Some parts of this thesis may have been removed for copyright restrictions.

If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our Takedown Policy and contact the service immediately.
DAVID WILLIAM MOORE

HEAT TRANSFER STUDIES IN UP-FLOW BOILING

Ph.D

MAY 1976

536.4231 497
202967 18 MAR 1977
ACKNOWLEDGEMENTS

I wish to acknowledge the great help and encouragement I have received from the members of the Chemical Engineering Department at Aston University especially Dr. J. D. Jenkins whose continuous guidance and help throughout was invaluable.

I would also like to thank Mr. M. Gibson-Robinson and the members of the Computer Group whose advise and stimulating comments were of great assistance throughout.

For their great help with the practical work I wish to thank Mr. H. Roberts and all of the technical staff especially the workshop staff under Mr. G. Evans.

My thanks also to Mrs. J. DeLuca for her patience and effort in transforming a sometimes illegible draft into its present form.

I must also thank the Science Research Council whose grant made this work possible.

Finally, my thanks to family and friends, especially Miss M. Tyler and Dr. D. Wilkinson for their much needed encouragement throughout and to Dupli-Photo Service for printing this volume.
SUMMARY

Heat transfer during flow boiling in tubes is of continued interest to engineers for both practical and theoretical reasons and this work is part of a continuing research program into this area.

A summary of the relevant literature is presented and the relevant theoretical background is reviewed.

The experimental work was carried out using a vertical, single tube forced convection, heat transfer rig. The data were obtained in an electrically heated copper tube for water and a water-ethylene diacetate azeotrope. Thermocouple measurements of wall temperatures and measurements of the bulk pressure allowed point heat transfer coefficient values to be determined for a range of heat flux and flowrate values.

Various non-linear, least squares, optimisation methods were investigated for use with the data and a discussion of the problems encountered with each of the methods is given. The best of the methods tried was found to be that of Davis, Swann and Campey. This method was used to fit the water data to a number of models, including that of Chen and two other models developed from it. An analysis of the sources and degree of error in the experimental data is given as well as a discussion of the degree of correlation found with each of the models.

The water-ethylene diacetate data was found to be highly anomalous, but it was possible to fit the data to one of the models developed. The anomalous behaviour of the azeotrope data is discussed and a possible reason for its behaviour put forward.
Suggestions are given for further work and a possible application for the anomalous behaviour of the water-ethylene diacetate system is proposed.
NOMENCLATURE

C_p Specific heat $(J/kg \, ^\circ C)$

D Diameter (m)

F Chen parameter

F_L $\ln(F)$

g Gravitational constant (m/s^2)

q_c Gravitational conversion factor

h Heat transfer coefficient $(J/m^2 \, s \, ^\circ C)$

h_{con} Convective heat transfer coefficient $(J/m^2 \, s \, ^\circ C)$

h_{mic} Microconvective heat transfer coefficient $(J/m^2 \, s \, ^\circ C)$

h_{film} Film heat transfer coefficient $(J/m^2 \, s \, ^\circ C)$

j Volumetric flux $(m^3/m^2 \, s)$

k Thermal conductivity $(J/m \, ^\circ C \, s)$

L_v Latent heat of vaporisation (J/kg)

p Pressure (N/m^2)

p_b Bulk pressure (N/m^2)

p_w Saturated vapour pressure at wall temperature (N/m^2)

$q = (\frac{Q}{A})$ Heat flux per unit area $(J/m^2 \, s)$

R Universal gas constant

R_L $\ln(Re_{tp})$

r Radius of pit or orifice (m)

r^* Critical orifice radius (m)

S Chen parameter

T Temperature $(^\circ C)$

T_b Bulk temperature $(^\circ C)$

T_{SAT} Liquid saturation temperature $(^\circ C)$

V Flow velocity (m/s)

V_m Mean two-phase velocity (m/s)

XTT lockhart-Martinelli parameter
x Quality
z Distance (m)
α Void fraction
δ Thermal boundary layer thickness (m)
ρ Density (kg/m3)
μ Viscosity (N s/m2)
ϕ_f^2 Two-phase fractional multiplier based upon pressure
 gradient for the liquid flowing alone
τ Heat flux per unit area (J/m2 s)
σ Surface tension (N/m)
τ_w Wall shear stress

Subscripts
b Model B
e Effective
f Fluid
g Vapour
L Liquid
tp Two-phase
v Vapour
w Wall
I INTRODUCTION AND BASIC THEORY

I.1 Two Phase Flow
 I.1.1 Flow Patterns in Isothermal Two Phase Flow 5
 I.1.2 Flow Patterns in Boiling Two Phase Flow 8
 I.1.3 Models for Two Phase Flow 9

I.2 Bubble Nucleation
 I.2.1 Homogeneous Nucleation 14
 I.2.2 Heterogeneous Nucleation 14

I.3 Pool Boiling 17

II LITERATURE SURVEY

II.1 Flow Boiling Heat Transfer Regimes 19
II.2 Heat Transfer Correlations Based upon XTT 21
II.3 Correlations Not Based upon XTT 29
II.4 Chen Correlation 30
II.5 Correlation Methods 32

III DEVELOPMENT OF THEORY 35

III.1 Model A 35
III.1 Model B 37
III.3 Correlating Functions for F and S 39

IV APPARATUS AND OPERATION 41

IV.1 Description of Apparatus 41
 IV.1.1 Introduction 41
 IV.1.2 Reboiler Section 41
 IV.1.3 Supply and Flow Measurement Section 44
 IV.1.4 Experimental Section 45
 IV.1.5 E.M.F. Measurement 53
 IV.1.6 Heaters 56
 IV.1.7 Pressure Measurements 57

IV.2 Method of Operation 60
V Data Preparation and Analysis

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>V.1 Data Preparation</td>
<td>66</td>
</tr>
<tr>
<td>V.2 Data Analysis and Correlation</td>
<td>69</td>
</tr>
<tr>
<td>V.2.1 Outline of Problem</td>
<td>69</td>
</tr>
<tr>
<td>V.2.2 Introduction</td>
<td>69</td>
</tr>
<tr>
<td>V.2.3 Iterative Linear Method</td>
<td>70</td>
</tr>
<tr>
<td>V.2.4 Spiral Algorithm</td>
<td>72</td>
</tr>
<tr>
<td>V.2.5 Rosenbrock's Method</td>
<td>73</td>
</tr>
<tr>
<td>V.2.6 Davis, Swann and Campoy's Method</td>
<td>75</td>
</tr>
<tr>
<td>V.2.7 General Comments</td>
<td>76</td>
</tr>
</tbody>
</table>

VI Results and Discussion

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI.1 Introduction</td>
<td>78</td>
</tr>
<tr>
<td>VI.2 Accuracy of Data</td>
<td>79</td>
</tr>
<tr>
<td>VI.2.1 Inlet Temperature</td>
<td>80</td>
</tr>
<tr>
<td>VI.2.2 Bulk Pressure</td>
<td>81</td>
</tr>
<tr>
<td>VI.2.3 Wall Temperature</td>
<td>82</td>
</tr>
<tr>
<td>VI.2.4 Flowrate</td>
<td>82</td>
</tr>
<tr>
<td>VI.2.5 Heat Flux</td>
<td>83</td>
</tr>
<tr>
<td>VI.2.6 Physical Properties</td>
<td>83</td>
</tr>
<tr>
<td>VI.2.7 Overall Errors</td>
<td>84</td>
</tr>
<tr>
<td>VI.3 Water Data</td>
<td>85</td>
</tr>
<tr>
<td>VI.3.1 Five Parameter Model</td>
<td>85</td>
</tr>
<tr>
<td>VI.3.2 Chen's Model</td>
<td>86</td>
</tr>
<tr>
<td>VI.3.3 Correlations Based on Model A</td>
<td>92</td>
</tr>
<tr>
<td>VI.3.4 Correlations Based on Model B</td>
<td>98</td>
</tr>
<tr>
<td>VI.4 Ethylene Diacetate-Water Data</td>
<td>111</td>
</tr>
</tbody>
</table>

VII Conclusions and Recommendations for Further Work

120
APPENDICIES

I THERMOCOUPLE CALIBRATION 128
II ROTAMETER CALIBRATION 133
III PHYSICAL PROPERTIES 135
IV COMPUTER PROGRAMS 146
HEAT TRANSFER STUDIES IN UP-FLOW BOILING

I. Introduction and Basic Theory

The subject of convective boiling in vertical or horizontal channels is a very important one since the design of many items of chemical equipment or power plant depends upon a knowledge of flow dynamics and heat transfer processes occurring in flow boiling. However, despite the vast amount of literature on the subject of two-phase flow and heat transfer, the existing correlations used to predict two-phase behaviour are almost entirely empirical in nature. This is in part due to the inherently complex nature of two-phase flow and heat transfer and the very close interdependence between the two processes. The complexity of two-phase behaviour is essentially due to the heterogeneous nature of two-phase flow as opposed to the homogeneous nature of single phase flow.

The difficulty of analysing boiling heat transfer is also due to the fact that two-phase heat transfer is in general a non-equilibrium process since the continuous formation of vapour causes changes in the flow characteristics which in turn affect the local heat transfer. Because of these continuous changes in both the flow and heat transfer in flow boiling, equilibrium conditions never fully develop.
The situation is further complicated for multi-component systems where concentration differences leading to mass-transfer resistance between the two phases can greatly affect heat transfer coefficients. For this reason the present work is only concerned with single and pseudo-single component liquids.

From the above it is clear why, as yet, only empirical relationships have been developed for two-phase flow and heat transfer. It is obvious, however, that any empirical relationship for two-phase heat transfer should be based, as far as possible, upon whatever information is available as to the processes and mechanisms important in flow boiling. Also it would seem obvious that any useful model for two-phase heat transfer must reflect the complexity of two-phase phenomena. However until recently only equations which were linear or could be transformed into a linear form could be fitted to data using least mean square fitting procedures. This obviously greatly restricts the form of possible models for correlating boiling heat transfer data.

The most complex model employed to date is that developed by Chen (C3) which assumes two interdependent heat transfer mechanisms. This reflects what is known of flow boiling where at least two distinct heat transfer mechanisms have been observed. However the method of
optimisation used to fit this model to the data was an iterative method which would not necessarily arrive at the optimum parameter values. In order to fit data to non-linear models such as Chen's, it is best to use special non-linear least squares optimisation methods. These allow models even more complex than Chen's to be used to fit the data. However, they do require a large amount of computer time which may not always be feasible due to the cost of computer time.

This work is part of a general study of flow boiling and it was intended that this initial phase of the study would investigate the experimental and correlating techniques which could be used in the study of flow boiling. As the study progressed it became clear that the main theme of this preliminary study would be concerned with investigating the use of non-linear least squares optimisation methods to correlate flow boiling heat transfer data to a number of models including Chen's and models derived from it.

Since an empirical correlation can only be used with confidence for conditions covered by the data, it is obviously best to obtain data over a wide range of conditions and for a large number of experimental fluids. Unfortunately, however, the experimental rig used in this work could only be used with non-toxic, non-inflammable and non-corrosive liquids at, or very near to, atmospheric pressure. These restrictions effectively reduced the
possible experimental liquids to water and some water-based azeotropes and thus greatly narrowed the range of experimental data. Also due to the arrangement of the rig only one tube diameter was possible.

The narrow range of the experimental data imposed by the above restrictions greatly reduces the use of any correlation derived in this work. However the models themselves and the optimisation methods used to fit the experimental data to the models will be generally applicable to single component flow boiling heat transfer data.

All of the data in this work was for forced circulation as it had been found from previous experience when working with natural circulation that equilibrium took much longer to achieve and was much harder to maintain than with forced circulation loops. Also natural circulation loops are susceptible to rapid flow oscillations which would have greatly affected the data and would have made analysis, using a steady state model, impossible.

Electric heaters were used in preference to steam heating for a number of reasons. Firstly it is much easier to control, secondly it makes analysis of the data simpler since the heat flux is fixed, and finally it allows the heat flux to be held constant along the tube.
As already mentioned a knowledge of two-phase flow and of bubble nucleation is required for any understanding of flow boiling. A brief survey of both areas is given below together with a short introduction to pool boiling.

I.1 TWO-PHASE FLOW

I.1.1 Flow Patterns in Isothermal Two-Phase Flow

The description and isolation of flow patterns in two-phase flow tends to be rather imprecise because the differentiation between flow patterns has to be primarily based upon visual observations and is thus a subjective decision. However, five main flow patterns are generally recognised in vertical two-phase flow.

These are: (a) Bubbly flow
(b) Slug flow
(c) Churn flow
(d) Annular flow
(e) Mist flow

These flow regimes occur, in the order in which they are given, during flow boiling in a vertical tube and are illustrated in Diagram 1.1.

A number of generalised flow pattern maps have been derived for flow in tubes (E1, G2, H2) Such two-dimensional maps can only be used as a rough guide to the flow pattern likely to be encountered for a given set of conditions.

For each of the individual transitions various criteria have been proposed to enable the flow pattern in a given situation to be determined.
Figure 1.1 Flow Patterns in Vertical Two-Phase Flow

(a) bubble flow

(b) slug flow

(c) churn flow

(d) annular flow

(e) mist flow
I.1.1 (1) Bubbly Flow – Slug Flow

Bubbly flow is two-phase flow consisting of a continuum of liquid with dispersed vapour bubbles present. As the number of bubbles increases, collision of bubbles and hence coalescence takes place. Radovickh and Moissis (1) have shown that below a void fraction of about 0.1 the frequency of collisions and hence coalescence is relatively low. For void fractions above this the collision frequency increases until at a void fraction above 0.3 the rate of coalescence would be such that slug flow would be expected to occur. Such an analysis assumes that the bubbles are not stabilised by the presence of surface active agents such as detergents; at high voidages one would expect such a system to develop into a foam.

I.1.1 (2) Slug Flow – Churn Flow

In slug flow the vapour bubbles are of such a size that they occupy most of the cross-sectional area of the tube with only a thin liquid film on the tube wall. These slugs are separated by the liquid phase which normally contains smaller bubbles.

The transition to churn flow occurs when the liquid film on the tube wall becomes unstable (2) and breaks down. Porteous (2) showed that at the slug flow – churn flow transition the total volumetric flux was given by the equation

\[
J = 0.105 \left(\frac{gD (\rho_s - \rho_g)}{\rho_f} \right)^{0.5}
\]

1.1

for \(\rho_f \gg \rho_g \),

\[
\frac{J}{\sqrt{gD}} = 0.105
\]

1.2

or

\[
Fr_{tp}^{0.5} = 0.105
\]

1.3

(7)
I.1.1 (3) Churn Flow - Annular Flow

Churn flow is characterised by its instability and 'churning' with the liquid mainly confined to the wall and the vapour concentrated in the centre of the tube. However in churn flow there are filaments of liquid which extend across the tube and the transition to annular flow can be considered to have taken place when the middle of the tube is occupied exclusively by vapour (II).

Griffith (05) found that the gas velocity at which liquid ceases to bridge the tube can be predicted by the equation

\[j'_g = 0.9 + 0.6 j'_f \]

when \(j'_f < 1.5 \)

where \(j'_f = j_f \left(\frac{g D (P_f - P_g)}{P_g} \right) \)

and \(j'_g = j_g \left(\frac{g D (P_f - P_g)}{P_g} \right) \)

I.1.2 Flow Patterns in Boiling Two-Phase Flow

All of the correlations given above were obtained in isothermal flow and thus can only be applied with great caution to boiling two-phase flow.

Some reasons for this are:-

(1) The above correlations were derived essentially from steady state flow experiments, i.e. the flow pattern was not changing rapidly up the tube. This is not the case in boiling flow where the quality and thus the flow pattern is changing rapidly.
(2) Vapour is produced at the wall in flow boiling and thus there is an axial fluid velocity which is not present in isothermal flow.

(3) The rapid change in quality in flow boiling causes the fluid to accelerate rapidly, an effect which is present only to a negligible extent in isothermal flow.

Sato et al. (Sl) have shown experimentally that in boiling two-phase flow the flow pattern development does not follow the classical series of regimes. They found that at high flow rates the slug and churn flow regimes were suppressed and bubble flow developed directly into annular flow through a transition region. It would appear from their results that the transition to the annular regime is delayed in boiling two-phase flow, the delay being greatest at higher heat fluxes. However, these experiments were performed in a rectangular channel with heating only on two opposite faces, which does not allow direct comparison with boiling in a round tube.

I.1.3 Models for Two-Phase Flow

(1) Introduction

Pressure drop in two-phase flow can be analysed in terms of the three separate components causing the pressure drop.

\[
\frac{dp}{dz} = \left(\frac{dp}{dz}\right)_F + \left(\frac{dp}{dz}\right)_a + \left(\frac{dp}{dz}\right)_z
\]

1.8

where \(\frac{dp}{dz}_a\) represents the pressure drop due to the acceleration of the two-phase mixture, \(\frac{dp}{dz}_F\) represents the pressure drop due to friction on the wall and \(\frac{dp}{dz}_z\) represents the pressure drop due to changes in elevation.
Using the conservation of momentums approach it may be shown that

\[- \frac{dP}{dz}_a = \sigma^2 \frac{d}{dz} \left(\frac{x^2}{\rho_g \alpha} + \frac{(1-x)^2}{(1-\alpha_\text{f})} \rho_f \right) \]

and (for a vertical tube)

\[- \frac{dP}{dz}_z = \sigma \left(\alpha \rho_g + (1-\alpha) \rho_f \right) \]

In the above two pressure drop components \(\alpha \) is the only unknown assuming the flow parameters and physical properties are known. To use the above equations to predict the two-phase pressure drop in a given situation it is necessary to estimate the void fraction, \(\alpha \) and the frictional pressure drop component using some model for two-phase flow.

There are two main models for two-phase flow, the homogeneous model and the separated flow model.

I.1.3 (2) Homogeneous Model

In the homogeneous model it is assumed that

1) The liquid and vapour velocities are equal.
2) There is thermodynamic equilibrium between the phases.
3) There is a suitable single-phase friction factor that can be defined for two-phase flow.

These assumptions amount to the presumption that the flow of a vapour-liquid mixture can be represented as flow of a single-phase fluid with suitably defined physical properties. It would be expected that the model is most suitable for two-phase flows where one phase is uniformly dispersed in
in the other phase, i.e. bubble flow and mist flow, and that this model would be more accurate at high pressures where the properties of the two phases would be closer. This indeed is generally the case (C8).

However, since all of the present work was carried out at or near atmospheric pressure, and annular flow was the usual flow regime, this model is inapplicable to the present work. For this reason the homogeneous model is not discussed further. A full exposition of the homogeneous model can be found in Ref (C8).

1.1.3 (3) Separated Flow Model

The main assumptions implied in the separated flow model are:

1) The vapour and liquid phases flow at different velocities which are constant across the area of the tube.
2) Thermodynamic equilibrium between the phases.
3) The two-phase multiplier, \(\phi_f^2 \), and the void fraction, \(\vartimes_f \) can be correlated in terms of the physical properties of the two phases and the flow parameters.

Lockhart and Martinelli (L2), who were the first to present this model, assumed that each phase could be either laminar or turbulent. Hence there are four possible pressure drop regimes. For this present work only turbulent-turbulent flow will be considered. The two-phase multiplier, \(\phi_f^2 \) is defined as

\[
\phi_f^2 = \frac{(\frac{dp}{dz} F)_f}{(\frac{dp}{dz} F)_f}
\]

1.11

where \((\frac{dp}{dz} F)_f \) is the calculated frictional pressure drop assuming the liquid flows alone, \(\vartimes_f \) was assumed a function of XTT only, defined by:

\[
XTT^2 = \frac{(\frac{dp}{dz} F)_f}{(\frac{dp}{dz} F)_g}
\]

1.12

(11)
where \(\left(\frac{dP}{dz} P \right)_G \) is the calculated frictional pressure drop assuming the vapour flows alone. The TT subscript on XTT refers to turbulent-turbulent flow.

Using the Blasius equation for turbulent flow

\[
f = 0.079 \text{ Re}^{-\frac{1}{4}}
\]

1.13

it can be shown that

\[
XTT = \left(\frac{1 - x}{x} \right)^{0.875} \left(\frac{P_g}{P_r} \right)^{0.5} \left(\frac{\mu_r}{\mu_g} \right)^{0.125}
\]

1.14

this is usually approximated to

\[
XTT = \left(\frac{1 - x}{x} \right)^{0.9} \left(\frac{P_g}{P_r} \right)^{0.5} \left(\frac{\mu_r}{\mu_g} \right)^{0.1}
\]

1.15

Lockhart and Martinelli presented graphs of \(\phi_T^2 \) and \(\psi_T \) against XTT allowing two-phase pressure drops to be calculated. This method of calculating two-phase pressure drop was developed only for horizontal flow at or near atmospheric pressure and was extended by Martinelli and Nelson (M1) to vertical flow and higher pressure.

The Lockhart-Martinelli-Nelson correlation has been widely used and found generally satisfactory. However many investigators have found that there is a mass velocity effect in vertical flow (H1, H2, G2) that is not accounted for in this correlation. Various attempts have been made to allow for this mass velocity effect, notably by Chisholm (C5) and Baroczy (B2). The most interesting approach has been that used by Davis (D3) who used a Froude No. to account for this effect. Davis showed that the data
of Govier et al. (G3) and Isbin (I1) was better correlated if XTT was replaced by

\[XTT' = 0.19 \times XTT \left(\frac{v_m}{d \rho g} \right)^{0.125} \] \hspace{1cm} (1.16)

where \(v_m \) is the mean two-phase velocity. According to Davis the modification would be applicable only to vertical flow and was postulated to account for the effect of the different vapour and liquid velocities.

1.2 BUBBLE NUCLEATION

For a liquid to boil it is a necessary condition that the temperature of the liquid must be equal to or greater than the saturation temperature, \(T_{\text{SAT}} \). However, the pressure inside a vapour bubble is higher than in liquid outside it due to the surface tension forces. The pressure difference is given by

\[p_g - p_f = \frac{2 \sigma}{r} \] \hspace{1cm} (1.17)

This pressure difference means that for a vapour bubble to be stable, the liquid temperature must be higher than the saturation temperature.

From the Clausius-Clapyron relationship can be derived the superheat required for the growth of a vapour bubble

\[\Delta T_{\text{SAT}} = \frac{R T_{\text{SAT}}^2}{L_v M} \ln(1 + \frac{2 \sigma}{P_f r}) \] \hspace{1cm} (1.18)

when \(\frac{2 \sigma}{P_f r} \ll 1 \) then

\[\Delta T_{\text{SAT}} = \frac{R T_{\text{SAT}}^2}{L_v M} \frac{2 \sigma}{P_f r} \] \hspace{1cm} (1.19)

(13)
This equation shows that the smaller the vapour bubble the higher the superheat required for its growth. Because of this some mechanism must exist to form vapour nuclei. Two main possible mechanisms have been described:

1) Homogeneous nucleation
2) Heterogeneous nucleation

I.2.1 Homogeneous Nucleation

In a hot liquid there is a small but finite probability that a group of molecules with vapour-like energies will come together to form a small bubble. The superheat required in a liquid for the rate of homogeneous nucleation to be significant can be found (S5). For water, at atmospheric pressure, the superheat required is about 220°F. This value of the superheat is greater than any obtained experimentally, thus it is clear that for water, at least, homogeneous nucleation is unimportant.

I.2.2 Heterogeneous Nucleation

If nucleation in a liquid is promoted by a solid surface this is considered as heterogeneous nucleation. The solid surface may be in the form of particles suspended in the liquid or the walls of the container in which the liquid is held.

The solid surface acts in two ways. The first is its effect in reducing the superheat required for homogeneous nucleation at the wall. This reduction in superheat is dependent upon the contact angle of the solid-liquid-vapour combination. For most systems this effect is of little importance.
The second and main way in which a solid surface aids nucleation is by the presence of pits and crevices in the solid surface. An idealised conical pit is shown in Fig. 1.2a with the various stages of growth of the bubble shown. A graph of the radius of curvature of a bubble growing in such a pit is given in Fig.1.2b. As can be seen the radius of curvature passes through a minimum position (see Fig. 1.2b) This critical radius can be seen to be equal to the radius of the pit orifice. This is true providing $0^\circ < \theta < 90^\circ$. This critical radius corresponds to a critical superheat required for nucleation at this site.

