Fluidized bed gasification of biomass

Abstract

A fluidized bed process development unit of 0.8 m internal diameter was designed on basis of results obtained from a bench scale laboratory unit. For the scaling up empirical models from the literature were used. The process development unit and peripheral equipment were constructed, assembled and commissioned, and instruments were provided for data acquisition. The fluidization characteristics of the reactor were determined and were compared to the design data. An experimental programme was then carried out and mass and energy balances were made for all the runs. The results showed that the most important independent experimental parameter was the air factor, with an optimum at 0.3. The optimum higher heating value of the gas produced was 6.5 MJ/Nm3, while the thermal efficiency was 70%. Reasonably good agreement was found between the experimental results, theoretical results from a thermodynamic model and data from the literature. It was found that the attainment of steady state was very sensitive to a continuous and constant feedstock flowrate, since the slightest variation in feed flow resulted in fluctuations of the gas quality. On the basis of the results a set of empirical relationships was developed, which constitutes an empirical model for the prediction of the performance of fluidized bed gasifiers. This empirical model was supplemented by a design procedure by which fluidized bed gasifiers can be designed and constructed. The design procedure was then extended to cover feedstock feeding and gas cleaning in a conceptual design of a fluidized bed gasification facility. The conceptual design was finally used to perform an economic evaluation of a proposed gasification facility. The economics of this plant (retrofit application) were favourable.

Divisions: College of Engineering & Physical Sciences > School of Infrastructure and Sustainable Engineering > Chemical Engineering & Applied Chemistry
Additional Information: Every effort has been made to remove third party copyrighted data. If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our Takedown Policy and contact the service immediately.
Institution: Aston University
Uncontrolled Keywords: fluidized bed gasification,biomass
Last Modified: 08 Dec 2023 08:19
Date Deposited: 21 Nov 2010 10:33
Completed Date: 1986
Authors: Maniatis, Kyriakos

Download

Export / Share Citation


Statistics

Additional statistics for this record