Neural Networks,
eds. V. Cherkassy, J. H. Friedman, and H. Wechsler
(Springer, 1994), p. 105–126.

9. D. Barber and C. K. I. Williams, Gaussian processes
for Bayesian classification via hybrid Monte Carlo, in
Neural Information Processing Systems 9 eds. M. C.
Mozer, M. I. Jordan, and T. Petsche, (1997).

10. B. D. Ripley, Pattern Recognition and Neural Net-

works (Cambridge University Press, 1996).
11. D. Lowe, Characterising complexity in a radial ba-

sis function network, in IEE ANN 1997 (1997),
p. 19–23.

12. A. R. Webb and D. Lowe, The optimised inter-
nal representation of multilayer classifier networks
performs nonlinear discriminant analysis, Neural

Networks 3 (1990), 367–375.
13. T. J. Hastie and R. J. Tibsharani, Generalized Ad-

ditive Models (Chapman and Hall, London, 1990).