However, the growth of the vapour bubble in the pit requires an initial small vapour nucleus to develop from. This initial vapour nucleus can be gas present when the surface was dry and trapped in the pit when the surface was submerged. A further source for a pit from which a bubble has previously grown can be vapour left behind by a departing bubble. Also a bubble usually encompasses many pits and cavities before it detaches from the solid surface and vapour from this source can cause a previously liquid-filled cavity to become active (T_2). Equation 1.19 gives the superheat required for nucleation at an active site of known effective radius. However the equation is only strictly applicable to a situation where the temperature is constant throughout the liquid which is rarely the case in practical situations. The influence of thermal gradients upon nucleation has been investigated by Nsu (H_4). Nsu postulated that bubble growth would take place when the
Fig. 1.2a Stages in Growth of Vapour Bubbles in Cavity

Fig. 1.2b Variation of Radius of Curvature of Bubble during Growth
temperature at the top of the bubble was equal to the equilibrium temperature for the bubble as given by equation 1.19. Assuming the bulk temperature of the liquid to be equal to the saturation temperature and allowing for distortion in the thermal boundary layer, Hsu was able to determine the range of diameters of active sites for a given wall temperature and fluid. Alternatively for a given size of active site the wall superheat could be determined.

However, the superheat required for water at atmospheric pressure as calculated from Hsu's equation is about $1^\circ C$, while in practice values in the range $10^\circ C - 15^\circ C$ are found. This discrepancy can be explained in terms of the sizes of active sites actually available for nucleation as Hsu's treatment assumed that active sites of all possible sizes were available.

1.3 POOL BOILING

Over the years a large amount of work has been carried out on nucleate pool boiling and a large number of correlations have been proposed. Many of the proposed correlations use a relationship of the form

$$Nu = C \, Re^x \, Pr^y$$ \hspace{1cm} 1.20

in an analogy with single-phase heat transfer. The different correlations result from the way the various parameters in the dimensionless numbers are defined (21)
The most widely used correlations of this type are the Rohsenow (R4) and the Foster-Zuber correlation (Z2).

The Rohsenow correlation

\[
\left(\frac{C_{p_f} \Delta T_{\text{SAT}}}{L_v} \right) = C_{bf} \left(\frac{q}{\mu_f L_v} \left(\frac{\sigma}{(\rho_f - \rho_g)} \right)^{3/2} \right) 0.35 \left(\frac{C_p \mu_f}{k_f} \right)^{1.7} \]

contains the parameter \(C_{bf} \), which has different values depending upon the solid surface-liquid combination. This parameter is assumed to allow for the nucleating characteristics of the surface.

The Foster-Zuber correlation is

\[
\frac{q}{\varepsilon L_v} \left(\frac{\mu_f}{\sigma} \right)^{3/2} \left(\frac{\rho_f}{2 \sigma} \right)^{3/2} = 0.0015 \left(\frac{\rho_f}{\mu_f} \left(\frac{\Delta T_{\text{SAT}}}{k_f} \right)^2 \frac{\varepsilon}{\sigma_f} \right)^2 \left(\frac{C_p \mu_f}{k_f} \right)^{0.33}
\]

where \(r \) is the equilibrium radius given by equation 1.18. It is probable that a correlation allowing for different solid surfaces, like the Rohsenow correlation, would show a smaller error than a general correlation like the Foster-Zuber correlation; for it has been shown that the surface preparation can have a very large effect upon the heat transfer coefficient (V1). However, the use of the Rohsenow correlation requires knowledge of the appropriate value of \(C_{bf} \). Unless the appropriate value can be found in the literature, experimental work must be carried out to determine its value. This somewhat restricts the correlation's usefulness.
FLOW BOILING HEAT TRANSFER REGIMES

Consider a uniformly heated vertical tube fed with sub-cooled liquid at its base and with vapour only leaving at the top. The different flow patterns, as described in section 1.1.1, exist at the appropriate portions of the tube. In a similar way a number of heat transfer regions can be distinguished (c8).

First is the single convection heat transfer region where heat is transferred to the flowing liquid in a convective mode without any vapour formation. Eventually conditions at some point up the tube cause the formation of vapour bubbles from nucleation sites (see section 1.2). Initially the vapour is formed while the bulk temperature, T_b, is below the saturation temperature, T_{SAT}, and the vapour bubbles collapse as they move towards the centre of the tube. This region is called the 'sub-cooled nucleate boiling region'. When the bulk temperature, T_b, is no longer below the saturation temperature, T_{SAT}, the saturated nucleate boiling region is entered.

As the amount of vapour present increases the mechanism of heat transfer alters. Because of the vapour formed the flow accelerates progressively suppressing the formation of vapour bubbles at the wall. Heat is transferred by forced convection through the liquid film on the wall with evaporation occurring at the liquid film vapour core interface. The transition to this regime is closely proceeded by the Churn flow - Annular flow transition. This region is referred to as the two-phase forced convection region. (19)
Fig. 2.1 Flow and Heat Transfer Regimes for Flow Boiling in a Vertical Tube

- Wall Temp
- Vapour Temp
- Bulk Fluid Temp
- Saturation Temp

Flow Regimes:
- Single Phase Vapour
- Mist Flow
- Annular Flow
- Slug and Churn Flow
- Bubble Flow
- Single Phase Liquid

Heat Transfer Regimes:
- Convective Heat Transfer to Vapour
- Liquid Deficient Region
- Forced Convection Boiling
- Nucleate Boiling
- Sub-Cooled Boiling
- Convective Heat Transfer to Fluid

Temp Quality
As the quality increases further liquid droplets are increasingly entrained in the vapour core, eventually the liquid film on the wall disappears completely. This is known as the 'dryout' or 'burnout' point. The region between the 'dryout' point and the complete vapourisation of entrained liquid droplets is called the liquid deficient region. Figure 2.1 shows the flow pattern and heat transfer regimes in a vertical pipe.

The work in this thesis is concerned only with the saturated nucleate boiling and two-phase forced convection regime and thus only work relevant to these regimes is considered in this survey of the literature.

Of paramount interest in this survey is the possibility or otherwise of using a single correlation to cover both the saturated nucleate boiling regime and the two-phase forced convection regime. Assuming this is possible it is also necessary to find the most suitable form of correlation to do this.

II.2 HEAT TRANSFER CORRELATIONS BASED ON XTT

Most workers in this area of heat transfer have based their correlations on the Lockhart-Martinelli parameter, XTT. (see section 1.1.3(2)). Many workers have developed equations which predict the ratio of the experimental two-phase heat transfer coefficient, \(h_{tp} \), to the heat transfer coefficient for the liquid phase flowing alone, \(h_L \).

Johnson and Abon-Sabe (J1) were the first to use this type of equation although the experimental work
was done on heat transfer to an air-water mixture in a steam-heated horizontal brass tube (2.21 cm I.D., 5.67 metres heated length) without any change in phase. They considered that the experimental two-phase heat transfer coefficient h_{tp} was made up of a liquid only coefficient, h_L, and a gas only coefficient, h_g, however, contribution of h_g was found to be negligible and the experimental data was successfully plotted as $(h_{tp}/h_L)(1 + 0.006 (D g_g/\mu_g)^{1/2})$ against XTT; where D is the inside pipe diameter and g_g the air mass flow rate per unit area.

Fried (f1) used a similar approach to correlate his data for air-water mixtures passing through steam heated horizontal tubes. He found that a good correlation could be obtained by plotting (h_{tp}/h_L) against $(\Delta p/\Delta z)_{tp}/(\Delta p/\Delta z)_t$. He also found that h_{tp}/h_L could be plotted successfully against XTT but the data fell into separate bands for the two tube diameters used. This separation was postulated to be caused by a size effect or a difference in surface roughness.

Dengler and Addams (d4) were the first to recognise that at least two different mechanisms of heat transfer could occur in flow boiling. Their results showed that the nucleate boiling mechanism was dominant when the rate of vaporisation was low but was progressively inhibited by the effect of forced convection which increased with increasing vaporisation. The experimental results were obtained for forced circulation boiling of water in a steam-heated 1 inch I.D., 20 feet long vertical copper tube.
Under conditions where forced convection heat transfer was presumed to be predominant the experimental results were correlated by

\[
\frac{h_{tp}}{h_L} = 3.5 \left(\frac{1}{XTT} \right)^{0.5}
\]

where

\[
h_L = 0.023 \frac{k}{D} \left(\frac{G D}{\nu_f} \right)^{0.8} Pr_f^{0.4}
\]

To correct for nucleate boiling the empirical multiplier

\[
F_n = 0.067 \left(\frac{\Delta T - \Delta T_i}{\frac{dp}{dT_{SAT}} \frac{D}{\sigma_{T_{w}}}^{0.1}} \right)
\]

was introduced. \(\Delta T\) is \((T_w - T_b)\) where \(T_w\) is the wall temperature and \(T_b\) is the bulk temperature and \(\Delta T_i\) the value of \(\Delta T\) required for the initiation of boiling. \(\frac{dp}{dT_{SAT}}\) is the gradient of the vapour pressure curve at \(T_{SAT}\). The \(F_n\) factor, however, was only used when it was greater than unity.

They also found that the effect of the temperature difference was quite involved. At high levels of vaporisation the heat transfer coefficient appeared to be an inverse function of temperature difference considering the flowrate and quality as constant. Guerrieri and Talty (66) used cyclohexane, methanol, benzene, pentane and heptane as test liquids under natural circulation conditions in oil heated brass tubes (1.905 cm I.D., 1.83 metres long and 2.54 cm I.D., 1.98 metres long). As with D angels and Addoms they found that the heat transfer coefficient increased up the tube while the temperature difference \((T_w - T_b)\) decreased. Their data was correlated by

\[
\frac{h_{tp}}{h_L} = 3.5 \left(\frac{1}{XTT} \right)^{0.45}
\]

where

\[
h_L = 0.023 \frac{k_f}{D} \left(\frac{G (1 - x) D}{\nu_f} \right)^{0.8} Pr_f^{0.4}
\]

(23)
To allow for the nucleate boiling contribution to heat transfer an empirical parameter, the Nucleate Boiling Correction Factor (NBCF) was used where

\[
\text{NBCF} = 0.187 \left(\frac{r^*}{\delta} \right)^{-5/9}
\]

where \(r^* \) is the radius of a thermodynamically stable bubble at the wall temperature, \(T_w \), is given by equation 1.18 or 1.19, and \(\delta \) is the laminar film thickness given by

\[
\delta = \frac{10}{\rho_f} \left(4 \rho_f/ \frac{dP}{dz} \right) \left(\frac{D}{D} \right)
\]

The values of \(\frac{dP}{dz} \) are predicted using the Lockhart-Martinelli correlation (L2). The Nucleate Boiling Correction Factor was only used when it was greater than unity. It was postulated that a value of NBCF less than unity corresponded to complete suppression of bubble nucleation at the wall.

Bennet et al. (B3) found an effect of heat flux upon the heat transfer coefficient for their experimental data for steam-water mixtures in internally heated vertical annuli. Their data was correlated by the dimensional equation

\[
\frac{h_{tp}}{h_L} \left(\frac{Q}{A} \right)^{-0.11} = 0.64 \left(\frac{1}{x_{TT}} \right)^{0.7}
\]

where \(h_L \) is given by equation 2.5 and \(\left(\frac{Q}{A} \right) \) is in Btu/hr ft\(^2\). The nucleate boiling data was separately correlated using Rohsenow's correlation. (see section 1.3) Schrock and Grossman (S2, S3, S4) obtained their experimental data using water flowing under forced circulation through electrically heated vertical stainless steel tubes. (0.295 - 1.095 cm I.D., 38.2 - 101.6 cm heated length).
Data in the forced convection region was correlated by

\[
\frac{h_{tp}}{h_L} = 2.5 \left(\frac{1}{XTT} \right)^{0.75}
\]

where

\[
h_L = 0.023 \frac{k}{D} \left(\frac{C_p}{Pr} \right)^{0.8} Pr_L^{1/3}
\]

To account for the nucleate boiling region the Boiling Number, Bo, was introduced where

\[
Bo = \frac{q}{G L_v}
\]

where \(L_v \) is the latent heat of vaporisation. The final correlation for all of the data was

\[
\frac{h_{tp}}{h_L} = 0.739 \left(1.5 \left(\frac{1}{XTT} \right)^{2/3} + Bo \times 10^4 \right)
\]

Wright (W3) measured heat transfer coefficients in forced convection down flow boiling of water in electrically heated stainless steel tubes (1.2 cm I.D., 1.43 metres long and 1.83 cm, 1.73 metres long). Their data was correlated using equations similar in form to those used by Schrock and Grossman

\[
\frac{h_{tp}}{h_L} = 2.721 \left(\frac{1}{XTT} \right)^{0.581}
\]

for the forced convection region and for data where both heat transfer mechanisms are significant

\[
\frac{h_{tp}}{h_L} = 1.39 \left(1.5 \left(\frac{1}{XTT} \right)^{2/3} + Bo \times 10^4 \right)
\]

where

\[
h_L = 0.023 \frac{k}{D} \left(\frac{C(1-x)}{\mu_f} \right)^{0.8} Pr_f^{1/3}
\]

These forms of relationship were also used by Somerville (S6) to correlate his data for n-butanol in downflow in electrically heated tubes (1.19 cm I.D., 1.25 metres and 1.73 metres heated length).
All his data was correlated by
\[
\frac{h_{TP}}{h_L} = 7.55 \left(\frac{1}{XTT} \right)^{0.328}
\]
and by
\[
\frac{h_{TP}}{h_L} = 2.45 \left(1.5 \left(\frac{1}{XTT} \right)^{2/3} + Bo \times 10^4 \right)
\]
where
\[
h_L = 0.023 \frac{k}{D} \left(\frac{\rho (1-x) D}{\mu_T} \right)^{0.808} Pr_T^{1/3}
\]
It should be noted that while Schrock and Grossman based the calculation of \(h_L \) on the total mass flowrate in the tube, Wright and Somerville evaluated \(h_L \) based upon the mass flowrate of liquid only. Pujol (P3) found that the differences caused by these two methods were small and for low values of the quality any differences were less than the scatter in the data.

Collier et al (C9) obtained a large amount of data for steam water mixtures in vertical, electrically heated,

*glass tubes (1.4 cm and 2.2 cm I.D., 73.6 cm and 122 cm heated length). It was found that the equation which gave the best fit for their data in the forced convection region was
\[
\frac{h_{TP}}{h_L} = 2.167 \left(\frac{1}{XTT} \right)^{0.699}
\]
However the optimum values for the constants varied for each series of experiments. The value of the multiplier ranged from 2.065 to 3.732 and the value of the exponent from 0.491 to 0.749. \(h_L \) was calculated from
\[
h_L = 0.023 \frac{k}{D} \left(\frac{\rho (1-x) D}{\mu_T} \right)^{0.8} Pr_T^{0.4}
\]
A representative selection of their data was tested with the correlation of Schrock and Grossman (equation 2.12)

* (The inner core with an electrically heated stainless steel tubes (0.05 of 0.5 cm and 1.57 cm))
however their correlation was found to give errors of
upto 100%. But the equation used by Schrock and Grossman
for the forced convection region alone (equation 2.9) was
found to be more representative of their data. However,
using Wright's equation (2.14) the tested data fell
within ± 35% of the predicted values.

Collier concluded that it was improbable that any
single equation of the form of equation 2.17 could
represent data accurately for both heat transfer mechanisms.

Pujol and Stenning (P3) investigated the effect of
flow direction upon the boiling heat transfer coefficient
using Refrigerant 113 in an electrically heated vertical
stainless steel tube (1.58 cm I.D. and 5.8 metres heated
length). In the forced convection region the heat
transfer coefficient was found to be essentially the same
for both upward and downward flow. Their data was
correlated by

\[\frac{h_{tn}}{h_L} = 4.0 \left(\frac{1}{X_{TT}} \right)^{0.37} \] \hspace{1cm} (2.21)

where

\[h_L = 0.023 \sqrt{D} \left(\frac{D}{P_f} \right)^{0.8} P_{ff}^{0.4} \] \hspace{1cm} (2.22)

However for the nucleate boiling region the heat transfer
coefficient was higher for upflow than downflow.

For upflow

\[\frac{h_{tn}}{h_L} = 0.9 \left(4.45 \left(\frac{1}{X_{TT}} \right)^{0.37} + Bo \times 10^4 \right) \] \hspace{1cm} (2.23)

and for downflow

\[\frac{h_{tn}}{h_L} = 0.53 \left(7.55 \left(\frac{1}{X_{TT}} \right)^{0.37} + Bo \times 10^4 \right) \] \hspace{1cm} (2.24)
All of the workers who used correlations of form of equation 2.24 found that this form of equation did not give as good results in the forced convection region as an equation of the form of equation 2.28, which does not include the boiling number Bo. However, the inclusion of Bo as in equation 2.24 did yield more accurate results in the nucleate boiling region.

One possible reason for this is that the contribution made to the heat transfer coefficient made by the Bo term is essentially constant over the length of the pipe (neglecting any change in h_L due to the change in x). This does not reflect the actual situation where the contribution made by the nucleate boiling mechanism varies over the length of the tube.

Wright obtained data for downflow using water and n-butanol in electrically heated vertical stainless steel tubes (1.185-1.825 cm I.D., 1.25-1.73 metres heated length). He found that the most successful expression which correlated his and other workers' data was (W2)

$$St = 0.9005 \frac{Re_L}{X} - 0.286 \frac{X}{TT} - 0.292 Bo^{0.191} Pr^{0.233}$$

Using equation 2.28 for h_L, this equation can be rearranged to give

$$\frac{h_{TP}}{h_L} = 39.12 \left(\frac{1}{XTT} \right)^{0.292} Re_L^{0.086} Pr^{0.367} Bo^{0.191}$$

The power on the Reynolds's number is such that the effect of the Reynolds's number is likely to be insignificant while the presence of the Boiling number as a multiplier implies that nucleate boiling mechanism is important in all conditions.
Calus et al. (C1) using copper and stainless steel, steam heated, vertical tubes (1.27 cm I.D. and 1.22 metres heated length) under natural circulation with water, iso-propanol, n-propanol and the two water-alcohol azeotropes. Their data was correlated by

\[
\frac{h_{tn}}{h_{L}} = 0.065 \left(\frac{1}{XTT} \right) \left(\frac{T_{SAT}}{\Delta T} \right) \left(\frac{\sigma H_2 O}{\sigma} \right)^{0.9}
\]

where

\[
h_{L} = 0.023 \left(\frac{G(1-x)D_f}{\mu_f} \right)^{0.8} \left(\frac{\mu_f}{\mu_g} \right)^{0.4}
\]

However, the correlation was derived for overall heat transfer coefficients and not point values which somewhat reduces its usefulness.

II.3 \hspace{1cm} \textbf{CORRELATIONS NOT BASED UPON XTT}

All of the correlations so far discussed use XTT as a variable, however, some workers have developed correlations not based upon this variable.

Chawla (C2) correlated the data of a number of workers by introducing the parameter, E, the ratio of the mean liquid velocity to the mean vapour velocity. E is intended to represent those characteristics which distinguish a two-phase flow system from a single-phase one. E is determined from the relative roughness of the tube and the parameter

\[
\left(\frac{1-x}{x} \right) \left(\frac{Re_L Pr_f}{Pr_L} \right)^{-1/6} \left(\frac{Pr}{Pr_L} \right)^{0.3} \left(\frac{\mu_f}{\mu_g} \right)^{0.8} Re_L^{0.35} Pr_L^{0.42}
\]

using a graph.

The heat transfer coefficients were then correlated by

\[
Nu' = 0.0066 \left(\frac{Re_L Pr_f}{Pr_L} \right)^{0.475} \left(\frac{1-x}{x} \right) \left(\frac{Pr}{Pr_L} \right)^{0.3} \left(\frac{\mu_f}{\mu_g} \right)^{0.8} Re_L^{0.35} Pr_L^{0.42}
\]

for \(Re_L Pr_f < 109 \) and

\[
Nu' = 0.015 \left(\frac{Re_L Pr_f}{Pr_L} \right)^{0.3} \left(\frac{1-x}{x} \right) \left(\frac{Pr}{Pr_L} \right)^{0.3} \left(\frac{\mu_f}{\mu_g} \right)^{0.8} Re_L^{0.35} Pr_L^{0.42}
\]

\[(29)\]
for \(Re_L Fr_L \geq 109\), where

\[
Nu^* = \frac{h D}{k} (1 + (1 - \frac{x}{2})^{\frac{3}{4}}) \tag{2.31}
\]

Chawla's correlation, however, does not contain some of those variables normally associated with correlations which attempt to account for the nucleate boiling mechanism. For example, the heat flux, \(Q\) (or what can be thought of as its reciprocal, \(\Delta T\), is not used as a variable. Thus it would seem unlikely that Chawla's correlation could be applicable over the whole range of boiling conditions.

Another correlation not using XTT as a parameter was developed by Penman and Tait (T1). Six different fluids were used under forced circulation in four different sized vertical tubes (0.762 cm-2.53 cm I.D., 173-189.5 cm heated length). The data was correlated by

\[
\frac{h}{C_p \rho_f} \left(\frac{D}{\sigma \rho \rho_f} \right)^{\frac{1}{2}} = 0.12 \left(V_f \left(\frac{D}{\sigma \rho \rho_f} \right)^{\frac{1}{2}} \right)^{\frac{1}{2}} \tag{2.32}
\]

The authors state that this correlation is applicable to the 'liquid film' region only. This presumably corresponds to the annular flow regime.

II.4 CHEN CORRELATION

The most widely used correlation for boiling heat transfer in tubes is the Chen correlation (C3). Chen compared the correlations of Dengler and Addoms, of Guerrieri and Talty, of Bennett et al, and of Schrock and Grossman, using a representative selection of 594 experimental data points. None of the correlations was successful in correlating all of the sets of data used.
Chen therefore proposed a new correlation to cover both the saturated nucleate boiling regime and the forced convection region.

Chen assumed that both heat transfer mechanisms operated over the entire range of conditions and that the contributions made by both mechanisms were additive. Thus

\[h_{tp} = h_{con} + h_{mic} \] \hspace{1cm} (2.33)

where \(h_{con} \) is macroconvective heat transfer coefficient and \(h_{mic} \) the microconvective heat transfer coefficient due to the nucleate boiling mechanism. It was assumed that \(h_{con} \) could be correlated by a Dittus-Boelter type equation

\[h_{con} = 0.023 \frac{k_{tp}}{D_{tp}} \left(\frac{D_{tp}}{D_k} \right)^{0.8} \left(\frac{D_{tp}}{D_k} \right)^{0.4} \] \hspace{1cm} (2.34)

then assuming that the effective two-phase thermal conductivity and Prandtl number can be represented by the fluid values and defining a parameter, \(F \), by

\[F = \left(\frac{Re_{tp}}{Re_L} \right)^{0.8} \] \hspace{1cm} (2.35)

then

\[h_{con} = 0.023 \frac{k}{D} \left(\frac{G(1-x)D}{F} \right)^{0.8} \left(\frac{D_{tp}}{D_k} \right)^{0.4} F \] \hspace{1cm} (2.36)

Chen assumed that \(F \) was dependent upon flow conditions only and could be expressed as a function of XTT.

Föster and Zubers equation for nucleate pool boiling (see section 1.2) was taken as the basis for the microconvective component. Using the effective values of the superheat and the superheat and the vapour pressure difference,

\[h_{mic} = 0.00122 \left(\frac{k_f^{0.79} C_f^{0.45} \rho_f^{0.49}}{\sigma^{0.5} \mu_f^{0.29} L_v^{0.24} \rho_g^{0.24}} \right) \Delta T_0^{0.24} \Delta \rho_{\text{Bo}}^{0.75} \] \hspace{1cm} (2.37)

Chen then defined a suppression factor, \(S \), as

\[S = \left(\frac{\Delta T_0}{\Delta T_{\text{SAT}}} \right)^{0.99} \] \hspace{1cm} (31)

\[\]
Using the Clausius Clapeyron equation it can be shown that

\[S = \left(\frac{\Delta T_o}{\Delta T_{SAT}} \right)^{0.24} \left(\frac{\Delta P_o}{\Delta P_{SAT}} \right)^{0.75} \]

thus

\[h_{m10} = 0.00122 \left(\frac{k_f^{0.79} c_p t^{0.45} \rho_f^{0.49}}{\sigma^{0.5} \mu_f^{0.29} \rho_f^{0.24} \rho_g^{0.24}} \right) \Delta T_{SAT}^{0.24} \Delta P_{SAT}^{0.75} \]

Chen assumed that \(S \) was a function of the two-phase Reynolds Number \(Re_{tp} \). The functions for \(F \) and \(S \) were found empirically from experimental data using an iterative procedure (see section V.2.3). The empirical curves for \(F \) and \(S \) found by Chen are shown in Figs. 8.1 and 8.2.

The correlation thus developed fitted the experimental data very well with an overall average error of 11%.

Hughmark has claimed (H5) that a constant value of \(S \) of 0.25 fitted his experimental data better than the \(S \) curve given by Chen. However a constant value of the suppression factor, \(S \), implies that bubble nucleation is not affected by the flow velocity in the tube. This would seem unlikely.

Chen's correlation has been extended for use with boiling liquid metals (C8) and for subcooled boiling (C8). Thus it would seem that the approach used by Chen is valid for most flow boiling situations in channels.

II.5 Correlation Methods

All of the correlations discussed previously, apart from Chen's correlation, were fitted using linear correlation techniques. This approach was the
only possible one before the advent of large, very fast computers. However, the linear approach has the great disadvantage that only linear equations can be used as models. In this context a model can be considered as linear if it can be transformed into an equation of the form

\[y = a_1 x_1 + a_2 x_2 + \cdots + a_n x_n \]

where \(a_1, \cdots, a_n \) are constants whose values are to be found, while \(x_1, \cdots, x_n \) are physical parameters.

Thus a correlating equation of the form of equation 2.1

\[\frac{h_{tp}}{h_L} = a \left(\frac{1}{XTT} \right)^b \]

can be transformed into

\[\ln \left(\frac{h_{tp}}{h_L} \right) = \ln(a) + b \ln \left(\frac{1}{XTT} \right) \]

i.e.

\[y = a_o + a_1 x \]

The same linear approach was used even for apparently non-linear type correlations such as Chawla’s. Chen’s correlation is the only exception, an iterative linear method being used (see section V.2.3). The presumption that flow boiling heat transfer can be adequately correlated using linear correlation techniques would seem somewhat optimistic especially as it is known that even single-phase forced convection heat transfer data can be correlated with significantly lower error using a non-linear model (E1).

Thus it is clear that non-linear optimisation techniques should lead to a much improved correlating equation.
III DEVELOPMENT OF THEORY

III.1 MODEL A

Since the Chen correlation has been found to be the most successful for correlating heat transfer data it was decided to use the Chen correlation as a starting point for developing a better correlating equation to fit the experimental data. The Chen correlation (see section 2.4) is given by the following equations:

\[F = f(1/\text{XTT}) \] \hspace{1cm} 3.1

\[S = f(\text{Re} \ F^{1.25}) \] \hspace{1cm} 3.2

\[h_{tp} = F \ h_{\text{con}} + S \ h_{\text{mic}} \] \hspace{1cm} 3.3

In these equations \(h_{\text{con}} \) and \(h_{\text{mic}} \) are convective and microconvective heat transfer coefficients defined by equations 2.37 and 2.38 and \(F \) and \(S \) are defined by equations 2.36 and 2.39. To correlate the experimental data Chen plotted \(\ln(F) \) against \(\ln(1/\text{XTT}) \) and \(S \) against \(\ln(\text{Re} \ F^{1.25}) \) hence

\[\ln(F) = f(\ln(1/\text{XTT})) \] \hspace{1cm} 3.4

and

\[S = f(\ln(\text{Re} \ F^{1.25})) \] \hspace{1cm} 3.5

defining \(F_L = \ln(F) \) \hspace{1cm} 3.6

then equations 3.1, 3.2 and 3.3 become

\[F_L = f(\ln(1/\text{XTT})) \] \hspace{1cm} 3.7

\[S = f(\ln(\text{Re}) + 1.25 \ F_L) \] \hspace{1cm} 3.8

and

\[h_{tp} = c_F F_L \ h_{\text{con}} + S \ h_{\text{mic}} \] \hspace{1cm} 3.9

\(F \) was assumed by Chen to be dependent upon \(\text{XTT} \) only in an analogous manner to the friction factor in two phase flow. However, as discussed in section 1.1.3, Davis (D3) has shown that the friction factor can be more accurately

(35)
predicted if the Froude Number is also used as a correlating parameter. Davis defined a parameter, XTF,

\[XTF = 0.19 \times XTT \times Fr^{0.185} \]

where

\[Fr = \frac{v^2}{g} \]

Davis used XTF instead of XTT in the Lockhart-Martinelli-Nelson model.

It would seem likely that the Froude Number could be used in an analogous way for flow boiling. Using a similar substitution as equation 3.10

\[F_L = f(\ln(1/XTT) + A \ln(Fr)) \]

where A is the exponent for the Fr. number, as yet unspecified.

In Chen's development of his correlation the exponent of F, 1.25, was derived from the value of the exponent of the Reynolds Number in the Dittus-Boelter equation, but it is by no means certain that the single-phase value of 0.8 is appropriate for heat transfer in flow boiling. Thus if the value of the exponent of F is to be determined from the experimental data the equation 3.8 becomes

\[S = f(\ln(Re) + B F_L) \]

where B is the exponent of F.

These two modifications to Chen's correlation should result in a more accurate model in so far as that with two extra constants a better fit to the experimental data should be possible.

The form of the \(F_L \) and S functions is discussed in section 3.3.
As mentioned in the previous section the value of h_{con} used in Chen's correlation and in Model A is that given by the Dittus-Boelter equation

$$h_{\text{con}} = 0.023 \, \text{Re}^{0.8} \, \text{Pr}^{0.4}$$ \hspace{1cm} (3.14)

This equation was originally derived for turbulent single-phase heat transfer in pipes. It would seem reasonable to suppose that a better model could be derived if a more applicable equation for h_{con} was used. It was suggested by Davis (D1) that a more suitable form of equation could be developed from a correlation proposed by Rossen and Myers (R6) for heat transfer coefficients during condensation in a horizontal pipe. Rossen and Myers used the Von Karman analogy between heat transfer and momentum transfer and obtained the equation

$$h = \frac{\rho c_p}{\text{Pr}} \left(\frac{\tau_w}{
ho} \right)^{1/3} \left(5 + 5 \frac{\text{Pr}}{\text{Pr}_t} \ln \left(5 \frac{\text{Pr}}{\text{Pr}_t} \right) \right)$$ \hspace{1cm} (3.15)

where τ_w is the shear stress at the wall and Pr_t is the turbulent Prandtl Number defined as the ratio of the eddy diffusivity of momentum to the eddy diffusivity of heat. This equation is for the heat transfer coefficient for a vapour condensing on a liquid film on the inside of a horizontal pipe.

Rossen and Myers assumed that the shear stress at the wall was approximately equal to the average shear stress in the film and used the Lockhart-Martinelli Model to determine its value. The Lockhart-Martinelli model used the parameter Φ_f. Φ_f is defined as (see 1.1.3(2))

$$\Phi_f = \frac{\frac{dP}{dz}_f}{\left(\frac{dP}{dz} \right)_f}$$

then

$$\Phi_f = \frac{f_L}{f_L s} \frac{V_m^2}{V_L^2}$$ \hspace{1cm} (37)
where \(f_L \) is the friction factor for two-phase flow, \(V_m \) is the mean two-phase velocity, \(f_{Ls} \) is the friction factor for the liquid flowing alone and \(V_L \) the mean velocity of the liquid if it was flowing alone.

However \(f_L \) can be replaced using the equation
\[
f_L = \frac{2 \tau_w}{\rho_L V_L^2}
\]
3.18

For a liquid Reynolds Number below 2100
\[
f_{Ls} = \frac{16}{Re}
\]
3.19

Then from equations 3.17, 3.18 and 3.19
\[
\tau_w = 8 \frac{\phi_T^2 p_L V_L^2}{Re}
\]
3.20

This equation for \(\tau_w \) can be substituted into equation 3.15 giving
\[
h = \frac{\rho C_p (8 \frac{\phi_T^2 p_L V_L^2}{Re})^2}{Pr} \frac{1}{(5 + 5 \frac{Pr}{Pr_t} \ln(5 \frac{Pr}{Pr_t} + 1))}
\]
3.21

rearranging gives
\[
h = \frac{\phi_T k}{D} \frac{1}{(5 + 5 \frac{Pr}{Pr_t} \ln(5 \frac{Pr}{Pr_t} + 1))}
\]
3.22

This is the equation developed by Rossen and Myers who then assumed that the eddy diffusivity of momentum was equal to the eddy diffusivity of heat and thus \(Pr_t = 1.0 \) giving
\[
h = \frac{\phi_T k}{D} \frac{1}{(5 + 5 \ln(5 + 1))} \frac{1}{Pr}
\]
3.23

However for correlating boiling heat transfer data suggested that a value of 0.5 for \(Pr_t \) should be used.

In the above derivation it was assumed that \(f_{Ls} \) can be calculated using equation 3.19 which is for laminar flow only. If the Blausius equation
\[
f_{Ls} = 0.079 Re^{-0.25}
\]
3.24

is used then equation 3.22 becomes
\[
h = \frac{\phi_T k}{D} (0.079 Re^{1.75}) \frac{1}{(5 + 5 \frac{Pr}{Pr_t} \ln(5 \frac{Pr}{Pr_t} + 1))}
\]
3.25
However, Davis (DL) has recommended that equation 3.22 be used in preference to equation 3.25. Equation 3.22 can be rearranged to give

\[h = \phi_f \frac{k}{D} \left(0.32 \text{ Re} \right)^{1/4} / \left(1 + \frac{Pr_t}{Pr} \ln \left(5 \frac{Pr}{Pr_t} + 1\right) \right) \]

3.26

\(\phi_f \), the two-phase multiplier, can be predicted using the Lockhart-Martinelli-Nelson model for two-phase flow but it can also be considered in an exactly analogous manner to \(F \) in the development of Model A, since \(\phi_f \) was postulated to be a function of \(1/XTT \) only in a similar manner to \(F \). Then replacing \(\phi_f \) by \(F^Fb \) and defining \(h_{film} \) by

\[h_{film} = \frac{k}{D} \left(0.32 \text{ Re} \right)^{1/4} / \left(1 + \frac{Pr_t}{Pr} \ln \left(5 \frac{Pr}{Pr_t} + 1\right) \right) \]

3.27

a correlation analogous to Model A can be formed

\[h_b = F^Fb \ h_{film} + S_b \ h_{misc} \]

3.28

where the subscript \(b \) refers to Model B and where

\[F_b = f \left(\ln \left(1/XTT\right) + A_b \ln \left(Pr\right) \right) \]

3.29

and \[S_b = f \left(\ln \left(Re\right) + B_b \ F_b \right) \]

3.30

The value of \(Pr_t \) in equation 3.27 can be assumed to be 0.5 or \(Pr_t \) can be a constant whose optimum value is to be found using any of the optimisation methods given in Chapter V.

III.3 The Correlating Functions for \(F \) and \(S \)

To fit the \(F \) and \(S \) functions, it was decided to use polynomials in the independent variable. Various other possible correlating functions were considered but were rejected as unsuitable for various reasons.
The main advantages of the use of polynomial functions are:

1) A polynomial function will fit any continuous function over the range of interest to any specified accuracy if sufficient terms are used.

2) The computing of the value of the dependent variable from a polynomial function is faster than for any of the possible alternative functions. This is important in non-linear sum of squares optimisation where most of the computing time is used in the sum of squares error evaluations.

3) It is comparatively easy to add additional terms.

In non-linear optimisation (see Chapter V) the rate of optimisation is highly dependent upon the number of constants whose values are to be optimised. Hence it is important to use the lowest order polynomial compatible with accuracy. Further discussion of this point is left until Chapter IV.
IV. DESCRIPTION OF APPARATUS

IV.1.1 Introduction

The experimental work was carried out in a forced circulation, single tube evaporator (shown in Fig. 4.1). A schematic flow diagram of the rig is shown in Fig. 4.2. The rig was constructed of standard Q.V.F. glassware except where otherwise stated, with the pipework connecting items on the rig being mainly of 2.5 cm (1") or 3.8 cm (1½") diameter glass sections. The gaskets between the individual sections were all standard asbestos or P.T.F.E. gaskets as supplied by Q.V.F.

Glassfibre and asbestos insulation was used where appropriate to reduce heat losses. The parts of the rig that were insulated are shown in Fig. 4.2.

For the purpose of description the rig can be divided into three sections:–

(1) Reboiler section

(2) Liquid supply and measurement section

(3) Experimental section

IV.1.2 Reboiler Section

The purpose of this section is to initially heat up and degas the experimental liquid and then to maintain it at its atmospheric boiling point. This was achieved by recirculating the liquid held in the 45.8 cm (18") diameter glass reservoir (12) through a 15.2 cm (6") diameter steam boiler (11) with a Stuart-Turner No. 22 centrifugal pump (9).
Figure 4.2. Schematic Flow Diagram of Rig
Any vapour produced in the boiler was returned to the reservoir from the 3.8 cm (1½") diameter water-cooled condenser (13). The top of the condenser was vented to the atmosphere. The rate of circulation through the boiler was controlled by altering the pump speed with a 'Variac' variable transformer.

There was also a secondary recycle through valve (15) into which was fed the liquid returning from the flow measurement section. Experience had shown that in the absence of this recycle the pump (9) was prone to 'slugging'.

The steam for the boiler (11) was drawn from the laboratory steam main at approximately 7 bars (90 P.S.I.G.) and after passing through two pressure reducers was fed to the boiler at approximately 2 bars (15 P.S.I.G.)

IV.1.3 Supply Flow Measurement Section

The purpose of this section was threefold:-

1. To supply the experimental liquid to the experimental section.
2. To condense the vapour produced in the experimental section.
3. To measure the liquid flow rate.

The liquid was pumped into the experimental section by the pump (7), a Stuart-Turner No. 12 centrifugal pump. The speed of the pump could be controlled by means of a 'Variac', however, the liquid flow rate was normally varied by use of the valve (6).

The 30.5 cm (12") long glass pipe section (18) leading to the base of the experimental tube had the same bore as the experimental tube itself (1.59 cm) and was intended as
a calming section. Before, this calming section was a mercury in glass thermometer accurate to 0.1°C protruding into the liquid to measure the liquid inlet temperature.

The vapour-liquid mixture leaving the experimental tube discharged into a 30.5 cm (12") diameter vapour-liquid separator (1). Several layers of 1.2 cm diameter glass balls were placed in the bottom of the separator in order to prevent a vortex forming in the liquid outlet and to reduce vapour entrainment in the liquid phase. The vapour fraction from the separator was fed into the top of a 15.3 cm (6") diameter water-cooled condenser (2) via a 5 cm (2") diameter glass pipe. The condensate from the base of the condenser flowed through a valve and joined the liquid fraction from the separator. The combined streams then passed through a 'Rotameter' flow meter (4), a valve (3) and thence returned to the reboiler section.

By use of the valves (3) and (16), the liquid level in the separator was maintained about 5 cm (2") above its base. This was found to be the most suitable level in order to obtain the most stable reading with the Rotameter. The Rotameter had previously been calibrated for water at 97°C and at 18°C (see Appendix II).

IV.1.4 Experimental Section

(1) General arrangement

The experimental section consisted essentially of a thick-walled copper tube heated by 12 concentric electrical heater sections 15.3 cm (6") long. The wall temperature
Figure 4.3. Photograph of Upper End of Experimental Tube
Figure 4.4. Photograph of Lower End of Experimental Tube
at each increment was measured using thermocouples inserted into the wall of the copper tube, while the bulk temperature of the two-phase mixture was determined using a pressure measuring probe which could be moved along the centre line of the tube. The overall length of the tube was 202 cm (79.5") with a heated length of 182.9 cm (72") with an outside diameter of 3.167 cm (1.247") and an i.d. of 1.58 cm (0.625"").

The copper tube was clamped at both ends; the upper clamp, however, was supported by metal springs and was thus free to move vertically to allow for expansion when the tube was heated. The column of heater sections was supported by the base of the box surrounding the experimental section. This base was a 2.5 cm (1") thick square of 'Sindanyo', a hard asbestos based insulating material. The box was approximately 30.5 cm (12") square with 0.635 cm (1/4") thick plywood sides supported by a metal frame. The space in the box around the heaters was filled with 'Vermiculite', a granular high temperature insulation. Diagrams 4.3 and 4.4 show details of the upper and lower end of the tube.

IV.1.4 (2) Experimental tube and thermocouples

In order to achieve the maximum possible accuracy in the measurement of the wall temperature, T_w, it is necessary that the following precautions be taken:

(a) The end of the thermocouple is as close as possible to the inner wall of the tube.

(b) The thermocouple has the least possible effect upon the temperature it is measuring.
These two aims are best achieved by using the smallest sized thermocouple possible and by having the thermocouple inserted into the tube wall at an angle and not radially. Diagram 4.5 shows the details of the arrangement chosen. The thermocouple holes were 7.62 cm (3") apart and in a vertical line with the bottom thermocouple 3.81 (1½") above the start of the heated section of the experimental tube. Thus there were two thermocouples in each heater section making a total of 24 thermocouples in all.

As it is very difficult to drill deep holes into copper with a diameter of less than about 1.5 mm (1/16") it was decided to use 1.58 mm (1/16") diameter holes. Into each hole was inserted a section of 1.58 mm O.D. copper needle tubing with an internal diameter of 0.51 mm. Before insertion each section was covered with carbon grease in order to ease insertion and also to reduce thermal resistance between the main experimental tube and the copper needle tube.

The thermocouple lead wires were led through a groove cut in the heater blocks and then out through a groove cut in the base of each heater block (see section IV.1.6). From here the wires were taken out of the box surrounding the tube, between sections of the plywood sides and thence to electrical connecting blocks.

For the early experimental runs (up to run 60) two different types of thermocouple were used in alternate positions up the tube. One was a single wire copper-constantan thermocouple and the other a metal sheathed manufactured thermocouple.
Figure 4.5(a) Horizontal Section through Experimental Section

Figure 4.5(b) Vertical Section through Experimental Section
1) Copper-constantan thermocouple.

The design of this type of thermocouple is shown in Fig. 4.6(b). The method of manufacture is as follows: The 0.38 mm diameter constantan wire was coated in 'Araldite' epoxy resin for the final 2.5 mm of the wire. When this has hardened the final 1 mm of the wire was stripped of Araldite using a small needle file. The wire was then carefully pushed through a section of needle tubing, cut to the correct length, until the bare end of the wire was clear of tubing. The resistance between the wire and the tubing was measured. This being satisfactory (> 100 megohms) the wire was pulled back into the needle tubing until the end of the wire was level with the end of the tubing. The end millimetre of the tubing was squeezed in a vice until it firmly gripped the constantan wire. The end of the tubing was then rounded off and the assembly was now ready to be inserted into the thermocouple hole. The bare thermocouple lead wire was insulated using small bore P.T.F.E. tubing. The copper experimental tube itself was used as the other 'wire' thus all of the copper-constantan thermocouples had a common positive terminal.

These thermocouples were found to be quite satisfactory with regard to accuracy of measurement, however, the P.T.F.E. insulation was prone to breakdown, especially where the wire passed between the heaters. For this reason and their general fragility the use of these thermocouples was discontinued after run 60 and chromel-alumel thermocouples, as described below, used throughout.
Figure 4.6(a) Section through Chromel/Alumel Thermocouple

Figure 4.6(b) Section through Copper/Constantan Thermocouple
2) Chromel-Alumel thermocouples.

The chromel-alumel thermocouples were of the bonded junction type and as supplied by Pyrotenax Ltd with mineral insulation and stainless steel sheathing, type T05 HT7/NC-NA. The outside diameter of the thermocouples was 0.5 mm and thus a good fit in the copper needle tubing.

IV.1.5 E.M.F. Measurement

All the thermocouple leads were connected to a 50-point two-pole selector box. The output from this was connected to the output from a reference junction, a chromel-alumel thermocouple in an ice-filled vacuum flask. The resulting e.m.f. was measured with a digital voltmeter (D.V.M.). A D.V.M. was used in preference to a potentiometer because of the much greater speed with which readings can be taken.

The D.V.M. used was a type DM2-1 made by Computing Techniques Ltd, reading 1.999 V to -1.999 V, with provision for an internal, high input impedance operational amplifier. The amplifier chosen for use was a very low thermal coefficient type.

The amplification chosen was 250 giving an F.S.D. equivalent to 195°C with the last figure on the D.V.M. equivalent to approximately 0.1°C. However it was found that amplifying by 250 in one stage led to instability. To overcome this another similar amplifier was used as a pre-amplifier thus giving amplification in two stages. This arrangement was found to be much more satisfactory and was used throughout the work.

The impedance of the circuit used was given in the specifications of the instrument as $10^{11} \Omega$, however it
Figure 4.7(a). Photograph of Assembled Heating Section
Figure 4.7(b). Photograph of Heater Block
was found that the impedance of the thermocouples affected the reading given. For this reason each thermocouple had to be individually calibrated before each day's runs. Further details of the method of calibration is given in Appendix I.

IV.1.6 Heaters

Fig. 4.7(a) shows a fully assembled heating section and Fig. 4.7(b) shows a heating block before the fitting of the electric element. The heating blocks were thick-walled aluminium tubes 8.26 cm diameter by 15.2 cm (6") long. On the outside of the tubes was cut a 3.175 mm (¹/₈") spiral groove with a 6.35 mm (¼") pitch. The base of the groove was semi-circular and had a diameter of 6.533 cm. This value was chosen so that the heating element would just fill the 24 turns on each block.

The tube had a bore of 3.175 cm (1¹/₄") diameter with a groove, 4.7 mm wide by 1.5 mm deep, cut along the inside wall and another was cut radially in one end of the block so as to meet the internal groove. These grooves were for the thermocouple wires and can be clearly seen in Fig.4.7(a).

The electric elements used in the heaters were mineral-insulated, stainless steel sheathed, heating cable supplied by Pyrotex Ltd, ref. HSQ1M-4000. The heating part of the cables were 5 metres long with an outside diameter of 3.175 mm (¹/₈"). At each end of the heating element was a high temperature gland and 2 metres of copper sheathed lead-in cable.
The heating element was wound as tightly as possible in the spiral groove, being held in place at each end by a grub screw fitted through the end-most fin. The rest of the groove was then filled with iron cement in order to aid conduction from the outside of the element which would otherwise have been in contact with air only. It was hoped that by thus reducing the maximum sheath temperature the possibility of an element burning out would be minimised.

Each heater section was fitted by sliding it down the tube after the insertion of the thermocouples in its section. The copper tube was first given a thin layer of carbon grease in order to reduce thermal resistance between the heaters and the tube and to ease assembly.

The heater lead-in cables were taken through the sides of the insulation box between sections of the plywood sides and thence to heavy duty connecting blocks. Each heating section was controlled by a 12 amp Variac and fitted with an ammeter and voltmeter to measure the power input. These were calibrated in situ and it was estimated that the maximum error in reading each was 2%, thus giving a maximum error in the calculated wattage of 4%.

The resistance of the heating elements was found to be between 22.2 Ω and 23.2 Ω; assuming a supply voltage of 240 volts, the maximum wattage per heater would be 2500 watts. In practice the maximum used was 2200 watts.

IV.1.7 Pressure Measurements

For the purposes of this work it was necessary to find the bulk temperature and pressure at each increment up the tube. However, once bulk boiling has commenced the bulk
temperature can be determined from the pressure and vice versa. This being so, only one need be determined experimentally.

Determining the temperature using a thermocouple would have been more convenient as essentially the same electrical equipment used for measuring the wall temperature would have been used. However, for water at 100°C, a change in temperature of 0.1°C is equivalent to a pressure change of 2.8 mm Hg and while it was comparatively easy to measure pressure to an accuracy of 2.8 mm Hg it would have been much more difficult to measure the bulk temperature to 0.1°C. For this reason it was decided to measure the pressure at each increment with a probe instead of the temperature using a thermocouple.

Details of the probe are shown in Fig. 4.8. The probe was made from a 2 metre length of thin-walled, stainless steel, needle tubing of 1.59 mm (1/16") outside diameter. The stainless steel spider was made separately and then slid along the tubing to the required position where it was held in place using epoxy resin adhesive. In addition, the tubing on both sides of the spider was slightly flattened thus preventing any movement in the spider even if the adhesive failed. The end of the tubing was blocked using epoxy resin adhesive and two small opposing holes drilled just above the blockage. This was to eliminate the velocity component from the pressure measurements.

The tubing passed through a gland fitted to the glass 'tee piece' at the top of the experimental tube (see Fig. 4.3)
Fig. 4.8 DETAILS OF PRESSURE PROBE

Fig. 4.9 DIAGRAM OF ARRANGEMENT USED TO MEASURE PROBE PRESSURE
This allowed the probe to be moved to any required position in the tube. The position of the end of the probe was determined by measuring the length of tube protruding above the gland.

Fig. 4.9 shows the arrangement used to determine the pressure at each increment. The pressure line was pressurised to above the expected value using the pipette filler, the excess pressure venting through the probe until the mercury manometer settled down to the required value. Readings were taken starting at the bottom and moving up the tube. This meant that pressure readings decreased each time and thus the pressurisation procedure only had to be performed once per run and also less air was vented into the experimental tube.

There were also pressure tappings at the top and bottom of the experimental tube, but as the readings obtained from these were not used in the work presented here, no details are given herein.

Method of Operation

(1) Start-Up

With valves (6) and (3) (see Fig. 4.1) closed, the reboiler section was filled with experimental fluid, until the level was about 5 cm from the top of the reservoir. This amounted to about 45-50 litres of fluid.

After making sure that valves (14) and (15) were open, the recycle pump (9) was started and steam supply to the boiler commenced. Once the liquid flowing from the boiler was seen to boiling, the cooling water supply to the condenser (13) was turned on. The fluid was then left circulating for at least 2 hours to degas.
Meanwhile, cold tap water was fed, via valve (17), through the experimental section and then through valve (16) and out through the drain valve (5). While this was reaching equilibrium the thermocouple reference chamber was refilled with ice and the D.V.M. switched on to warm up. The zero and amplification of the D.V.M. were then checked using an accurate potentiometer box and reset if necessary.

Once the inlet water temperature and the wall thermocouple readings had reached equilibrium (usually after about an hour) measurements of all of the thermocouple e.m.f.s were taken and the inlet water temperature noted.

These calibration measurements having been taken the water supply was turned off and valves (17) and (5) closed after the water had been drained away. Valve (6) was then opened and the supply pump (7) switched on. Once the fluid level was high enough, valve (3) was opened and the hot fluid flowing through the experimental section continuously recycled. As before, when the inlet water temperature and the wall thermocouple readings had reached equilibrium, measurements of the wall thermocouple readings and the water inlet temperature were taken.

The calibration readings having been taken (see Appendix I) the heaters were switched on and adjusted approximately to the wattage to be used for the subsequent experimental runs and the cooling water supply to the condenser (2) turned on. Once degassing was complete the rig was ready for experimental runs to be undertaken.

The start-up procedure outlined above was used for both single-phase and boiling experiments with only minor
modifications for the single-phase experiments. For the single-phase runs it was not necessary to degas the fluid in the reboiler section as it was not used as the experimental liquid but only to calibrate the thermocouples. When the calibration readings had been taken the steam supply was turned off and the hot water in the reboiler section drained away through valve (8).

(2) Single-Phase Experiments

Before any work with boiling fluid was commenced some single-phase runs with cold water were performed in order to test the equipment and to calibrate the rig for heat losses from the experimental section.

Cold water from the mains was fed through valve (17) with valve (6) closed. After passing through the experimental section and the Rotameter it was run to waste through valves (3) and (8). A thermometer accurate to 0.1°C was inserted into the fluid outlet from the experimental tube, through a rubber bung fitted to the glass 'tec' and the top of the experimental section.

It was found that the heat loss from the experimental section varied between 1.5% and -0.5%. Since these were less than the expected error in the determination it was decided to assume that heat losses from the experimental section were negligible.

(3) Boiling Experiments

When the rig was found to be approaching equilibrium after start-up, the wattage of each heater was adjusted to the required value and using valve (6) the flow rate was set.
As mentioned previously, the level of liquid in the downcomer pipe was held about 5 cm above the base of the vapour liquid separator using valves (3) and (16).

When equilibrium was reached the readings were taken. Equilibrium was assumed to have been reached when the wall temperatures, flow rate and the power inputs were unchanged for a period of not less than five minutes. The readings were generally done in the following order: power inputs, fluid inlet temperature, thermocouple readings, flow rate and finally the probe pressure measurements.

This order was chosen so as to minimise any effect of the air vented into the boiling fluid when taking pressure measurements. However, as expected, the presence of the probe was found to affect the pressure drop over the experimental tube. This effect was minimised by positioning the end of the probe just above the last increment in the tube when pressure measurements were not being taken. It was found that by doing this, the pressure at the bottom of the tube was increased by no more than 6 mm Hg when the probe was lowered to the first increment. Indeed, since only readings of that part of the tube where bulk boiling occurs were used, the error in any of the data due to this effect is estimated at no more than 4 mm Hg and this only at high power inputs.

It was found that each run took about 40 minutes; 10 minutes for the readings to be taken and about 30 minutes to reach equilibrium. Thus the experimental fluid was being degassed for about 30 minutes between each run to eliminate any dissolved air resulting from pressure measurements on the previous run.
With each experimental fluid the runs were carried out starting at the lowest heat flux and varying the flow rate to about 10 different values, then the heat flux was increased and the flow rate varied again. This procedure was continued until the highest heat flux was reached.

At first, runs were carried out during the day with the rig shut down overnight, however, it was found that this resulted in a high failure rate of thermocouples. This was deduced to be due to the differing amount of expansion in the copper experimental tube and the column of aluminium heating blocks. At the top of the experimental tube this was estimated to be about 6 mm. It was assumed that flexing of the thermocouples caused by this movement eventually resulted in the thermocouple sheath breaking. To overcome this problem the remaining runs (101-154) were carried out without switching the heaters off. This appeared to prevent any further thermocouple failures.

It was found that the mains voltage varied during the day. This meant that wattage of each heater had to be continually checked and re-adjusted. During certain times of the day the voltage variations were especially large and rapid, such that any experimental readings were impossible. This problem was overcome by operating overnight when only very slow variations of the supply voltage were noted.

(4) Shut Down Procedure

When the readings of the last run of the day's experimental programme had been completed the electrical heaters were turned off and the flow rate of the liquid
feed increased to near the maximum. When the thermocouple readings showed that the wall temperatures had reached equilibrium with the liquid, a set of thermocouple calibration readings were taken (see 4.2 (1)). Equilibrium was normally reached in 45-60 minutes depending upon the heat flux used for the last run. These calibration values were compared with those taken before the experimental runs. Experimental readings from those thermocouples whose calibration had changed significantly were subsequently ignored. Normally, however, the difference in the calibrations was less than 0.2°C.

Once the calibration readings had been taken the steam supply to the reboiler was shut off and after about 15 minutes, when the liquid in the reboiler section had ceased boiling, the rig was shut down and, if required, emptied.
V. DATA PREPARATION AND ANALYSIS

V.1 DATA PREPARATION

To present the experimental and derived data in a form suitable for analysis various computer programs were written in Basic-16 (H3) for running on the departmental digital computer, a Honeywell 316 computer system.

The first program, Program I, was one to present the data in a form such that selection of data for further analysis was possible. The data from each run was punched up on paper tape for input to the computer. The data derived from the use of Program I was for each run first output on a teletype. From this output a plot of the bulk temperature and wall temperature, both experimental and as predicted using the Chen correlation, was made. Using these graphs the selection of data to be used for further analysis was made. The criteria used to decide whether an item of data was to be used were as follows:

(1) Only data from increments where bulk boiling had occurred were used. The somewhat arbitrary dividing time of 0.5% vapourisation was chosen. This was the lower limit Chen had found for the applicability of his correlation.

(2) Experimental data points which were obviously grossly in error were not used in the subsequent analysis. This criterion was easy to apply since it was found that, in general, the experimental points formed a fairly smooth curve when plotted, except for a few points which fell a
long way from the rest of the data and were obviously incorrect and could be discarded. Generally points discarded under this criterion were consistent from run to run thus implying a systematic error as opposed to a random error.

Figs. 6.8 - 6.16 show some typical graphs of experimental data, showing those points used in subsequent analysis. When the data to be used subsequently had been selected, the raw data were run again using Program II which output the selected data onto paper tape in a format suitable for further processing.

Both of these programs are discussed further in Appendix IV.

It was intended that the data fitting and correlation would be performed on the Aston University ICL 1905E computer system, however, the paper tape code of the Honeywell 316 was incompatible with that of the ICL 1905E. This difficulty was overcome by using a machine code program on the Honeywell 316 to convert the paper tape output to a form compatible with the ICL 1905E.

This final paper tape output was then loaded into the ICL 1905E and stored upon permanent magnetic tape files. This data, however, was stored in a comparatively bulky and inconvenient form, with each data value requiring two lines. In order to compact the data and store it in a more convenient form a small program was written and run. These files were then used in all of the correlating programs.
Later a much faster CDC 7600 computer at the University of Manchester Regional Computer Centre (UMRCC) was used. This required the data files to be transferred to the file store at UMRCC.

V.2 DATA ANALYSIS AND CORRELATION

V.2.1 Outline of Problem

We assume that the heat transfer coefficients can be correlated by an equation of the form

$$h = f(x_1, x_2, \ldots, x_k, v_1, v_2, \ldots, v_m)$$ \hspace{1cm} 5.1

where $x_1 \ldots x_k$ are correlating constants and $v_1 \ldots v_m$ are physical values, e.g. bulk temperature, physical properties. Then defining;

$$S = \Sigma^n_1 (h - h_x)^2$$ \hspace{1cm} 5.2

where h_x are experimental heat transfer coefficients and n the number of experimental points.

Then the optimum values for $(x_1 \ldots x_k)$ are those giving the minimum value of S. The root mean square error, S_r is a function of the value of S, given by

$$S_r = (S/n)^{\frac{1}{2}}$$ \hspace{1cm} 5.3

V.2.2 Introduction

Because none of the models described in Chapter III are linear, nor can they be transformed into linear equations, non-linear least squares optimisation methods must be used to determine the optimum values for the correlating constants.

However, for the Chen correlation an iterative linear method can be used due to the particular form of the correlation. This method is fully explained in section V.2.3 below.
More general methods for non-linear least squares optimisation proceed by varying the correlating constants from 'base' values until a set of correlating constants giving a lower sum of squares error is found. These new values then become a new base point and the procedure repeated. The various non-linear least squares optimisation methods differ in the procedure used to derive the search points.

Non-linear least square optimisation methods can be divided into those using derivatives and those not. According to Jones \(J2 \), the best method using derivatives is the Spiral Algorithm \(J2 \). The method is described in section V.2.4. However when the Spiral Algorithm was used to fit the experimental data it was found not to be entirely satisfactory. For this reason methods not requiring derivatives were investigated. A program using Rosenbrock's method \(R5 \) was available in the department \(G1 \) and this program was modified for use with the various models described in Chapter III. This program is described in section V.2.5. Later this program was further modified so as to use the method of Davis, Swann and Campsey.

V.2.3 Iterative Linear Method

This method is applicable only to Chen's model as defined by equations 3.7, 3.8 and 3.9.

\[
\begin{align*}
 h_{tp} &= e^{FL} h_{con} + S h_{mic} \\
 FL &= f(ln(1/XT)) \\
 S &= f(ln(Re) + 1.25 FL)
\end{align*}
\]

5.1

5.2

5.3

(70)
The following procedure is used. An initial estimate of the polynomial function F in equation 5.2 is made. Using the values of F thus derived from the experimental data the equivalent values for S can be found. From equation 5.1

$$S = \frac{h_{t_p} - e^{F_L} h_{con}}{h_{mic}}$$

These values of S thus derived can then be correlated with the values of $(\ln(Re) + 1.25 F_L)$ derived from the experimental data and by the use of the assumed polynomial equation for F_L

Using the correlation for S thus derived a similar procedure for F_L can be carried out. From equation 5.1

$$F_L = \ln\left(\frac{h_{t_p} - S h_{mic}}{h_{con}}\right)$$

These values of F_L can then be fitted to the values of $\ln(1/XTT)$ derived from experimental data. This iterative procedure is repeated until the coefficients in the polynomials for F_L and S reach stable values. Fifth order polynomials were used for the F_L and S functions. A fourth order polynomial fitted to Chen's F graph was used as the initial function for F_L

The procedure outlined above is similar to that used by Chen, however, it was found that unlike in Chen's work, the sum of squares error increased with each iteration. Various reasons can be proposed to account for this:--

1. The polynomial least squares procedure used in this method minimises the sum of squares error on the F_L and S functions. However, since F_L is an exponent in the final equation the polynomial found when fitting F_L is not
necessarily the optimum polynomial for minimising the sum of squares error of the total correlation (I1). This difficulty can be at least partially overcome by using weights on each data point in the polynomial fitting procedure (I1). However this would have greatly complicated the program written to implement this method and would have negated the method's advantages, which are its speed, simplicity and ease of programming.

(2) The range of the experimental data points may not have been wide enough to give stable solutions and thus the iterative solutions found were unstable and hence each iteration diverged instead of converging upon the optimum.

Chen (C3) gives few details of the iterative procedure used to obtain his correlation hence it is difficult to determine whether the possible reasons for non-convergence given above would apply to the exact method used by Chen.

However, since Chen used data from more than one system and over a much wider range of parameter values it is unlikely that the second possible reason would apply to Chen's work.

A listing and brief description of the program used is given in Appendix IV.

V.2.4 Spiral Algorithm

The spiral algorithm is a non-linear optimisation procedure developed by Jones (J1), who claimed it to be the best optimisation procedure using derivatives for non-linear problems. The program used was based upon
a program written by Coleby (C7). The program was found to be good for initial optimisation from a bad starting point, however, once the initial fast reduction in the sum of squares had been achieved the rate of progress rapidly fell off until progress virtually ceased. It is possible that the failure of the spiral algorithm near the optimum was due to the very steep sum of squares 'valley' which was presumed to exist in region of the optimum. References (J1) and (C7) describe in detail the theory and use of the spiral algorithm and thus further details of the procedure are not presented in this thesis.

2.5 Rosenbrock's Method

Rosenbrock's method is one of the most widely used non-linear least squares optimisation procedures and together with Davis, Swann and Campey's method have the advantage over the spiral algorithm of being very easily modified to handle different models. Only the subroutine for evaluating the sum of squares need be altered. This allows many different models to be investigated without tedious program modifications.

Rosenbrock's method (R5) uses n mutually orthogonal direction vectors, where n is the number of parameters to be optimised. For the first stage the co-ordinate vectors are used. Starting from an initial 'base' point the search commences by making a step along each vector in turn, the step d_i being associated with the i^{th} vector. If a step gives a sum of squares error no greater than the base
value this point is termed a success and becomes the new base point. If a step gives a sum of squares error that is larger than the base value, then this step is termed a failure. With a success the step length d_i is increased by a factor α while for a failure the step length is multiplied by β.

When a step has been considered along all n vectors the process is repeated until a success has been followed by a failure along each vector. At this point a new set of orthogonal vectors are derived, the first vector being in the direction of total progress made during the stage.

The re-orthogonalisation procedure used by Rosenbrock breaks down if the progress made along any of the vectors is zero or very small compared to the total progress made. For this reason the procedure used by Davis, Swann and Campey (D2), which does not have this drawback, was used.

α and β were given the values 3 and -0.5 as recommended by Rosenbrock.

Experience showed Rosenbrock's method to be reasonably satisfactory, but it was found to be prone to breaking down due to numerical overflow caused by the vector step lengths becoming too small. This problem could be partially overcome by ignoring those vectors whose step lengths fell below a specified limit. However, this led to other problems especially that of slow convergence. It was for this reason that the program was modified so as to use Davis, Swann and Campey's method.
V.2.6 Davis, Swann and Campey's Method

This is a modification of Rosenbrock's method incorporating a multivariate search along each vector (D2).

Taking each vector in turn a search was performed along the vector to find the optimum point. As with Rosenbrock's method a success generates a point further along the vector, however, in this method a is equal to 2, with β equal to -0.5, as in Rosenbrock's method. When a success is followed by a failure along the vector a point midway between the last two points is investigated. This procedure gives four equally spaced points along the vector. Taking the best point and the two adjacent points a quadratic interpolation is performed. A sum of squares evaluation is performed on this interpolated point and the best point found on the vector is used as the base point for further optimisation. When each vector has been thus investigated a vector re-orthogonalisation is performed as in Rosenbrock's method and the procedure repeated until the optimum point has been reached.

The method of Davis, Swann and Campey was found to be the best of those used, however, it was not without its problems. Convergence was found to be fairly slow, but it is unlikely that any other method would have been significantly faster. Convergence was found to proceed in a stepwise manner with periods of rapid convergence alternating with periods of negligible progress. This is probably due to the method requiring a large number of sum of squares evaluations to re-orientate itself along the sum of squares valley after each period of rapid progress.
As with Rosenbrock's method problems were encountered when the step length along any of the vectors became very small and the same modifications as used on Rosenbrock's method were used to circumvent this problem.

Initially, convergence was assumed to have occurred when the step lengths on all of the vectors had fallen below a specified limit. Normally when this occurred the value of the sum of squares error was seen to have changed very little over the final few iterations and thus the assumption of convergence appeared reasonable. However, it was found that a further, often considerable, reduction in the sum of squares could be achieved if the final parameter values found were used as the initial starting points for a further attempt at optimisation using the same program. It is possible that this was due to the procedure used in the program of initially optimising along the co-ordinate vectors. This may have had the effect of 'tightening up' the parameter values, leading to a period of comparatively rapid optimisation. It was also found that by slightly perturbing one or more of the parameter values before re-optimisation further improved the rate of convergence.

A listing of the final form of the program used is given in Appendix IV.

V.2.7 General Comments

The main difficulty with all non-linear optimisation procedures is the difficulty of determining whether the global optimum has been reached (LL). For problems involving complicated expressions, such as in this work,
it is possible that more than one local minimum may exist. However it is normally impossible to confirm the existence, or otherwise, of more than one local minimum except by determining the contours of the sum of squares surface over the total parameter range. Such a procedure is normally unrealistic due to the immense amount of computer time it requires. In practice, the optimisation is normally performed from more than one starting point. This procedure, while not infallible, will normally show whether the global minimum has been reached. However, for problems such as in this work, with a very large amount of experimental data even such a procedure as this is unrealistic due to the very large amount of expensive computer time necessary. Even with a very fast computer such as the CDC 7600 up to 500 seconds were required to complete an optimisation.

A further indication of whether the global minimum value of the sum of squares has been reached is if the sum of squares error is approximately equal to the expected experimental error in the data. But it is normally impossible to have a measure of the experimental error without first having an equation correlating the experimental results. Thus, it must often be a matter of personal judgement as to whether the best possible correlation for the experimental data has been determined.
VI. RESULTS and DISCUSSION

VI.1 Introduction

It was originally intended to fit both the water data and the azeotrope data simultaneously, however, the azeotrope data was found to be highly anomalous and so it became impossible to fit both sets of data to any single correlation. From tests carried out it was concluded that the ethylene diacetate azeotrope had been subject to partial hydrolysis which greatly affected the experimental results. For this reason both sets of data had to be correlated separately; the water data results are discussed in section VI.3 and the azeotropic data in section VI.4.

Before the results are considered in detail it is necessary to give some attention to the accuracy of the data in order to consider properly the significance of the root mean error associated with each correlation. An analysis of the sources of error in the experimental data and their effect upon the accuracy of the data appears in section VI.2 below.

It is important to realise the true significance of the root mean square percentage error associated with each correlation. Since the data points were selected so as to exclude those data points with a high error the overall percentage errors in themselves have little significance as absolute values. Their main importance is in their use to compare the correlations.
Figs. 6.5 to 6.13 show the measured wall temperatures, wall temperatures predicted from Chen's correlation and wall temperatures predicted from five of the correlations derived in this work for nine of the experimental runs. The nine runs presented were selected so as to cover the full range of heat flux and flowrate values.

It was found, however, that the wall temperatures predicted from the derived correlations were, in general, so close that it was found impossible to draw separate curves for the five correlations. For this reason the five correlations have been represented by one line although this does not imply that the five correlations are always coincident.

No pattern could be perceived in the slight divergences that occurred between the curves for each of the correlations nor in the magnitude and distribution of the errors.

VI.2 Accuracy of the Data

That there are a large number of sources of error in the experimental data is due to the large number of variables which affect the experimental heat transfer coefficients. Each experimental variable which must be measured has its associated error and thus to obtain an estimate of the magnitude of the experimental error associated with each data point it is necessary to consider each experimental variable in turn.
For the purposes of this discussion three different heat transfer coefficients must be recognised at each data point. The measured heat transfer coefficient is the first and the second is the actual but unknown heat transfer coefficient. The third heat transfer coefficient is called the predicted heat transfer coefficient. It is assumed that a correlation of the same form as Chen's correlation is used but that this hypothetical correlation would fit the data exactly if there was no experimental error; i.e. the correlation is perfect. However, this predicted heat transfer coefficient was measured values of the experimental variables and errors in these measurements will lead to errors in this 'predicted' heat transfer coefficient.

VI.2.1 Inlet Temperature

As mentioned in section IV.1.3 the maximum error expected in the measurement in the inlet temperature is 0.1°C. In the boiling section of the experimental tube the bulk temperature is derived from the bulk pressure and thus is unaffected by errors in the inlet temperature. However the inlet temperature is used in the calculation of the quality in the boiling section. It can easily be shown that a 0.1°C error in the inlet temperature measurement leads to an error of 0.0002 in the predicted quality. As only points with a quality greater than 0.005 were used, this gives a maximum error of 4% in
the quality which corresponds to an error of approximately 4% in the predicted heat transfer coefficient. However for most of the data points the error is likely to be much smaller than this.

VI.2.2 Bulk Pressure

The maximum error in the bulk pressure measurement over the boiling section is likely to be about 2.5 mm Hg which is equivalent to an error of 0.1°C in the bulk temperature. As with the inlet temperature discussed above this error leads to an error in the predicted heat transfer coefficient of upto 4% due to the error caused in the predicted quality. However there are a number of other ways in which an error in the bulk pressure affects the predicted heat transfer coefficient. First errors in the bulk pressure and temperature lead to errors in the predicted physical properties, but the effect of this on the predicted heat transfer coefficient is likely to be small, less than 1%. Secondly, the terms \((P_w - P_b) \) and \((T_w - T_b) \) are parameters in the nucleate boiling term in the Chen correlation, however, the effect of bulk pressure errors upon these terms will be small, usually less than 0.5%.

An error in the predicted bulk temperature will affect the measured coefficient. The maximum error caused by a bulk temperature error of 0.1°C will be about 3%.
VI.2.3 Wall Temperature

Errors in the wall temperature measurements are by far the most important source of error in both the measured and predicted heat transfer coefficients. In the data used for fitting the maximum error in the wall temperature measurements was of the order of 1.5°C to 2.0°C depending upon the heat flux. This corresponds to errors in the measured heat transfer coefficients of up to 20%.

Errors in the wall temperature measurements also affect the predicted heat transfer coefficients due to their effect on the terms \((P_w - P_b) \) and \((T_w - T_b) \). Errors in the predicted heat transfer coefficient due to wall temperature errors will be of up to 15% in the nucleate boiling region but much less in the two-phase forced convection region where the nucleate boiling term is much smaller.

The errors in the predicted and measured heat transfer coefficients are opposite in sign and thus the difference between the measured and predicted heat transfer coefficients could be up to 35%. However, data points with errors as high as this would almost certainly have not been used for fitting the correlations. (See section V.1).

VI.2.4 Flowrate

The maximum error in the measured flowrate is unlikely to be more than 2%. An error in the flowrate
would cause an error in the predicted quality approximately equal to the error in the flowrate. This would cause a maximum error in the predicted heat transfer coefficient of up to 2%. An error in the measured flowrate also results in errors in the predicted Re and Fr numbers causing an error in the predicted heat transfer coefficient of up to 1.5%. Thus the total maximum error in the predicted heat transfer coefficient due to error in the measured flowrate is about 3.5%

VI.2.5 Heat Flux

The maximum error in the setting of the heat flux was estimated to be about 4%. This would correspond to an error of 4% in the measured heat transfer coefficient. Errors in the heat flux only directly affect the predicted heat transfer insofar as they affect the wall temperature. This effect is likely to be small.

The error in the total heat flow will be smaller than the 4% error on each heater since errors on each of the heaters will tend to cancel each other out. The maximum overall error in the assumed heat flow is likely to be of the order of 1.5%. Due to its effect upon the quality this error will cause a corresponding error in the predicted heat transfer coefficient.

VI.2.6 Physical Properties

For water whose physical properties are accurately known over the range of experimental conditions, the equations used to predict the physical properties are
probably all accurate to at least 1% and thus the maximum error in the predicted heat transfer coefficient is probably no more than 0.5%. For the azotrope physical properties errors of up to 5% could be expected for those physical properties whose values were not derived from experimental data. The physical property correlations derived from experimental data are probably accurate to 0.2%.

However, it appeared that the EDA in the azotrope was subject to partial hydrolysis. If this was so then the errors in the physical property values are likely to be substantially higher. This is discussed further in VI.4.

VI.2.7 Overall Errors

When all of the possible sources of error are considered it is clear that the maximum likely errors in both the measured and predicted heat transfer coefficients are very high. However it must be remembered that data points which appeared to have a high error were not used. (see section V.1) Thus it would be expected that the maximum error in the data used would be less than that expected from the foregoing analysis, and this was found to be so. Indeed the maximum difference found between the measured heat transfer coefficient and the predicted heat transfer coefficient using any of the derived models was of the order of 25%.
VI.3 WATER DATA

The water data used in fitting the various correlations consisted of 520 selected points covering the range of conditions given below:-

Flowrate 0.07 to 0.325 kg/s (352 to 1633 kg/m²s)
Heat flux 0.955 x 10⁵ to 2.89 x 10⁵ W/m²
Quality 0.5 to 12.7%

An initial attempt was made to fit the data to Chen's model using the iterative procedure used by Chen outlined in section V.2.3. However, the method was found not to work when used with the data presented in this thesis. The possible reasons for the failure of this method have already been discussed in section V.2.3. The water data was subsequently fitted using the Davis, Swann and Campey optimisation program discussed in section V.2.6. The data was fitted four different models: a five parameter model, Chen's model and two models developed in Chapter III.

VI.3.1 Five Parameter Model

In order to test the optimisation program and to give an error datum for the other correlations, the selected data was fitted to a simple five parameter model derived from the Chen model but assuming S constant over the range of the data. F_L was fitted as a fourth order polynomial in terms of $\ln\left(\frac{1}{X_{TT}}\right)$. The optimum fit found was

$$F_L = 1.195 + 0.5568 \ln\left(\frac{1}{X_{TT}}\right) + 0.07817 \left(\ln\left(\frac{1}{X_{TT}}\right)\right)^2 - 0.009097 \left(\ln\left(\frac{1}{X_{TT}}\right)\right)^3 \quad 6.1$$

and $S = 0.0131 \quad 6.2$
These equations are used in conjunction with equations

\[h_{\text{con}} = 0.023 \frac{k_f}{D} \left(\frac{G (1 - x) D}{\mu_f} \right)^{0.8} \left(\frac{F_r}{\mu_f} \right)^{0.4} \]

\[h_{\text{mic}} = 0.00122 \left(\frac{k_f^{0.79} \sigma_{f}^{0.45} \rho_{f}^{0.49}}{\mu_f^{0.29} \rho_{g}^{0.24} \Delta T_{\text{SAT}}^{0.24} \Delta P_{\text{SAT}}^{0.75}} \right) \]

\[h_{tp} = h_{\text{con}} e^{F_L} + h_{\text{mic}} S \]

The root mean square percentage error was 13.26%.

Fig. 6.1 shows the \(F_L \) curves for Chen's correlation together with those found for each of the other correlations based on Chen's model. Similarly Fig. 6.2 shows the S curves for Chen's correlation and for the other correlations based upon Chen's model. This correlation is discussed further in conjunction with the other correlations found for the water data.

VI.3.2 Chen's Model

Chen's model was presented in section II.3 and was optimised on the selected water data using the Davis, Swann and Campey optimisation method described in section III.3.

The optimum functions found for \(F_L \) and S were:

\[F_L = 1.3577 + 0.5814 \ln \left(\frac{1}{X_{TT}} \right) + 0.05896 (\ln \left(\frac{1}{X_{TT}} \right))^2 - 0.001799 (\ln \left(\frac{1}{X_{TT}} \right))^3 \]

\[S = 14.642 - 2.4199 R_L + 0.1391 R_L^2 - 0.003356 R_L^3 \]

where \(R_L = \ln \left(\frac{R_{tp}}{\mu_f} \right) = \ln \left(\frac{G (1 - x) D}{\mu_f} \right) + 1.25 F_L \)

These equations are used in conjunction with equations 6.3, 6.4 and 6.5. This fit has a root mean square percentage error of 11.10%. As previously mentioned the \(F_L \) and S curves are shown in Fig. 6.1 and 6.2 respectively.

(86)
Figure 6.1 Graphs of $\ln(F)$ v/s $\ln\left(\frac{1}{X_{TT}}\right)$
Figure 6.2
Graphs of $S/v_s \ln(Re_t_p)$

- Chen's correlation
- S free correlation (eqn 6.7.)
- $S \geq 0$ correlation (eqn 6.10.)
Both the F_L and S curves differ significantly from the curves found by Chen. The F_L curve has a similar shape to that found by Chen but it is offset upward. This follows the trend of the experimental data where the measured heat transfer coefficients were approximately 25-30% higher than those predicted from Chen's correlation. This difference between the experimental and predicted heat transfer coefficients was at first thought to be due to either an error in one of the many calibrations or a systematic error in the calculation procedure. However exhaustive checking of the calibrations and calculation procedures failed to reveal any such error and it was thus presumed that the discrepancy was real. The offset between the F_L curve found by Chen and the F_L curve found for this correlation is roughly constant at a value of 0.34. This corresponds to an increase in F_L of about 40%. This increase in F_L is partly compensated for by a decrease in the value of the S function found for this correlation over the range of experimental data, compared with that given by Chen.

It can be seen from Fig. 6.2 that the value of the S function falls below zero for a large part of the range of the experimental data. It is difficult to see how a negative value of S can be reconciled with the Chen model since a negative S value implies that the nucleate boiling heat transfer mechanism causes heat to flow from the bulk liquid to the wall, against the temperature gradient which is a thermodynamic impossibility. But if the correlation is seen merely as a mathematical form fitted
to the data then no difficulty arises. However, acceptance of such an approach certainly reduces the usefulness of the model as a description of the mechanism important during flow boiling.

Another possible approach is to regard the nucleate boiling term as a correction applied to the convection term. The relevance of this approach is clear when one considers that the nucleate boiling term never accounts for more than 20% of the total heat transfer coefficient and for the majority of the data points less than 10%. Using this approach it becomes easier to see how the S function can become negative. Only a slight upward movement of the F_L curve would cause the S function to greatly decrease in value and become negative. This could be caused merely by the approximation involved in using a cubic equation to represent the F_L and S curves. It is possible however that an additional factor could be the narrow range of experimental data available. This is discussed further in section 5.2.3.

The fact that the nucleate boiling term is normally much smaller than the convective term and is greatly affected by small changes in the F_L function does not imply that it is of negligible significance. When the correlation above, based on the Chen model, is compared with Five Parameter correlation presented earlier it is seen that the use of a variable S value significantly lowers the root mean square percentage error from 13.26% to 11.1%.
In order to further investigation the phenomena of negative S values a second optimisation was performed while fixing the minimum value of the S function at zero. The optimum \(F_L \) and S functions found were

\[
F_L = 1.2422 + 0.5592 \times \ln\left(\frac{1}{\frac{1}{X_{TT}}}\right) + 0.06554 \times \left(\ln\left(\frac{1}{X_{TT}}\right)\right)^2 + 0.00529 \times \left(\ln\left(\frac{1}{X_{TT}}\right)\right)^3
\]

\[
S = -5.747 + 1.002 \times \ln\left(R_{etp}\right) + 0.01065 \times \left(\ln\left(R_{etp}\right)\right)^2 - 0.00463 \times \left(\ln\left(R_{etp}\right)\right)^3
\]

where \(S \geq 0 \)

These functions are used in conjunction with equations 6.3, 6.4, 6.5 and 6.8 with a root mean square percentage error of 11.73%.

From fig. 6.1 and 6.2 it can be seen that preventing S from becoming negative causes the \(F_L \) curve to fall in value over the whole range of \(\ln\left(\frac{1}{X_{TT}}\right) \) values. It is significant that the difference between the two \(F_L \) curves increases at high \(\ln\left(\frac{1}{X_{TT}}\right) \) values since high values of \(\frac{1}{X_{TT}} \) are generally associated with high values of \(R_{etp} \). It is a high \(R_{etp} \) value that the difference in value between the two S functions is greatest. The difference between the errors associated with each of the two correlations is not large (0.63%) and must be due entirely to the constant upon the minimum value of S. As mentioned earlier there is no noticeable pattern in the differences in the wall temperature values predicted by the two correlations.
VI.3.3 Correlations based on Model A

Model A was derived in section III.1 and the data was fitted to this model using the optimisation methods previously described. The optimum fit was found to be given by the correlation defined by the equations

\[XF = \ln\left(\frac{1}{X_{\text{TT}}}\right) + 0.0604 \ln(\text{Fr}) \]
\[F_L = 1.0786 + 0.5313 \, XF + 0.04839 \, XF^2 - 0.001644 \, XF^3 \]
\[R_L = \ln(Re_{\text{tp}}) = \ln(Re) + 1.429 \, F_L \]
\[S = -6.955 + 1.7653 \, R_L - 0.10713 \, R_L^2 + 0.000681 \, R_L^3 \]

These equations are used in conjunction with equations 6.3, 6.4 and 6.5. This fit has a root mean square percentage error of 11.02%. Plots of the \(F_L \) and \(S \) functions are given in Figs. 6.3 and 6.4 respectively. Fig. 6.6 and 6.7 show the \(F_L \) and \(S \) curves for the correlation based upon model B and discussed in section 6.3.4.

It should be noted that none of the curves on Figs. 6.3 and 6.4 are directly comparable with each other or with the curves on Fig. 6.1 and 6.2. This is because the \(XF \) and \(Re_{\text{tp}} \) are defined differently for these correlations and are thus not equivalent.

From Fig. 6.4 it can be seen that, as with the correlations based on Chen's model (see section VI.3.2) the function for \(S \), 6.15, is negative over a large proportion of the data points. The discussion of the meaning of negative \(S \) values given in the previous section, VI.3.2, is equally applicable to this correlation.
Figure 6.3
Graphs of F_L vs X_F

- S free correlation (eqn 6.13.)
- $S \geq 0$ correlation (eqn 6.17.)
Figure 6.4
Graphs of S/R_L for Correlations based upon Model A

- S free correlation (eqn 6.15.)
- $S = 0$ correlation (eqn 6.19.)
As with the Chen model a correlation was derived where S was prevented from becoming negative. The optimum fit found was

$$XF = \ln \left(\frac{1}{XTT} \right) - 0.0197 \times \ln (Fr)$$

$$FL = 1.3387 + 0.5987 \times XF + 0.06676 \times XF^2 - 0.007897 \times XF^3$$

$$FL = \ln (Ra_{tp}) = \ln (Re) + 1.0895 \times FL$$

$$S = -5.639 + 1.0007 \times FL + 0.01128 \times FL^2 - 0.004808 \times FL^3$$

$$S > 0.0$$

with a root mean percentage error of 11.71%.

When the above two correlations are compared with the equivalent correlations using the Chen model in section VI.3.2 it is surprising to find that there is very little improvement in the error associated with each correlation. It would seem that the addition of the Froude number is a further variable and the optimisation of the exponent on F do not greatly improve the accuracy of the correlations. It is probable that these two additional variables only become important when correlating data from a wider range of data than was available in the present work. This is an important point which is worth examining in some detail. The concept is easily seen when the simple example in Fig 6.5 is considered.

The solid line is the graph of a cubic equation representing some physical relationship while the points represent experimental data. If only the points represented by crosses are available then any line between the dotted straight lines will represent the data with reasonable accuracy even though none of them represent the true relationship at all well over the whole range. Also there will be little improvement
Figure 6.5 Graph of $y = f(x)$
in accuracy of fitting this data if a quadratic or cubic equation and if a cubic equation was used there is little change of deriving the correct cubic equation from such a narrow range of experimental data.

If another form of correlation, such as exponential with a similar number of optimising parameters, is used a similar effect would undoubtedly be found.

Thus there will be a wide range of values for the correlating parameters which would give equations fitting the data with roughly the same accuracy. This results in the situation where a slight change in the data or in the model will lead to very large changes in the 'optimum' fit on the data. In order to obtain a reasonable approximation to the actual relationship a wider range of additional data is necessary, such as is represented by the circle data points in Fig. 6.5.

The same situation as described above probably arises in the present work. The range of data is fairly narrow and thus the Froude Number and the variable exponent in F are superfluous. However it is very likely that with a wider range of data these variables become more important.
VI.3.4 Correlations based on Model B

Model B was derived in section 3.2 and the water data was fitted to this model using the Davis, Swann and Campey optimisation method previously discussed in section IV.2.6. The optimum fit was found to give by the correlation defined by the equations

\[
XF = \ln \left(\frac{1}{X_I} \right) + 0.5659 \ln(Fr) \quad (6.11)
\]

\[
F_b = 1.3386 + 0.0199 \times XF + 0.0344 \times XF^2 - 0.001422 \times XF^3 \quad (6.22)
\]

\[
R_L = \ln \left(R_{eL} \right) + 1.7893 \times F_b \quad (6.23)
\]

\[
S_b = 8.6371 - 1.3533 \times R_L + 0.0885 \times R_L^2 - 0.00262 \times R_L^3 \quad (6.24)
\]

where \(S_b \geq 0 \) \quad (6.25)

The above equations are used in conjunction with the equations:

\[
h_{film} = \frac{k_f}{D} \left(\frac{0.32 \times R_{eL}}{(1 + 0.5 \ln(10 \times Pr + 1.0)/Pr) \text{ Pr}} \right) \quad (6.26)
\]

\[h_b = h_{film} F_b + h_{mic} S_b \quad (6.27)
\]

together with equation 6.4 for \(h_{mic} \).

This correlation had a root mean percentage error of 11.837%. The graph of \(F_b \) v/s \(XF \) is shown in Fig. 6.6 while Fig. 6.7 shows the graph of \(S_b \) v/s \(R_L \).

Fig. 6.6 shows \(F_b \) over a much wider range of \(XF \) values than any of the previous plots. This is because the large value of the exponent in the Froude number results in a much wider range of experimental \(XF \) values. For the same reason \(S_b \) is given over a wider range of values of \(R_L \) in Fig. 6.7.

The much larger value of the exponent on the Froude

(98)
Figure 6.6 Graph of F_b v/s X_F for correlation based upon Model B (eqn. 6.22)
number is the most notable difference between this correlation and those discussed in section 6.33. As the Froude number is defined as \(\frac{V_m^2}{G D} \) and since G and D are constant in this work the variation in the Froude number reflects the variation of the two-phase velocity. The two-phase velocity can be approximately related to the single phase flow velocity by

\[
V_m = V_{FP} = \frac{V_L x}{C_V}
\]

If \(C_V \) is assumed to be constant then

\[
V_m \propto V_L x
\]

The plot of \(F_b \) against \(XF \) can be very roughly approximated by a straight line of slope 0.3, then,

\[
F_b = 0.3 \ln((V_L x)^{1.12}) + 0.3 \ln((\frac{x}{1-x})^{0.9}) + c
\]

where \(c \) is some arbitrary constant. If this equation is combined with equation 6.26 then it can easily be shown that, ignoring the \((1-x)\) term and the effect of variation in the physical properties, that

\[
h_{film} \propto V_L^{0.84} x^{0.6}
\]

A similar analysis can be performed on the correlation, based on model A, defined by the equations 6.16 to 6.20 giving

\[
h_{film} \propto V_L^{0.86} x^{0.61}
\]

It is remarkable how similar equations 6.31 and 6.32 are considering the great simplifications involved in their derivation. The value of the power on \(V_L \) would seem to confirm the applicability of the Dittus Boelter equation (see section 2.2) to two-phase heat transfer since the values of the power on \(V_L \), 0.84 and 0.86 are close to the Dittus Boelter value of 0.8. This would seem to indicate (101)
Flowrate 0.235 kg/s
Heat Flux 0.991×10^5 w/m2

KEY
- + Wall Temperature Measurement
- • Used Wall Temperature Measurement
- x Bulk Temperature
- - Wall Temperature predicted from Chen's Correlation
- — Wall Temperature predicted from Derived Correlation

Figure 6.8
Plot of Wall Temperatures and Bulk Temperature for Run 29
For key see Fig. 6.8
Flowrate 0.106 kg/s
Heat flux 3.27 x 10^5 W/m^2

Figure 6.9 Plot of Wall Temperature and Bulk Temperatures for Run 35

TEMP °C
125
120
115
110
105
100

INCREMENT NO.
For key see Fig. 6.8
Flowrate 0.184 kg/s
Heat flux 1.662×10^5 W/m²

Figure 6.10
Plot of Wall Temperatures and Bulk Temperatures for Run 45
For key see Fig. 6.8
Flowrate 0.071 kg/s
Heat flux 1.65 x 10^5 W/m^2
Flowrate 0.19 kg/s
Heat flux 1.99×10^5 W/m²
For key see Fig. 6.8
Flowrate 0.078 kg/s
Heat flux 1.931×10^5 W/m2
For key see Fig. 6.8
Flowrate 0.142 kg/s
Heat flux 2.305×10^5 W/m2

Plot of wall temperatures and bulk temperatures for Run 86.
For key see Fig. 6.8
Flowrate 0.194 kg/s
Heat flux 2.89×10^5 W/m²
For key see Fig. 6.8
Flow rate 0.084 kg/s
Heat flux $2.89 \times 10^5 \text{ w/m}^2$
that Model A is a better form of correlation for two phase heat transfer than Model B since the Dittus-Boelter equation is an integral part of the model. This conclusion is partially confirmed by the slightly larger error associated with Model B. However it may be that the form of the equation for \(\dot{h}_{film} \) model B is better than that in model A but that the power on the Reynolds number on model B is not the optimum. Unfortunately it was not possible to investigate this possibility using the Davy, Swann and Campey method discussed earlier (see 5.32) due to lack of available computer time.

In equations 6.31 and 6.32 the power on \(V_L \) represents very roughly the relationship between \(V_L \) and the convective heat transfer coefficient. One should remember, however, the very great simplifications involved in the derivation of these equations, especially the assumption that the term \((1-x)\) can be ignored. These simplifications will have greatly modified the original more complicated form of relationship given by equations 6.16 to 6.20 and equations 6.21 to 6.27.

VI.4 Ethylene Diacetate-Water Data

The ethylene diacetate data used in fitting the correlation consisted in 322 selected points covering the following range of conditions:

- **Flowrate**: 0.076 - 0.253 kg/s (382 - 1271 kg/m²s)
- **Heat flux**: 1.31 - 2.89 x 10⁵ w/m²
- **Quality**: 0.5 - 13.5%
As previously mentioned the azcotrope heat transfer coefficients were found to be far higher than expected. This anomaly was explained when the ethylene diacetoate was found to have partially hydrolysed. This was first suggested by the strong acetic acid smell of the azcotrope which had been used for the experimental runs. That a chemical reaction had occurred was confirmed by surface tension measurements which were taken.

Figure 6.17 shows a plot of the surface tension measurements taken; the triangles show measurements taken from freshly made up azcotrope while the crosses show measurements taken of azcotrope which had been used for the experimental runs. The used azcotrope had been kept for approximately a week at room temperature before these measurements were taken. The lower group of crosses are from measurements taken first; while the upper group of crosses are from measurements taken after the azcotrope had been kept at 80°C for about two hours. It is clear from this plot that the surface tension of the used azcotrope was greatly affected by being kept at 80°C for a couple of hours. The most likely explanation for the results found is that at high temperature the ethylene diacetoate is subject to reversible hydrolysis with the equilibrium amount of hydrolysis increasing with the temperature. It is likely that the hydrolysis was catalysed by the copper ions present in the liquid due to the acetic acid formed slightly corroding the copper
Figure 6.17 Plot of Surface Tension Measurement of EDA-Water Mixture

\[(\gamma/m) \times 10 \]

\[\text{SURFACE TENSION} \]

\[\text{THERMAL TENSION (\gamma/m)} \times 10 \]

\[\text{TEMPERATURE } ^\circ \text{C} \]

\[\text{TEMPERATURE (\gamma/m)} \times 10 \]

\[\text{TEMPERATURE (\gamma/m)} \times 10 \]
The presence of copper ions in the liquid was confirmed by the slight green colouration of the liquid residue left when the azcotrope was later distilled before storage. This green colour gradually turned deep blue over a period of about a week. This probably represented cuprous ions being oxidised to cupric ions. The presence of cupric ions was later confirmed by chemical tests.

Surface tension measurements were required for the analysis of the data and thus it was necessary to decide upon which group of surface tension measurements were the most applicable for use with the heat transfer results. It was eventually decided that the upper group of crosses in Fig. 6.17 were the most applicable as it was assumed that these best represented conditions in the experimental rig. The optimum line drawn through these points is shown in Fig. 6.17. Further details are given in appendix III.

The partial hydrolysis does not only affect the surface tension, it will also affect all of the other physical properties, but however the effect of a slight amount of hydrolysis on any other physical property except surface tension is likely to be small.

Another effect of the hydrolysis reaction is that once any hydrolysis has taken place the experimental liquid no longer acts as an azcotrope and thus the results cannot be analysed solely in terms of heat transfer since mass transfer effects due to concentration differences between the phases must be taken into account.

However the main effect upon the results caused by the hydrolysis was probably due to the heat of reaction of the hydrolysis reaction. As no heat or reaction
could be found in the literature an attempt was made to calculate the heat of reaction using the methods given by Reid and Sherwood (R2). It was assumed that the reaction that occurred was

$$(\text{CH}_3\text{CO}_2\text{CH}_2)_2 + \text{H}_2\text{O} \rightleftharpoons \text{CH}_3\text{CO}_2\text{CH}_2\text{CH}_2\text{OH} + \text{CH}_2\text{COOH}$$

A value for the heat of reaction of \(-10.6\) kcal/gmole was found, showing the reaction to be endothermic as would be expected.

However this calculated value is subject to a large amount of error and thus can only be considered an approximate value.

That the reaction is endothermic is important since the reaction can act as an additional heat transfer mechanism for, as the equilibrium amount of hydrolysis increases with temperature, it is probable that the hydrolysis reaction occurs mainly at the hottest part of the experimental section, the tube wall. This results in heat being absorbed by the reaction causing a lower tube wall temperature and thus a higher heat transfer coefficient. The reverse reaction would probably mainly occur in cooler core, thus the reaction acts as a heat transfer mechanism moving heat from the tube wall to the core.

It is theoretically possible, although difficult, to calculate the equilibrium amount of hydrolysis at various temperatures using the estimated value for the heat of reaction. However this was not attempted since it was felt that the estimated values would be subject to so much error as to be meaningless.

Because of this additional heat transfer mechanism,
as well as the other effects of the hydrolysis reaction mentioned above, it would seem that none of the previously discussed models would be applicable to the data. However for the sake of completeness the data was fitted to Model A (see section 3.1). The optimum fit found was:

\[X F \approx \ln \left(\frac{1}{X_{IT}} \right) - 0.0851 \ln(F_r) \]
\[F_L = 2.3664 + 0.7132XF - 0.0351XF^2 - 0.001967XF^3 \]
\[R_L = \ln(Re_{tp}) = \ln(Re) + 2.1065F_L \]
\[S \approx -8.258 + 1.151R_L + 0.0012R_L^2 - 0.003078R_L^3 \]

These equations are used in conjunction with equations 6.3, 6.4 and 6.5.

This fit had a root mean square percentage error of 10.637%. Fig. 6.18 shows the plot of \(F_L \) v/s \(XF \) and Fig. 6.19 shows the plot of \(S \) v/s \(R_L \). The most obvious difference between the \(F_L \) plot for the ethylene diacetate-water date and the equivalent \(F_L \) plot for the water data (Fig. 6.3) is the much higher \(F_L \) values found for the ethylene diacetate-water data. This partly reflects the higher heat transfer coefficients found in the ethylene diacetate-water data but is also due to the comparatively large negative value of the exponent on the Froude Number which reduces the \(XF \) values for the ethylene diacetate-water data.

The \(S \) v/s \(R_L \) plot, Fig. 6.19, shows a highly unusual shape. This would seem to reflect the inappropriateness of the model when used for heat transfer with chemical reaction. However, considering the lack of applicability of the model it is surprising that the root mean square
Figure 6.18 Graph of F_L v/s X_F for EDA-Water Data (Eqn 6.34.)
Figure 6.19 Graph of $S v/s^R_L$ for EDA-Water Data (Eqn 6.36.)
percentage error is lower than that for the water data. It is probable that this is partly due to the complexity of the model. The large number of fitted parameters allows the model to fit, fairly accurately, data for which the model is not really applicable. Also the ethylene diacetate-water data probably had a lower experimental error associated with it.

Although the hydrolysis reaction has been disadvantageous in the present work it is possible that such a reacting system could be used to advantage in a situation where the highest possible heat transfer coefficients were desirable, however, the long term chemical stability of such a system could be a problem.
Conclusions and Recommendations for Further Work

1) Single component flow boiling heat transfer data can be adequately correlated using models based upon Chen's correlation.

2) Non-linear optimisation methods, particularly that of Davis, Swann and Campey are suitable for fitting flow boiling heat transfer data and the various models used in this work. However such optimisation procedures can require a large amount of computer time to reach the optimum parameter values.

3) The ethylene diacetate water azeotrope is unsuitable for use as an experimental fluid for flow boiling heat transfer experiments due to hydrolysis. However this reversible reaction appeared to greatly improve the boiling heat transfer coefficient and the ethylene diacetate water mixture, and the others like it, deserve further study as by using them it might be possible to greatly increase heat transfer rates in boilers.

4) An experimental rig allowing higher accuracy in the data should be used for further experiments. This could be achieved by using a thin walled tube heated by passing an electric current through it. This would allow much higher accuracy in the wall temperature measurements.

5) A much wider range of experimental conditions should be covered and with a range of experimental fluids in order to derive a more general correlation.
A1 Allen, W.F.

B1 Baker, O.
Oil and Gas Journal, 26 July,(1954).

B2 Baroczy, C.J.
A.I.Ch.E. reprint No. 37, paper presented at

B3 Bennett, J.A.R., Collier, J.G., Pratt, H.R.C. and
Thornton, J.D.

C1 Calus, W.F., Denning, R.K., di Montegnacco, A. and
Gadsdon, J.

C2 Chowla, J.M.
Paper B.5.7., 4th Int. Heat Transfer Conf.,

C3 Chen, J.C.

C4 Chisholm, D. and Sutherland, L.A.
Paper 4 presented at Symposium of Fluid Mechanics
and Measurements in Two-Phase Flow Systems,
C5 Chisholm, D.
 Paper 35 presented at 1968 Thermodynamics and Fluid

C6 Chou, C.

C7 Coleby, J.

C8 Collier, J.G.

C9 Collier, J.G., Lacey, P.N.C. and Pulling, D.J.

C10 Coulson, J.M. and Richardson, J.F.

D1 Davis, E.J. (New York State University)

D2 Swann, W.H.,
 I.C.I. Central Instrument Laboratory Research

D3 Davis, W.J.

D4 Dengler, C.E. and Addoms, J.N.

D5 Dukler, A.E.

E1 Engineering Sciences Data Unit,
F1 Fried, L.

F2 Forster, H.K. and Zuber, N.

G1 Gibson-Robinson, M.

G2 Golan, I.P. and Stenning, A.H.
Paper No. 14 presented at Symposium on Fluid
Mechanics and Measurements in Two-Phase Flow Systems,
Leeds University, (Sept. 1969).

G3 Govier, G.W., Radford, B.A. and Dunn, J.S.

G4 Govier, G.W. and Short, W.L.

G5 Griffith, P.

G6 Guerrieri, S.A. and Taltz, R.D.

H1 Haberstron, R.E. and Griffith, P.

H2 Hewitt, G.F. and Roberts, D.N.

H3 Honeywell Series 16 Software. Model 316 and 516 Basic
H4 Hsu, Y.Y.

H5 Hughmark, G.A.

I1 Isbin, H.S., Sher, N.C. and Eddy, K.C.

J1 Johnson, H.A. and Abou-Sabe, A.N.

J2 Jones, A.

K1 Kegel, P.K.

L1 Lapidus, L.
'Digital Computation for Chemical Engineers',

L2 Lockhart, R.W. and Martinelli, R.C.
M1 Martinelli, R.C. and Nelson, D.B.

M2 Moissis, N.

N1 Nagaragan, R. and Adelman, M.

P1 Penman, T.G. and Tait, R.W.

P2 Porteous, A.

P3 Pujol, L. and Stenning, A.H.
 University of Waterloo, Canada, P.401-453, Sept.(1968).

R1 Radovich, N.A. and Moissis, R.

R2 Reid, R.C. and Sherwood, T.K.
 'Properties of Liquids and Gases', 4th Ed., McGraw-Hill,
 (1968).

R3 Richard, J.M.

R4 Rohsenow, W.M.
R5 Rosenbrock, H.H.

R6 Rossøn, H.F. and Myers, J.A.

S1 Sato, T., Minamiyama, T., Yanai, M., Tokura, T. and Ito, Y.

S2 Schrock, V.E. and Grossman, L.M.

S3 Schrock, V.E. and Grossman, L.M.
Final report, Institute of Engineering Research,
University of California, Berkeley,(1959).

S4 Schrock, V.E. and Grossman, L.M.

S5 Simpson, H.C. and Wallis, A.S.
Paper 18, Symposium on Boiling Heat Transfer in
Steam Generating Units and Heat Exchangers,
Manchester, (Sept.1965).

S6 Somerville, G.F.
Report UC RL-10527, Lawrence Radiation Laboratory,

S7 Sze-Foo, C. and Ibele, W.
Paper 62-WA-170, presented at Winter Annual Meeting
T1 Tong, L.S.
 'Boiling Heat Transfer and Two-Phase Flow',
T2 Tong, L.S.

W1 Weast, R.C.
 Handbook of Chemistry and Physics, 53rd Ed.,
W2 Wright, R.M.
 Ph.D. Thesis, U.C.R.L. - 9744, University of California,
 (1964).
W3 Wright, R.M., Somerville, G.F., San, R.L. and
 Bromley, L.A.

Z1 Zuber, N. and Fried, E.
Z2 Zuber, N., Staub, F.W., Bywaard, G. and Kroeger, P.G.
 G.E.A.P. - 5417,(1 67).
APPENDIX I

THERMOCCouPLE CALIBRATION

I.1 THERMOELECTRIC POTENTIAL APPROXIMATION ERRORS

I.1.1 Chromal-Alumel

The thermoelectric power of Chromal-Alumel thermocouples between 0°C and 200°C is approximately 40 μV/°C and thus with an amplification of 250 a 1 volt reading on the D.V.M. was equivalent to approximately 100°C. Assuming 1 volt on the D.V.M. to be exactly equivalent to 100°C gave a varying error over the temperature range 0°C to 240°C which is shown in Fig. (I.1). This error plot was represented by three straight lines with a maximum error of 0.1°C.

The equations of the three lines are:

For 0°C to 41°C
\[E = -0.0037 \times T_a \] I.1

for 41°C to 125°C
\[E = 0.0359 \times T_a - 1.31 \] I.2

and for 125°C to 235°C
\[E = 0.0027 \times T_a + 2.86 \] I.3

where \(E \) is the error (°C) and \(T_a \) is the apparent temperature in °C.

The true temperature \(T \) is given by
\[T = T_a - E \] I.4

I.1.2 Copper-Constantan

A similar error plot as for Chromal-Alumel can be drawn for copper-constantan thermocouples and is given in Fig. (I.2). This error plot was best represented by a
Figure I.1 Plot of Error v/s Apparent Temperature for Chromel/Alumel Thermocouples and Fitted Straight Lines
Figure I.2 Plot of Error v/s Apparent Temperature for Copper/Constantan Thermocouples and Fitted Polynomial
polynomial approximation for the range $15^\circ C$ to $240^\circ C$. The best four parameter equation was:

$$ E = 1.307 + 6.0 \times 10^{-3}T_a - 7.3326 \times 10^{-4}T_a^2 - 6.0451 \times 10^7T_a^3 $$

and as with the Chromal-Alumel thermocouples equation (I.4) applies.

The same Chromal-Alumel reference junction was used for all of the thermocouples. This resulted in an error in the copper-constantan thermocouple readings due to the different thermoelectric potentials of the two types of thermocouples. However, in the range $14^\circ C$ to $29^\circ C$ the thermoelectric power of both types of thermocouple is identical. Thus providing the temperature of the junction between the two types of thermocouple was in this range the error had a constant value of approximately $0.2^\circ C$. This error was not specifically allowed for, but was incorporated in the thermocouple calibrations.

I.2 THERMOCOUPLE CALIBRATIONS

When the thermocouples were calibrated between $15^\circ C$ and $100^\circ C$ using a potentiometer, the measured errors in the thermocouple readings were all in the range $\pm 1^\circ C$. However when the D.V.M. was used the errors were found to be much greater; $+2.5^\circ C$ to $+8.0^\circ C$ for the chromal-alumel thermocouples, and $-1.2^\circ C$ to $+1.5^\circ C$ for the copper-constantan thermocouples. For the chromal-alumel thermocouples the value of the error increased with temperature while for the copper-constantan thermocouples the value of the error decreased. These differences between the two types of thermocouple could be explained if it was assumed that most

(131)
of the error was due to some effect of the impedance of
the thermocouples, since the measured resistances of the
cromal-alumel thermocouples were in the range 200\,\Omega to 300\,\Omega
while those of the copper-constantan thermocouples were in
the range 20\,\Omega to 25\,\Omega. Also the resistance of the
cromal-alumel thermocouples increased with temperature
while the resistance of the copper-constantan thermocouples
deCREASED with temperature.

From experimental work performed to investigate this
effect it was found that the variation in error for each
thermocouple appeared to be approximately linear with
respect to temperature. This being assumed, the correction
required at any temperature could be determined if the error
at any two temperatures were known. The two temperatures
chosen were that of cold mains water (\sim 16^\circ\text{C}) and hot water
from the reboiler (\sim 98^\circ\text{C}) (see IV.2)

Since this correction was applied before the thermo-
electric potential approximation correction, the two
calibration temperatures had to be expressed as apparent
temperatures, \(T_a\), as defined previously. These of course
were different for the two types of thermocouple.

However the corrections had to be based upon the
temperature readings as given by the D.V.M. If \(T_{a1}\) and
\(T_{a2}\) are the apparent temperatures of the cold and hot liquids
used for calibration, then:

\[
T_{r1} = T_{a1} + E_{r1} \quad \text{(I.6)}
\]

and

\[
T_{r2} = T_{a2} + E_{r2} \quad \text{(I.7)}
\]

where \(E_{r1}\) and \(E_{r2}\) are the thermocouple errors at \(T_{a1}\) and \(T_{a2}\)
and \(T_{r1}\) and \(T_{r2}\) are the D.V.M. readings.
Assuming an equation of the form

\[E_r = C_1 + C_2 T_r \]

then it can be shown that

\[C_2 = \frac{(E_{_2} - E_{_1})}{(T_{_2} - T_{_1})} \]

and

\[C_1 = E_{_1} - \frac{(E_{_2} - E_{_1})}{(T_{_2} - T_{_1})} T_{_1} \]

In this way, for each day's runs \(C_1 \) and \(C_2 \) were determined for each of the thermocouples. To eliminate the hand calculation of up to 24 values of \(C_1 \) and \(C_2 \) these were calculated in the computer programme used to process the raw data.

APPENDIX II

ROTMETER CALIBRATION

The Rotameter used was a standard 24S with stainless steel float as supplied by Rotameter Co. Ltd.

The rotameter was calibrated at room temperature (14°C - 18°C) for water using the bucket and stopwatch method. The calibrations were all performed with the rotameter in situ and great care was taken, both when calibrating and when experimental runs were being performed to ensure that the rotameter was exactly vertical. When the values were plotted it was found that the experimental plot was almost indistinguishable from the standard calibration for cold water at 15°C as supplied with the instrument.

The rotameter was then calibrated with hot water (95°C - 98.5°C). The two calibrations are shown in Fig. (II.1)
Figure II.1 Calibration Chart for Rotameter
and as can be seen, the hot water and cold water plots are quite close, apart from at very low flow rates.

The calibration of the rotameter for the EDA-water azeotrope was carried out using the calibration booklet supplied with the instrument. However, instead of using the standard calibration curves for the instrument, as given in the booklet, the curves were derived from the hot water plot, in order to obtain a higher accuracy. The EDA-water azeotrope calibration is shown in Fig. (II.4) together with the hot water plot.

APPENDIX III

III

PHYSICAL PROPERTIES

The physical properties of both of the experimental fluids used were required, as functions of temperature, in the programmes used in the analysis of the experimental data. Polynomials of the first or second order were generally found to be quite adequate to represent the data over the range of interest.

III.1 Water Physical Properties

The water physical property data was taken from Ref. W1. Apart from liquid viscosity, vapour pressure and vapour density, which require special treatment, all the physical properties were fitted to first or second order polynomials.

III.1.1 Liquid Viscosity

Ref. ClO gave the following equation for the viscosity of water between 0°C and 100°C

\[\eta_f = 0.1/(2.1482 \times (T - 8.435 + 8078.4 + (T - 8.435)^2 - 120.4) \]

where \(T \) is °C and \(\eta_f \) is in Poiseuilles.
When tested this equation was found to be accurate to
\[\pm 1.0\% \] between 0\(^\circ\)C and 120\(^\circ\)C.

Table III.1 Viscosity in Micropoiseilles

<table>
<thead>
<tr>
<th>(^\circ)C</th>
<th>10.0</th>
<th>20.0</th>
<th>30.0</th>
<th>40.0</th>
<th>50.0</th>
<th>60.0</th>
<th>70.0</th>
<th>80.0</th>
<th>90.0</th>
<th>100.0</th>
<th>110.0</th>
<th>120.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1304</td>
<td>1002</td>
<td>798.3</td>
<td>653.9</td>
<td>547.8</td>
<td>467.3</td>
<td>404.8</td>
<td>355.4</td>
<td>315.6</td>
<td>283.1</td>
<td>254.8</td>
<td>231.0</td>
</tr>
<tr>
<td>B</td>
<td>1314</td>
<td>1009</td>
<td>803.3</td>
<td>657.0</td>
<td>550.6</td>
<td>469.5</td>
<td>405.9</td>
<td>356.7</td>
<td>316.9</td>
<td>284.1</td>
<td>256.9</td>
<td>234.1</td>
</tr>
</tbody>
</table>

A : Ref. (W1). B : Equation III.1

III.1.2 Vapour Density (Saturated)

An equation of the form

\[p_c = \frac{Kp}{(T + 273.15)} \]

was used to predict vapour density. It was found sufficiently accurate to assume \(K \) as a constant over the range 80\(^\circ\)C to 130\(^\circ\)C. The optimum value for \(K \) was \(2.202 \times 10^{-3} \) with \(T \) in \(^\circ\)C and \(p \) in N/m\(^2\) giving

\[p_c = 2.202 \times 10^{-3} \frac{p}{(T + 273.15)} \]

with \(p_c \) in kg/m\(^3\). This equation was accurate to \(\pm 1\% \).

If water vapour was ideal \(K \) would be \(2.167 \times 10^{-3} \).

Table III.2

<table>
<thead>
<tr>
<th>T (^\circ)C</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref. W1</td>
<td>.2934</td>
<td>.4236</td>
<td>.5998</td>
<td>.8264</td>
<td>1.121</td>
<td>1.496</td>
</tr>
<tr>
<td>Equation III.3</td>
<td>.2929</td>
<td>.4250</td>
<td>.5979</td>
<td>.8241</td>
<td>1.116</td>
<td>1.483</td>
</tr>
</tbody>
</table>

III.1.3 Vapour Pressure

The most suitable algorithm found for incorporating in the computer programmes was that by Richards (R3)

The equation for vapour pressure is

\[\ln(p) = t(13.3185 - t(1.976 + \frac{5}{T}(0.6445 + 0.1799 t))) \]

where \(t = 1 - \frac{373.15}{T} \)

and \(T \) is in \(^\circ\)K and \(p \) in atms.
To find the temperature from the vapour pressure the following procedure was used.

A first approximation is given by

\[t_1 = \frac{\ln(p)}{13.3185} \]

then the iteration

\[t_{n+1} = t_1 + \left((0.1299 \ t_n + 0.6445) \ t_n + 1.976 \ t_n^2\right)/13.3185 \]

is performed until \(|t_{n+1} - t_n| < 10^{-5} \)

then \(T = \frac{373.15}{1 - \frac{t_n}{273.15}} \)

where \(T \) is in °C.

This algorithm was found to be accurate to 0.02° C over the range 10° C - 135° C when finding the temperature and accurate to 0.04% when finding the vapour pressure.

III.1.4 Liquid Density

The data in Ref. 63 was given as specific volume \(v \).

This was fitted to a second order polynomial

\[v = \frac{1}{\rho_f} = 1012.1 + 0.40775(T-50) + 3.285 \times 10^{-3} (T-50)^2 \]

then \(\rho_f = \frac{1000}{(1.0121 + 4.0775 \times 10^{-4}(T-50)+3.285 \times 10^{-6}(T-50)^2)} \)

where \(\rho_f \) is in kg/m³ and \(T \) is in °C.

This equation is accurate to 0.25% over the range 15° C to 150° C.
III.1.5 Liquid Thermal Conductivity

The thermal conductivity data was fitted to a second order polynomial.

\[k_f = 0.643 + 1.06 \times 10^{-3} (T-50) - 6.0 \times 10^{-6} (T-50)^2 \]

where \(k_f \) is in joules/metre\(^o\)C and \(T \) in \(^o\)C.

This equation fitted the data to within 0.5% over the range 10\(^o\)C to 130\(^o\)C.

Table III.5 \(k_f \) in joules/metre\(^o\)C \(\times \) \(\mathcal{C} \) \(\times \) \(\mathcal{K} \) \(T \) in \(^o\)C

<table>
<thead>
<tr>
<th>(^o)C</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.603</td>
<td>0.618</td>
<td>0.631</td>
<td>0.643</td>
<td>0.653</td>
<td>0.662</td>
<td>0.670</td>
<td>0.676</td>
<td>0.681</td>
<td>0.684</td>
<td>0.687</td>
</tr>
<tr>
<td>B</td>
<td>0.605</td>
<td>0.619</td>
<td>0.632</td>
<td>0.643</td>
<td>0.653</td>
<td>0.662</td>
<td>0.669</td>
<td>0.676</td>
<td>0.681</td>
<td>0.685</td>
<td>0.687</td>
</tr>
</tbody>
</table>

A : Ref. C8
B : Equation III.11

III.1.6 Liquid Specific Heat

The liquid specific heat was fitted to a second order polynomial.

\[C_{pf} = 4179 + 0.1 (T-40) + 0.01 (T-40)^2 \]

where \(C_{pf} \) is in joules/kg\(^o\)C and \(T \) in \(^o\)C. This equation fitted the data to within 0.4% in the range 10\(^o\)C to 130\(^o\)C.

Table III.6 \(C_{pf} \) in joules/kg\(^o\)C \(T \) in \(^o\)C

<table>
<thead>
<tr>
<th>(^o)C</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4194</td>
<td>4182</td>
<td>4179</td>
<td>4179</td>
<td>4181</td>
<td>4185</td>
<td>4191</td>
<td>4198</td>
<td>4207</td>
<td>4218</td>
<td>4230</td>
<td>4244</td>
<td>4262</td>
</tr>
<tr>
<td>B</td>
<td>4185</td>
<td>4181</td>
<td>4129</td>
<td>4179</td>
<td>4181</td>
<td>4185</td>
<td>4191</td>
<td>4199</td>
<td>4209</td>
<td>4221</td>
<td>4235</td>
<td>4251</td>
<td>4279</td>
</tr>
</tbody>
</table>

A : Ref. C8
B : Equation III.12
III.1.7 Surface Tension

The surface tension data was fitted to a second order polynomial.

\[\sigma = 0.06784 - 1.7225 \times 10^{-4}(T-50) - 1.745 \times 10^{-7}(T-50)^2 \]

where \(\sigma \) is in N/m and \(T \) in \(^\circ\)C. This equation fitted the data to within 0.3% in the range 50\(^\circ\)C to 130\(^\circ\)C.

<table>
<thead>
<tr>
<th>(\circ)C</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
</tr>
</thead>
</table>

III.1.8 Heat of Vapourisation

The heat of vapourisation data was fitted to a first order polynomial.

\[L_v = 2.255 \times 10^6 - 2600 \,(T-100) \]

where \(L_v \) is in joules/kg and \(T \) in \(^\circ\)C. This equation is accurate to 0.15% in the range 50\(^\circ\)C to 130\(^\circ\)C.

<table>
<thead>
<tr>
<th>(\circ)C</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref. C8</td>
<td>2383</td>
<td>2358</td>
<td>2333</td>
<td>2308</td>
<td>2283</td>
<td>2257</td>
<td>2230</td>
<td>2202</td>
<td>2174</td>
</tr>
<tr>
<td>Eqn III.14</td>
<td>2385</td>
<td>2359</td>
<td>2333</td>
<td>2307</td>
<td>2281</td>
<td>2255</td>
<td>2229</td>
<td>2203</td>
<td>7177</td>
</tr>
</tbody>
</table>

III.1.9 Vapour Specific Heat

The vapour specific heat data was fitted to a second order polynomial.

\[\mathcal{C}_P = 2034 + 4.15 \,(T-100) + 0.031 \,(T-100)^2 \]

where \(\mathcal{C}_P \) is in joules/kg\(^\circ\)C. This equation fitted the data to within 0.4% in the range 50\(^\circ\)C to 130\(^\circ\)C.

(139)
Table III. 9 C_p_g in joules/kg°C

<table>
<thead>
<tr>
<th>°C</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref. C8</td>
<td>1912</td>
<td>1924</td>
<td>1946</td>
<td>1970</td>
<td>1999</td>
<td>2034</td>
<td>2076</td>
<td>2125</td>
<td>2180</td>
</tr>
<tr>
<td>Eqn. III.15</td>
<td>1904</td>
<td>1918</td>
<td>1938</td>
<td>1963</td>
<td>1996</td>
<td>2034</td>
<td>2079</td>
<td>2129</td>
<td>2187</td>
</tr>
</tbody>
</table>

III.1.10 Vapour Viscosity

The vapour viscosity data was fitted first order polynomial.

$$\mu_g = 1.206 \times 10^{-5} + 3.8 \times 10^{-8} (T-100)$$

where μ_g is in poiseuilles. This equation fitted the data to within 1% over the range 50°C to 130°C.

Table III.10 μ_g in micropoiseuilles

<table>
<thead>
<tr>
<th>°C</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref. C8</td>
<td>10.10</td>
<td>10.50</td>
<td>10.89</td>
<td>11.29</td>
<td>11.67</td>
<td>12.06</td>
<td>12.45</td>
<td>12.83</td>
<td>13.20</td>
</tr>
<tr>
<td>Eqn. III.16</td>
<td>10.22</td>
<td>10.60</td>
<td>10.98</td>
<td>11.34</td>
<td>11.74</td>
<td>12.06</td>
<td>12.42</td>
<td>12.78</td>
<td>13.14</td>
</tr>
</tbody>
</table>

III.2 WATER-EDA AZEOTROPE PHYSICAL PROPERTIES

The only physical properties of the water-EDA azeotrope that were found in the literature (wl) were

1) Boiling point 99.7°C at 760 mm Hg
2) Composition 15.4% EDA by weight
3) Density 1.012 gm/cm³ at boiling point

However, from previous experience it had been found that tabulated data on azeotropes was not always reliable. Hence these values were checked and found to be accurate. Other physical property data had to be either predicted or measured. The azeotrope physical property values which were measured were: surface tension, viscosity and density. To predict
the physical properties of the azotrope it was necessary first to determine the physical properties of pure EDA. The liquid specific heat was the only physical property of EDA which was measured. The methods given by Reid and Sherwood (Ref.R2) were used to predict the physical properties of EDA which were not measured or found in the literature. For more details of the methods used see Ref.R2.

III.2.1 Physical Properties of Pure EDA

(1) Liquid Specific Heat

The specific heat of EDA was measured by dropping an iron weight of known temperature and mass into a flask containing a measured weight of EDA and measuring the temperature rise with an accurate thermometer. The heat capacity of the flask had previously been determined by using the same procedure with water.

The value of the specific heat of EDA obtained in this way was 0.483 cals/gas°C. This value was assumed to be applicable over the range 15°C to 130°C.

(2) Specific Heat of Vapour

Using Reid and Sherwood's equation 5.7 and Table 5.7 the value of vapour specific heat of EDA was estimated as

$$C_p^g = 170.3 + 0.447 (T-100)$$

III.17

where C_p^g is in joules/gm mole °C and T in °C.

(3) Heat of Vapourisation

Ref.W1 gave the heat of vapourisation as 52259 joules/gm mole. However this value was given as part of a list of vapour pressure constants over the range 30°C to 190°C. Hence it was necessary to assume that this value could be used over the complete range.
(4) Thermal Conductivity of Liquid

Using equation 10.55 in Reid and Sherwood calculated as 1.451×10^{-5} joules/m K at $100^\circ C$. It was assumed that variation in k_r over the range 90° to $130^\circ C$ would be small and that this value could be used over the whole range.

(5) Viscosity of Gas

Using equation 9.9 in Reid and Sherwood calculated to be 97.6 micropoises at $100^\circ C$. Since gas viscosity is relatively insensitive to temperature it was assumed that this value could be used over the range 90° to $130^\circ C$.

III.2.2 Azeotrope Physical Properties

(1) Latent Heat of Vapourisation

It was assumed that the heat of vapourisation was a weighted mean of the heats of vapourisation of the two pure components then

- at $100^\circ C$, H_2O: $L_v = 2.2415 \times 10^6$ joules/kg
- EDA: $L_v = 0.3626 \times 10^5$ joules/kg

then

$$L_v = 2.2415 \times 10^6 \times 0.846 + 0.3626 \times 10^6 \times 0.154 = 1.955 \times 10^6$$ joules/kg

(2) Vapour Pressure

It was decided to use the Clausius-Clapeyron Equation to predict the vapour pressure variation with respect to temperature. The form of the equation used is:

$$\ln(p) = -\frac{L_v}{RT} + C$$

the heat of vapourisation is already known (see above) thus only one experimental value is needed to determine the
only unknown, C. Using the known value of the boiling point of the azeotrope at atmospheric pressure the value of C was found to be 13.14. Inserting the known values of R and C, equation I.19 becomes

\[\ln(p) = -\frac{4895.3}{T} + 13.14 \]

where T is in °K and p in atms.

(3) Vapour Density

Assuming ideal gas behaviour, the vapour density of the mixture can be determined assuming the mixture to be a single gas of suitable molecular weight.

Mole wt of mixture = 18 x 0.978 + 146 x 0.02195

= 20.82

then at N.T.P.

\[\rho_g = \frac{20.84}{2.24} \times 10^4 \text{ gm/cm}^3 \]

= 9.29 \times 10^{-1} \text{ kg/m}^3

then \[\rho_g = 9.29 \times 10^{-1} \times \frac{273.15}{T + 273.15} \times \frac{p}{101325} \]

= 2.545 \frac{\rho}{(T + 273.15)}

III.21

III.22

where \(\rho_g \) is given in kg/m\(^3\) with \(\rho \) in N/m\(^2\) and T in °C.

(4) Vapour Viscosity

Using equation 9.37 in Reid and Sherwood the vapour viscosity of the vapour mixture was determined as

\[\mu_g = 126.7 \text{ micropoises} \]

Vapour viscosity is comparatively insensitive to temperature and this value can be assumed over the range 90°C to 130°C without any appreciable error. Indeed, since the molecular concentration of EDA is so low (2.195%), this mixture viscosity value is within 0.8% of the pure water value, hence the effect of even a fairly large error in the predicted EDA value would be very small on the mixture value.
(5) Liquid Thermal Conductivity

Using equation 10.61 in Reid and Sherwood the liquid thermal conductivity of the vapour mixture was determined as

\[k_f = 0.549 \text{ watts/m}^2\text{K} \]

at 100°C. This value was assumed over the range 90°C to 130°C.

(6) Liquid Density

The density of the water-EDA azeotrope was measured over the temperature range 80°C to 98.5°C at approximately 5°C intervals using a specific gravity bottle calibrated at each temperature using water. The data was fitted to a straight line equation

\[\rho_f = 1012.0 - 0.98 (T - 100) \] \hspace{1cm} \text{III.23} \\

where \(\rho_f \) is in kg/m³ and T in °C.

(7) Liquid Viscosity

The viscosity of the water-EDA azeotrope was measured, by the analytical group in the department, using a U-tube viscometer. The viscometer was used for both the azeotrope and for water over the range 83°C to 98°C at 3°C intervals. When the discharge times were plotted against temperature both liquids gave straight line plots.

It was assumed that the viscosity of water was given by equation I.1 as described previously. The viscosity of the azeotrope was determined using the equation

\[\frac{\eta_1}{\eta_2} = \frac{t_1/\rho_1}{t_1/\rho_2} \] \hspace{1cm} \text{III.24} \\

where \(\eta_1, \eta_2 \) are the kinematic viscosities, \(t_1 \) and \(t_2 \) the discharge times, and \(\rho_1 \) and \(\rho_2 \) the densities of the two
liquids. Assuming the discharge time plots could be extrapolated, the viscosity of the azeotrope was determined from 90\(^\circ\)C to 130\(^\circ\)C at intervals of 1\(^\circ\)C. These viscosity values were correlated with respect to temperature using a suitable fitting procedure. The equation derived was

\[\eta_f = 0.001777 - 1.9496 \times 10^{-5} T - 5.274 \times 10^{-8} T^2 \]

where \(\eta_f \) is in poiseuilles and \(T \) in \(^\circ\)C.

The computed R.M.S. error for the derived fit was \(4.66 \times 10^{-7} \) poiseuilles. This corresponds to about 0.1%.

(7) Surface Tension

The surface tension data shown in Fig. 6.17 was fitted to a straight line. The best line found was:

\[\sigma = 0.0468 - 0.000052 (T - 100) \]

where \(\sigma \) is in N/m and \(T \) in \(^\circ\)C.
IV.1 Programs for the Honeywell 316

IV.1.1 Program I

The purpose of this program was to process the raw experimental data and to output the derived values of the required variables at each increment in a tabular form. The data input could be either on paper tape or could be typed in using a teletype at run time. The program was written in Basic 16 and was run on the departmental Honeywell 316.

The listing given below is that of the program for the water runs with both types of thermocouple being used; runs 16-61. Minor modifications to the program were necessary for the water runs 61 on, when only one type of thermocouple was used. For the EDA-water azeotrope runs (runs 101-145) the statement functions and the subroutines for physical properties had to be altered.

A list of the variables, arrays and statement functions is given after the program listing, together with output from a typical run.
REM PROGRAM TO PREPARE AND PRESENT THERMOSYNTHON DATA
REM PROGRAM FOR ENDS IF*F* WATER ONLY. TAHLLAH OUTPUT.
REM IMROOKE 26/10/74
REM
15 REM FUNCTIONS FOR WATER PHYSICAL PROPERTIES
20 REM
19 DEF FN3(V)= (784E-01-17E85E-03*(V-5.0)-1745E-06*(V-5.0)^2)
20 DEF FNI(V)=V+1.307-1E-06*(104*V-73.52*(V-2.5)-45E-06*(1.1*V)^2)
21 DEF FN2(V)=4179.1*(V-40)+1E-06*(1.1*V-40)^2
22 DEF FNH(V)=2.455E7-2E5*(V-100)
23 DEF FNK(V)=2.3E+015*(V-110)^+31E-01*(V-110)*(V-100)
24 DEF FNL(V)=10757.1+121*4.775E-03*(V-5.0)+32ES-05*(V-5.0)^2
25 DEF FN(E)=5.8*1E-03*(V-223.15)
26 DEF FNC(V)=1/(1.1652*(V-8.435)*SIN(178.4+(V-8.435)*12))=12E-01
27 DEF FNK(V)=121.56-94+3.57-0.7*(V-100)
28 DEF FNF(V)=1.43+106*(12*(V-5.0)+6E-05*(V-5.0)*(V-50)
29 DEF FNZ(V)=249E-01+1E-03*(V-100)
30 REM
31 REM HIG Constants
32 REM
33 DI=1.59E-01; A=3.14159*D1*/4; H?= 762E-01
34 AI=3.14159*D1*/4; H?:N1=241; GOTO 48
35 REM
36 REM INPUT OF 1/C CALIBRATION DATA
37 REM
38 INPUT C1, C2, C3, C4
39 FOR I=1 TO 1: INPUT C(I, I), C(2, I): NEXT I: GOSUB 60A
40 FOR I=1, 5: PRINT : NEXT L
41 REM
42 REM INPUT OF RUN DATA
43 REM
44 REM INPUT H1, F, H, T1, T2, F1, F0
45 IF H1<1 GOTO 38
46 H=H/P
47 P3=P3+133.322
48 P1=P1+133.322*P1
49 N=0
50 REM
51 REM INPL OF INCREMENT DATA; T(KALL) AND P(CELKL)
52 REM
53 FOR I=1, N1
54 Y(I)=1
55 IF Y(I)<1 THEN Y(I)=0
56 PRINT Y(I), P(I)
57 IF P(I)<10 THEN Y(I)=0
58 PRINT P(I)=3133.322+F(I)
59 NEXT I
60 GOSUB 620
61 P3=P3+9797.92*525*(P(N1)-P(N1-1))
92 REM
(147)
CALCULATION OF $T(\text{cell})$ AT FIRST INCUBMENT

REM
H(1) = 11 + H/(Z*F*N(C(1)))
REM
REM CALCULATION OF $E(1), S(1), B(1), T(1), N(9), X(1), H(1)$
REM
FOR I = 1 TO N
REM
X(I) = 0
REM
V(I) = P
REM
IF I > 15*5 GOTO 115
REM
IF (I/10-I)/(I/10) < 0.3 THEN $E(I) = E(I) + E(1)$: GOTO 122
REM
Z = V(I)
REM
IF Z < 41 THEN GOTO 122
REM
E = 35:1F - 0.1*Z - 1.31
REM
IF Z > 125 THEN E = 1.25 - K*Z + 2.86
REM
V(I) = Z - E
REM
IF Y(I) < 5 THEN I(I) = I(I-1)
REM
P9 = P(I)
REM
GOSUB R10
REM
S(I) = Z9
REM
IF I < 15*5 GOTO 160
REM
IF N(I-I) > 5 GOTO 170
REM
H(I) = H(I-1) + (F*N(C(I-I))
REM
IF S(I) > B(I) THEN I(I) = E(I) + E(I): GOTO 190
REM
I(I) = S(I)
REM
IF N9 < 1 THEN N9 = 1
REM
N(I) = 1
REM
H(S) = H + F*(T(I-I) - T(I)) + ((1-X(I-I)) + X(I-I))*K + V(I) + E(I) + E(I) + E(I)
REM
X(I) = X(I-I) + H/F*N(C(I-I))/F(N(C(I-I))*F)
REM
H(I) = H/S*(T(I-I) - T(I))
REM
NEXT I
REM
CALCULATION OF $M(I), G(I), N(I), V(I)$
REM
FOR I = N9 TO N
REM
V(I) = (1 - X(I)) + X(I) + (F*N(C(I-I)) + P(I))
REM
V(I) = V(I-I) + V(I) + F*N(C(I-I))*P(I)
REM
V(I) = (F*N(C(I-I)) + V(I-I))*P(I)
REM
V(I) = V(I-I) + Y(I) - X(I-I)*X(I-I)*V(I-I) + 9
REM
G(I) = V(I-I) + (9*K1*U1*U1*A + A)
REM
G(I) = 19*M(I)*C(I)*185
REM
U = V/I/A
REM
IF N(I-I) > 3.5 GOTO 215
REM
IF N(I-I) > 1.5 GOTO 245
REM
IF N(I-I) > 3.5 GOTO 265
REM
N(I) = 1
REM
V(I) = V / (1 + 1.25*P/U3)
REM
IF V(I) < 3 THEN V(I) = 2
REM
IF V(I) < 1 GOTO 300
REM
N(I) = 2
REM
S1 = F * (1 - X(I)) + V(I-I) * SOK9*81/E1
REM
SP = G + X(I) + SOK9*81*SOK9*81*F(N(C(I-I)) + F(N(C(I-I)) + P(I))
REM
IF S2 > (139 + 11*E1) THEN V(I) = 3
REM
IF S2 > 1.5 GOTO 250
REM
IF S2 < 0.9 GOTO 258
REM
IF S2 > 0.9 + 6*S1 GOTO 250
REM
V(I) = V / (1.2*5*K9*81*U3)
REM
GOTO 300

(148)
265 N(J)=4
266 IF S1<3 GOTO 268
267 IF S2>1 THEN N(J)=5
268 Y=2.1E-01*CNB(T(I))*G+.686/(FNE(T(I))*P(I))
270 IF Y<2.5 GOTO 274
271 IF Y>3.0 GOTO 274
272 IF G>9.50 GOTO 274
273 GOTO 277
274 T8=SQR(1+2C/M(I)+1/(M(I)*M(I)))
275 V(I)=T8-1/IB
276 GOTO 300
277 Y1=Y+*333
278 X9=Y-1
280 Y3=1+(Y-Y1)*X(I)
282 V(I)=(SQR(Y3*Y3*4+Y2*X(I)*Y-Y3)/(2*Y2)
300 NEXT I
307 REM
308 REM CALCULATION OF K(1),L(1),K(1,1),K(2,1),A(1),Z(I)
309 REM
310 FOR I=N9,N1
312 K(I)=G*(I-X(I))*D1/FNV(T(I))
314 GOSUB 630
315 T7=W(I): GOSUB 640
316 GOSUB 675
317 L(I)=A(I)*F(I)+D(I)*Z(I)*T8+24*P8/.75
318 K(2,1)=L(I)
320 FOR J=1,3
321 T7=T(I)+H6/K(2,1): GOSUB 660
322 K(2,1)=A(I)*F(I)+D(I)*Z(I)*T8+24*P8/.75
324 NEXT J
325 K(1,1)=T7
326 Z(I)=Z(I)*T8+24*P8/.75
330 NEXT I
397 REM
398 REM STATEMENTS FOR TABULAR OUTPUT
399 REM
400 PRINT TAB(15),"RUN NUMBER",RI: PRINT
410 PRINT TAB(17),"FLOWRATE","F": PRINT "KGS/S"
420 PRINT TAB(17),"HEAT FLUX","H": PRINT "W/M.M"
430 PRINT TAB(17),"TEMP IN",T1
439 PRINT TAB(17),"PRESSURE IN",P1: PRINT "N/M.M"
450 PRINT
460 PRINT TAB(11),"I",TAB(19),"X(I)" ,TAB(32),"V(I)" ,TAB(46)
461 PRINT "T(I)",TAB(59),"H(I)"
465 FOR I=1,N1
466 IF Y(I)<.5 GOTO 475
475 NEXT I
479 PRINT
480 PRINT TAB(11),"I",TAB(19),"X(I)" ,TAB(32),"H.CALC.")
481 PRINT TAB(46),"H.EST." ,TAB(60),"W.EST"
488 FOR I=N9,N1
489 IF Y(I)<.5 GOTO 492
491 PRINT TAB(7):I;TAB(16),L(I):K(2,1):K(1,1)
492 NEXT I
493 PRINT
494 PRINT TAB(11),"I",TAB(18),"REF",TAB(33),"XTT",TAB(47)
495 PRINT "F(I)",TAB(61),"S(I)"
496 FOR I=N9,N1
497 IF Y(I)<.5 GOTO 499

(149)
PRINT T(7): I(1), K(1), M(1), F(1), U(1)
NEXT I: PRINT
GOTO 40
REM ***
REM **
SUBROUTINES
REM
REM SUBROUTINE TO CALCULATE T/C CALIBRATION PARAMETERS
REM
FOR I=1, N1
IF I > 10, 5 GOTO 44
IF (1/P - INT(1/P)) < .3 GOTO 62
C5 = C(1+1); C = 2*C(2+1); GOTO 68
C = C + C(1+1); C = 2 + C(2+1)
C1 = C(1+1) - C5*(C(2+1) - C(1+1))/(C - C5)
C2 = (C(2+1) - C(1+1))/C
NEXT I
RETURN
REM SUBROUTINE TO CORRECT T/C VALUES
REM
FOR I=1, N1
W(I) = W(I) - C(1+1) - C(2+1)*W(I)
NEXT I
RETURN
REM SUBROUTINE TO CALCULATE F AND S VALUES
REM
IF (1/M(I)) >= .6 THEN F(I) = EXP(1.04 - 0.35 LOG(M(I)))
IF (1/M(I)) <= .6 THEN F(I) = EXP(-0.72 - 0.37 LOG(M(I)))
IF F(I) < 1 THEN F(I) = 1
F(I) = F(I) - 1.25*K(I)
IF F(I) < 1 GOTO 65
IF F(I) > 3 GOTO 64
GOTO 60
NEXT I
RETURN
REM SUBROUTINE TO CALCULATE DELTA.P AND DELTA.T
REM
T9 = 1 - 373.15/(273.15 + T7)
PR = EXP(79.3185 + T7)(1.967 + 0.645 + 0.0899*19))
MR = ABS(101325*PR*EPS*PR - P(I))
MR = ABS(T7 - T(I))
RETURN
REM SUBROUTINE TO CALCULATE H(MIC) AND H(MAX)
REM
Z(I) = 129 - C2*FNK(1(I)) + 0.79*FNK(C(1(I)) + 45*FNK(1(I))) + 49
Z(I) = Z(I)/FNK(1(I)) + 0.2*FNK(1(I)) + 0.124
Z(I) = Z(I)/FNK(1(I)) + 0.5*FNK(1(I)) + 0.29
A(I) = 0.23 - C2*K(I) + 0.5*FNK(C(1(I)) + FNK(1(I)) + FNK(1(I)) + 4
A(I) = A(I)*FNK(1(I))/L1
RETURN
REM
RE7 REM SUBROUTINE TO CALCULATE T*SAT FROM P*SAT
RE8 REM
RE9 T? = LOG(P97 * 101325F06) / 13.3185
R12 T3 = T2
R14 FOR J = 1, 4
R16 T4 = T2 + ((.1299 * T2 + .6445) * T3 + 1.976) * T3 / 13 / 13.3185
R18 IF A + S(T4 - T3) < .1E-14 GOTO 824
R20 T3 = T4
R22 NEXT J
R24 T9 = 373.15 / (1 - 14) - 273.15
R26 RETURN
R999 END

<table>
<thead>
<tr>
<th>RUN NUMBER</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLOW RATE</td>
<td>184 KGS/S</td>
</tr>
<tr>
<td>HEAT FLOW</td>
<td>162323 E 06 W/M.K</td>
</tr>
<tr>
<td>TEMP IN</td>
<td>99.5</td>
</tr>
<tr>
<td>PRESSURE IN</td>
<td>136655 E 06 N/M.K</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I</th>
<th>N(I)</th>
<th>X(I)</th>
<th>H(CALC)</th>
<th>H(EST)</th>
<th>W(EST)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>120.134</td>
<td>99.8976</td>
<td>80.1671</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>130.638</td>
<td>100.693</td>
<td>54.1758</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>121.578</td>
<td>101.498</td>
<td>90.7404</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>122.945</td>
<td>103.077</td>
<td>816.531</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>133.283</td>
<td>103.871</td>
<td>5515.03</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>120.123</td>
<td>104.645</td>
<td>10498.53</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>116.425</td>
<td>106.253</td>
<td>13383.65</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>134.178</td>
<td>107.046</td>
<td>5972.32</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>123.459</td>
<td>106.983</td>
<td>9846.28</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>127.547</td>
<td>106.771</td>
<td>7408.72</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>117.645</td>
<td>106.497</td>
<td>14558.65</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>120.176</td>
<td>106.352</td>
<td>11651.2</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>114.405</td>
<td>105.943</td>
<td>19164.95</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>112.322</td>
<td>105.631</td>
<td>24251.4</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>3</td>
<td>110.803</td>
<td>104.807</td>
<td>8705.74</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>3</td>
<td>110.617</td>
<td>104.453</td>
<td>25490.7</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>3</td>
<td>108.992</td>
<td>103.898</td>
<td>31844.1</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3</td>
<td>109.999</td>
<td>103.367</td>
<td>98304.3</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>4</td>
<td>111.866</td>
<td>102.994</td>
<td>196216.5</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>4</td>
<td>105.472</td>
<td>102.458</td>
<td>57666.2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I</th>
<th>REF</th>
<th>X(I)</th>
<th>F(I)</th>
<th>SCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>555799 E 05</td>
<td>12.327</td>
<td>1</td>
<td>542074</td>
</tr>
<tr>
<td>12</td>
<td>553561 E 05</td>
<td>6.10263</td>
<td>1.10424</td>
<td>510781</td>
</tr>
<tr>
<td>13</td>
<td>550963 E 05</td>
<td>4.03612</td>
<td>1.28782</td>
<td>461706</td>
</tr>
<tr>
<td>14</td>
<td>546538 E 05</td>
<td>3.05556</td>
<td>1.42831</td>
<td>489029</td>
</tr>
<tr>
<td>15</td>
<td>545706 E 05</td>
<td>2.4334</td>
<td>1.55407</td>
<td>402808</td>
</tr>
<tr>
<td>16</td>
<td>542866 E 05</td>
<td>2.02648</td>
<td>1.66399</td>
<td>381842</td>
</tr>
<tr>
<td>19</td>
<td>535114 E 05</td>
<td>1.3678</td>
<td>2.27578</td>
<td>232926</td>
</tr>
<tr>
<td>20</td>
<td>532036 E 05</td>
<td>1.29425</td>
<td>2.45808</td>
<td>253626</td>
</tr>
<tr>
<td>21</td>
<td>527594 E 05</td>
<td>1.0473</td>
<td>2.66033</td>
<td>234829</td>
</tr>
<tr>
<td>22</td>
<td>523586 E 05</td>
<td>0.979</td>
<td>2.87126</td>
<td>213074</td>
</tr>
<tr>
<td>23</td>
<td>520393 E 05</td>
<td>0.90079</td>
<td>3.04228</td>
<td>195739</td>
</tr>
<tr>
<td>24</td>
<td>517466 E 05</td>
<td>0.835613</td>
<td>3.20533</td>
<td>180157</td>
</tr>
</tbody>
</table>

(152)
VARIABLES

A cross-sectional area of tube (m2)
A1 wall area in each increment (m2)
C1 cold water temp. for chromel/alumel thermocouple calibration (°C)
C2 hot water temp. for chromel/alumel thermocouple calibration (°C)
C3 cold water temp. for cu/con thermocouple calibration (°C)
C4 hot water temp. for cu/con thermocouple calibration (°C)
C5 used in determination of thermocouple calibration parameters
C6 used in determination of thermocouple calibration parameters
D1 inside diameter of experimental tube (m)
E calculated error in thermocouple calibration (°C)
F mass flowrate (kg/s)
G mass flowrate per unit area (kg/m2 s)
H heat flux per increment (W)
H2 length of increment (m)
H5 heat available for vapourisation in increment (W)
H6 heat flux at wall in each increment (W/m2)
I increment number. Step parameter
J step parameter
N1 number of increments
N9 increment where boiling commences
P0 pressure at outlet of tube (N/m2) (input as
P1 pressure at inlet of tube (N/m2) (input as cm Hg gauge)
P3 atmospheric pressure (N/m2) (input as mm Hg)
$P_8 \quad \rho_{SAT} - \rho_b \quad (N/m^2)$

P_9 used in subroutine to find T_{SAT} from ρ_{SAT}

R_1 run number

$S_1 \quad J_{f'} \quad \{ \quad \text{see 1.111 and 1.112}$

$S_2 \quad J_{g'} \quad \}$

T_1 inlet temperature ($^\circ$C)

$T_2 \quad \}$

$T_3 \quad \{ \quad \text{used in subroutine to find } T_{SAT} \text{ from } \rho_{SAT}$

$T_4 \quad \}$

T_7 wall temperature used in subroutine to find P_8 and T_8 ($^\circ$C)

$T_8 \quad 1) \quad T_w - T_b \quad (^\circ$C)

$\quad \quad 2) \quad \phi_f' \quad \text{, Lockhart Martinelli two-phase multiplier}$

T_9 used in subroutine to find T_8 and P_8

V_0 voidage assuming no slip

V_1 volumetric two-phase flow rate (m3/s)

V_3 two-phase flow velocity assuming no slip (m/s)

$X_2 \quad \}$

$Y \quad \}$

$Y_1 \quad \{ \quad \text{used to estimate voidage in annular flow}$

$Y_3 \quad \}$

$Z \quad \text{experimental wall temperature ($^\circ$C)$}}$
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A(24)</td>
<td>value of h_{con}</td>
</tr>
<tr>
<td>B(24)</td>
<td>bulk temperature assuming no boiling in increment ($^\circ$C)</td>
</tr>
<tr>
<td>C(2,24)</td>
<td>thermocouple calibration constants</td>
</tr>
<tr>
<td>D(24)</td>
<td>value of S calculated from Chen's correlation</td>
</tr>
<tr>
<td>E(24)</td>
<td>value of Re_{tp} calculated from Chen's correlation</td>
</tr>
<tr>
<td>F(24)</td>
<td>value of F calculated from Chen's correlation</td>
</tr>
<tr>
<td>G(24)</td>
<td>value of XTF</td>
</tr>
<tr>
<td>H(24)</td>
<td>experimental value of heat transfer coefficient (W/m^2°C)</td>
</tr>
<tr>
<td>K(2,24)</td>
<td>$K(I,I)$ is estimated wall temperature using Chen's correlation ($^\circ$C)</td>
</tr>
<tr>
<td></td>
<td>$K(2,I)$ is the corresponding heat transfer coefficient (W/m^2°C)</td>
</tr>
<tr>
<td>L(24)</td>
<td>the calculated value of the heat transfer coefficient using Chen's correlation and the experimental wall temperature (W/m^2°C)</td>
</tr>
<tr>
<td>M(24)</td>
<td>value of XTT</td>
</tr>
<tr>
<td>N(24)</td>
<td>shows assumed flow pattern</td>
</tr>
<tr>
<td>N(I) = 1</td>
<td>bubbly flow</td>
</tr>
<tr>
<td>N(I) = 2</td>
<td>slug flow</td>
</tr>
<tr>
<td>N(I) = 3</td>
<td>churn flow</td>
</tr>
<tr>
<td>N(I) = 4</td>
<td>annular flow</td>
</tr>
<tr>
<td>P(24)</td>
<td>pressure at increment (N/m^2)</td>
</tr>
<tr>
<td>R(24)</td>
<td>value of Re in increment</td>
</tr>
<tr>
<td>S(24)</td>
<td>value of saturation temperature T_{SAT} ($^\circ$C)</td>
</tr>
<tr>
<td>T(24)</td>
<td>bulk temperature in increment ($^\circ$C)</td>
</tr>
<tr>
<td>V(24)</td>
<td>estimated value of voidage in increment</td>
</tr>
<tr>
<td>W(24)</td>
<td>wall temperature, T_w, in increment ($^\circ$C)</td>
</tr>
</tbody>
</table>
X(24) value of quality, x, in increment
Y(24) Y(I) = 0 if thermocouple is broken, else Y(I) = 1
Z(24) value of h_{mic} in increment

NOTE. The 24 values in the arrays correspond to the 24 increments in the tube.

STATEMENT FUNCTIONS

FNS(V) value of surface tension, \(\sigma \) at \(V^\circ C \)
FNI(V) value of calibration error for cu/con thermocouple at \(V^\circ C \)
FNC(V) value of liquid specific heat, \(\rho_{f} \), at \(V^\circ C \)
FNH(V) value of heat of vapourisation, \(L_{v} \), at \(V^\circ C \)
FNG(V) specific heat of vapour, \(\rho_{g} \), at \(V^\circ C \)
FND(V) liquid density, \(\rho_{l} \), at \(V^\circ C \)
FNE(V) used to find vapour density \(\rho_{g} \), at \(V^\circ C \)
FNV(V) liquid viscosity, \(\mu_{f} \), at \(V^\circ C \)
FNW(V) vapour viscosity, \(\mu_{g} \), at \(V^\circ C \)
FNK(V) liquid conductivity, \(k_{f} \), at \(V^\circ C \)
FNL(V) vapour conductivity, \(k_{g} \), at \(V^\circ C \)

IV.1.2 Program II

The purpose of this program was to output on paper tape selected data points for further analysis. The data was input on paper tape with selection of data being carried out through the teletype.

SS3 and SS4 referred to in the program are sense switches on the computer console. When sense switch 3 is on, input is on paper tape, while if sense switch 4 is on, output is on paper tape. When sense switches 3 and 4 are off input and output are through a teletype.
As with Program I the listing shown below is of the program for runs 16-61. Similar modifications as to Program I were required for the different groups of experimental runs.

A list of the variables and arrays used in addition to those used in Program I is given after the program listing and a typical teletype output.
REM PROGRAM TO PREPARE AND PRESENT THERMOSYPHON DATA
REM PAPER TAPE OUTPUT. WATER RUNS ONLY.
REM 20/E/74. D. MOORE.
DIM A(24), B(24), C(2, 24), D(24), E(24), F(24), G(24), H(24), K(2, 24)
DIM L(24), M(24), N(24), P(24), R(24), S(24), T(24), U(24), V(24), W(24)
DIM X(24), Y(24), Z(24)
DIM J(24), Q(24)
DEF FN S(V) = 6784E-01 * 17225E-03 *(V-50) = 1745E-06 *(V-50) + 2
DEF FN I(V) = V + 1.307 * 1E-04 *(604*V + 73.52E*V - 60454E-01 * V * V)
DEF FN C(V) = 1.719 * (V-40) + 1.01 * (V-40) *(V-40)
DEF FN H(V) = 2255E07 - 2605E*(V-40)
DEF FN G(V) = 2034 + 4.15 *(V-100) + 31E-01 *(V-100) *(V-100)
DEF FN D(V) = 100 *(1.121 + 40775E-03 *(V-50) + 3225E-05 *(V-50) + 2)
DEF FN E(V) = 2202E-02 *(V+273.15)
DEF FN C(V) = 1/(2.1942 *(V-9) + 435.52E7 * 4 *(V-9) + 4352) = 120.4
DEF FN W(V) = 1206E-04 + 38E-07 *(V-100)
DEF FN K(V) = 643 + 10E-02 *(V-50) + 6E-05 *(V-50) *(V-50)
DEF FN L(V) = 249E-01 + 1E-03 *(V-100)
REM
REM RIG CONSTANTS
REM
D1 = 1.59E-01; H2 = .72E-01; A = 3.14159*D1*D1/4
A1 = 3.14159*D1*H2*Q1 = 24: GOTO 45
REM
REM INPUT OF T/C CALIBRATION DATA
REM
REM INPUT C1, C2, C3, C4
FOR I = 1, N1: INPUT C(I, I), C(2, I): NEXT I
GOSUB 600
REM
REM INPUT OF RUN PARAMETERS
REM
REM INPUT R1, F, H, T1, P3, P1, P0
IF R1<1 GOTO 36
H = H/2
P3 = P3 * 133.322
P1 = P3 * 1333.22 * P1
H = H/A1
G = F/A
N9 = 0
REM
REM INPUT OF INCREMENT DATA: T(WALL), P(BULK)
REM
REM
FOR I = 1, N1
Y(I) = 1
INPUT W(I), P(I)
IF W(I)<10 THEN Y(I) = 0
P(I) = P3 + 1333.22 * P1
NEXT I
GOSUB 620
REM
REM CALCULATION OF T(BULK) AT FIRST INCREMENT
REM
REM H(1) = T1 + H/(2*F*FN(T1))
CALCULATION OF $v(i), t(i), x(i), h(i), n9$

FOR I = 1, N1
X(I) = 0

IF I > 18.5 GOTO 115
IF (1/2 - INT(I/2)) < .3 THEN $w(i) = f(n(i)); GOTO 122$
Z = $w(i)$

IF Z < 41 THEN GOTO 122
E = .359*F - 01*Z - 1.31
IF Z > 125 THEN E = .27E - 02*Z + 2.86
W(I) = Z - E
IF Y(I) < .5 THEN $w(i) = w(i-1)$
PI = P(I)

GOSUB 810
S(I) = T9

IF I < 1.5 GOTO 160
IF N9 < .5 GOTO 170
B(I) = B(I-1) + H*(F*FNC(T(I-1))
IF S(I) > B(I) THEN T(I) = B(I); GOTO 190
T(I) = S(I)

IF N9 < 1 THEN N9 = 1
H5 = H5 + F*(T(I-1) - T(I)) + ((1 - X(I-1)) - X(I)) + FNG(T(I))
X(I) = X(I-1) + H5/(FNG(T(I)) + F)
H(I) = H(I - T(I))

NEXT I

OPERATOR MESSAGE
PRINT "SWITCH OFF S*, S3"

REM
CALCULATION OF $m(i), j(i), g(i)$

FOR I = N9, N1
V1 = F*(((1 - X(I))/FND(T(I)) + X(I)))/FNE(T(I))*P(I))
V2 = V1*F/(F1*FNE(T(I)))*P(I))
M(I) = (FNC(T(I)) + FNC(T(I)) + 9.0*V1*FNE(T(I)))*P(I)/FND(T(I))
M(I) = M(I) + ((1 - X(I))/X(I))^9.0
J(I) = V1*V1/(9.81*DI*AA)
G(I) = 0.09*M(I) + J(I) + 1.85
300 NEXT I
310 REM
320 REM
CALCULATION OF $r(i), z(i), a(i)$. $a(i)$ IN SUBROUTINE
310 REM
320 REM
FOR I = N9, N1
320 REM
R(I) = G*((1 - X(I)) + D1/FNE(T(I))
320 REM
GOSUB 675
320 REM
T7 = W(I); GOSUB 660
320 REM
Z(I) = Z(I) + T8*24 + P8*75
320 REM
330 REM
330 REM
OPERATOR MESSAGE
330 REM
330 REM
PRINT "RUN NUMBER", R1
330 REM
330 REM
DD = 0
330 REM
INTERACTIVE LOOP FOR SELECTION OF DATA POINTS TO
330 REM
BE DISCARDED. DATA FROM INCREMENT (I) IS DISCARDED
330 REM
IF D9 IS INPUT AS O FOR INCREMENT (I).
FOR I=N9,N1
344 IF Y(I)<.1 THEN O(I)=0: GOTO 352
346 O(I)=1
348 PRINT I;: INPUT D9
350 IF D9<.5 THEN O(I)=0
351 DR=D8+O(I)
352 NEXT I
353 REM
354 REM OPERATOR MESSAGE
356 PRINT "PUT ON S.S. 3 AND 4 NOW, THEN S.S. 4 OFF AFTER TAPE O/P"
357 REM
358 REM PAPER TAPE OUTPUT OF RUN PARAMETERS
359 REM
360 PRINT INT(R1)
361 PRINT INT(DB)
362 Z=H6: GOSUB 750
363 Z=F: GOSUB 750
366 REM PAPER TAPE OUTPUT OF DATA FROM SELECTED INCREMENTS
368 REM
369 FOR I=N9,N1
370 IF O(I)<.5 GOTO 380
372 Z=H(I): GOSUB 750
373 Z=A(I): GOSUB 750
374 Z=Z(I): GOSUB 750
375 Z=LOG(1/M(I)): GOSUB 750
376 Z=J(I): GOSUB 750
377 Z=LOG(1/C(I)): GOSUB 750
380 NEXT I
390 GOTO 45
392 REM***
393 REM SUBROUTINES
394 REM
397 REM SUBROUTINE TO CALCULATE I/C CALIBRATION PARAMETERS
399 REM
400 FOR I=1,N1
401 IF I>18.5 GOTO 604
402 IF (1/2-INT(1/2))<.3 GOTO 606
404 C5=C1+C1,.1: C6=C2+C2,.1: GOTO 608
406 C5=C3+C3,.1: C6=C4+C4,.1
408 C1,.1=C1,.1-C5+(C2,.1-C1,.1)/C6
410 C2,.1=C2,.1-C1,.1/C6
412 NEXT I
414 RETURN
417 REM SUBROUTINE TO CORRECT I/C VALUES
418 REM
420 FOR I=1,N1
422 W(I)=W(I)-C1,.1*C2,.1*W(I)
423 NEXT I
424 RETURN
427 REM SUBROUTINE TO CALCULATE DELTA. P AND DELTA. T
430 REM
430 T9=373.15/(273.15+T9)
432 P9=EXP(T9*(13.3185-T9*(1.967+T9*(0.6445+1.999*19)))
(160)
664 PB=ABS(*101325E06*PB-P(I))
666 T8=ABS(T7-T(I))
668 RETURN
672 REM
673 REM SUBROUTINE TO CALCULATE H(MIC) AND H(MAC)
674 REM
675 Z(I)=.122E-02*FNK(T(I))*79*FNC(T(I))*45*FNXL(T(I))*49
676 Z(I)=Z(I)/(FNH(T(I))*24*(FNE(T(I))*P(I))*24)
677 Z(I)=Z(I)/(FNS(T(I))*5*FN(T(I))*29)
680 A(I)=.23E-01*R(I)*.8*(FNV(T(I))*FNC(T(I))/FNK(T(I)))*.4
681 A(I)=A(I)*FNK(T(I))/DI
685 RETURN
747 REM
748 REM SUBROUTINE TO OUTPUT DATA IN EXPONENTIAL FORM
749 REM
750 N=0
753 IF Z=0 THEN Z=+.1E-10
755 ZI=SGN(Z)
760 Z=ABS(Z)
765 IF Z<10 GOTO 785
770 Z=Z/10
771 N=N+1
775 GOTO 765
780 Z=Z*10
781 N=N-1
785 IF Z<1 THEN GOTO 780
790 Z=INT(Z*.1E06+.5)/.1E06
795 IF Z=10 THEN Z=1:N=N+1
800 IF Z=INT(Z) THEN Z=Z*.1E-04
803 PRINT ZI*Z
804 PRINT INT(N)
805 RETURN
887 REM
898 REM SUBROUTINE TO CALCULATE T*SAT FROM P*SAT
900 REM
910 T2=LOG(P9/.101325E06)/13.3185
912 T3=T2
914 FOR J=1,4
916 T4=T2*1.1299*T3*.6445*T3*1.976*T3*T3/13.3185
918 IF ABS(T4-T3)<.1E-04 GOTO 824
920 T3=T4
922 NEXT J
924 T9=373.15/(1-T4)-273.15
926 RETURN
999 END

(161)
VARIABLES

D8 number of points output from run
D9 logical variable for data selection
N value of exponent of variable to be output
Z absolute value of variable to be output
Z1 variable representing sign of output variable

ARRAYS

J(24) value of Froude Number at increment I.
O(24) selection variable. If O(I) = 0 data point is discarded

IV.1.3 Program III

When it was decided to use model II (see Chapter III) to correlate the experimental data, the Prandl Number, Pr, was required in addition to the variables output by Program II. Thus Program II had to be altered so as to output the Prandl number in a similar way as the variables output by Program II. Since this meant that all of the data had to be processed again it was decided to output four other variables which might be useful for future work. Thus the values of the pressure, bulk temperature, wall temperature and quality were output as well.

A listing of this program has not been given since this program is very similar to Program II.

IV.2 Fortran Programs

IV.2.1 Iterative Linear Method

A listing of the Fortran program implementing the iterative linear method described in Chapter V is given below. This program was run on the University's ICL 1905E digital computer.
The program uses the subroutine F4CFORPL which is called from the Scientific Subroutine Library available on the ICL 1905E. The subroutine uses Chokyshov orthogonal polynomials to find the best polynomial fit upon the data for the F_L and S functions.
ITERATIVE LINEAR PROGRAM

MASTER ANALDAT

REAL LXT(520),LRE(520),S(520),H(520),HC(520),LSX(520),HM(520)
1,LF(520),FC(6),SC(6),W(520),R(520),P(1100),FRMS(6),SRMS(6)

INTEGER RI

DO 19 I=1,6

FC(I)=0.0

19 SC(I)=0.0

P(3)=0.0

P(4)=1.0

P(5)=0.0

NP=0

119 READ(3,101) RI

101 FORMAT(1d,2E13.6)

IF(RI.EQ.0) GOTO 121

READ(3,101) NPR,FL,FF

DO 120 I=NP+1,NP+NPR

120 READ(3,102) H(I),HC(I),HM(I),LXT(I),FR,LRE(I)

102 FORMAT(6E13.6)

NP=NP+NPR

GOTO 119

121 NO=5

NL=10

FC(1)=1.24234

FC(2)=0.55903

FC(3)=0.065231

FC(4)=0.0050257
FC(5)=0.0
FRMS(5)=0.0
MN=5*NC+2*NP+3
NM=MN-5
WRITE(2,103) NP

103 FORMAT(23H NUMBER OF DATA POINTS ,15)
WRITE(2,104)
DO 100 K=1,NL
DO 50 I=1,NS
Z=LXT(I)
LF(I)=FC(1)+7*(FC(2)+Z*(FC(3)+Z2(FC(4))))
S(I)=(H(I)-HC(I)*EXP(LF(I)))/HM(I)
LSX(I)=LRE(I)+1.25*LF(I)

50 CONTINUE
P(1)=-1.0
DO 51 I=1,NC
CALL F4CFORPL(NP,NC,MN,LSX,S,R,W,SC,P)
SRMS(I)= P(2)

51 CONTINUE
DO 60 I=1,NS
Z=LSX(I)
S(I)=SC(1)+Z*(SC(2)+Z*(SC(3)+Z*(SC(4)+Z*(SC(5)))))
F=(H(I)-HM(I)*S(I))/HC(I)
IF (F.LE. 1.0) F=1.0
LF(I)= ALOG(F)

60 CONTINUE
P(1)=1.0
DO 61 I=1,NC-1
CALL F4CFORPL(NP,NC,NM,LXT,LF,R,W,FC,P)
FRMS(I)= P(2)

(166)
61 CONTINUE
 DO 65 I=1,NC
65 WRITE(2,14) I,FC(I), SC(I),FRMS(I),SRMS(I)
14 FORMAT(15,3X,F15.8,3X,F15.8,2F15.8)
 WRITE(2,104)
104 FORMAT(1H ,//)
100 CONTINUE
 STOP
 END
Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F_L</td>
</tr>
<tr>
<td>FF</td>
<td>Heat Flux</td>
</tr>
<tr>
<td>FL</td>
<td>Flowrate</td>
</tr>
<tr>
<td>FR</td>
<td>Froude number</td>
</tr>
<tr>
<td>I</td>
<td>Step variable</td>
</tr>
<tr>
<td>K</td>
<td>Step variable</td>
</tr>
<tr>
<td>MN</td>
<td>Variable used in subroutine F4CFORPL</td>
</tr>
<tr>
<td>NC</td>
<td>Number of coefficients for the F_L and S polynomials</td>
</tr>
<tr>
<td>NL</td>
<td>Number of iterative loops</td>
</tr>
<tr>
<td>NM</td>
<td>Variable used in subroutine F4CFORPL</td>
</tr>
<tr>
<td>NP</td>
<td>Number of data points</td>
</tr>
<tr>
<td>NPR</td>
<td>Number of data points in run</td>
</tr>
<tr>
<td>RI</td>
<td>Run number</td>
</tr>
<tr>
<td>Z</td>
<td>Dummy variable</td>
</tr>
</tbody>
</table>

Arrays

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC</td>
<td>Array of F_L coefficients</td>
</tr>
<tr>
<td>FRMS</td>
<td>Array of RMS errors for each F_L coefficient.</td>
</tr>
<tr>
<td>H</td>
<td>Array of experimental heat transfer coefficients</td>
</tr>
<tr>
<td>HC</td>
<td>Array of convective heat transfer coefficients</td>
</tr>
<tr>
<td>HM</td>
<td>Array of nuclear heat transfer coefficients</td>
</tr>
<tr>
<td>LF</td>
<td>Array of F_L values</td>
</tr>
<tr>
<td>LRE</td>
<td>Array of ln(Re) values</td>
</tr>
<tr>
<td>LSX</td>
<td>Array of ln(Re_t) values</td>
</tr>
<tr>
<td>LXT</td>
<td>Array of ln(1/XTT) values</td>
</tr>
<tr>
<td>P</td>
<td>Array of values used to control the F4CFORPL subroutine</td>
</tr>
<tr>
<td>R</td>
<td>Array of calculated errors of data points</td>
</tr>
<tr>
<td>S</td>
<td>Array of S values</td>
</tr>
<tr>
<td>SRMS</td>
<td>Array of RMS values for each S coefficient</td>
</tr>
<tr>
<td>W</td>
<td>Array of weights for each data point (not used)</td>
</tr>
</tbody>
</table>

(168)
IV.2.2 Davis, Swann and Campey Program

A listing of the Fortran programme used, using Davis, Swann and Campey's method described in Chapter V, is given below. This program was run mainly on the UMRCC CDC 760 computer. A list of the variables, arrays and subroutines is given after the program listing. Only those variables and arrays used in the main segment of the program and some used in the subroutine SUMSSQ are given.

As mentioned in section V.2.6 the program had to be altered slightly for each of the models. The program given here is that used for the correlation of the water data to model B.
PROGRAM ROSE(INPUT, OUTPUT, DATA, NDAT, TAPE1=INPUT, TAPE2=OUTPUT,
TAPIE3=DATA, TAPE4=NDAT)
COMMON N,P,FR(850),XT(850),RE(850),H1(850),H2(850),H3(850),
IY(12,12),FAI(850)
DIMENSION X(12),Z(12),E(12),D(12)
NFUNC=0
ERROR=0.00001
ALPHA=2
BETA=-.5
READ(1,98) N,ISTOP
READ(1,99) (X(I), I=1,N)
98 FORMAT(14,16)
99 FORMAT(8F10.6)
CALL IMPDATA
N1=N-1
39 CALL SUMSSQ(X,N,YSTAR)
YNSTAR=SQRTP(YSTAR/NP)
WRITE(2,97) YNSTAR
97 FORMAT(32H INITIAL VALUE OF RMS ERROR IS ,F9.4)
IFUNC=1
40 DO I=1,N
 F(I)=X(I)/100
 V(I,J)=0.0
41 CONTINUE
40 V(I,I)=1.0
44 YNSTAR=SQRTP(YSTAR/NP)
WRITE(2,650) IFUNC,YNSTAR
WRITE(2,651) (X(I), I=1,N)
650 FORMAT(16,E15.6)
651 FORMAT(12F10.6)
IFUNC=0
DO 56 I=1,N
 E(I)=E(I)/2.0
 D(I)=0.0
 F1=YSTAR
56 CONTINUE
43 DO 1 K=1,N
 1 X(K)=X(K)+(E(I)*V(K,I))
 CALL SUMSSQ(X,N,FUNC)
 IFUNC=IFUNC+1
 IF(FUNC.LE.YSTAR) GO TO 47
 NS=0
 DO 2 K=1,N
 STEP=E(I)*V(K,I)
 IF(ABS(STEP) .LT. 2.E-07) NS=NS+1
 2 X(K)=X(K)-(E(I)*V(K,I))
 IF(ABS(A) .LE. 1.E-20) GO TO 110
 IF(NS .GT. N1) GO TO 56
 E(I)=BETA*E(I)
 GO TO 43
47 YNSTAR=FNC
734 D(I)=D(I)+E(I)
 E(I)=ALPHA*E(I)
 IF(ABS(A) .LE. 1.E-20) F1=F2
 F2=YSTAR
 A=0.0
 GO TO 43
110 F4=FUNC
 DO 111 K=1,N
111 Z(K)=X(K)+E(I)*V(K,I)/2.0
 CALL SUMSQ(Z,N,F3)
 IFUNC=IFUNC+1
 S=E(I)/2.0
 IF(F3.GT.F2) GO TO 113
 F1=F2
 F2=F3
 F3=F4
 YSTAR=F2
 DO 112 K=1,N
112 X(K)=Z(K)
 D(I)=D(I)+S
113 S1=2.0*(F1-2.0*F2+F3)
 IF(S1.LE.0.1E-08) GO TO 56
 S=S*(F1-F3)/S1
 DO 114 K=1,N
114 Z(K)=X(K)+S*V(K,I)
 CALL SUMSQ(Z,N,FUNC)
 IFUNC=IFUNC+1
 IF(FUNC.GE.F2) GO TO 56
 YSTAR=FUNC
 D(I)=D(I)+S
 DO 115 K=1,N
115 X(K)=Z(K)
56 CONTINUE
 DO 57 I=1,N
 IF(ABS(E(I)).GT. ERROR) GO TO 75
57 CONTINUE
 GO TO 647
75 CALL VECTOR(N,D)
 NFUNC=NFUNC+IFUNC
 IF(NFUNC.GT.ISTOP) GO TO 652
 GO TO 44
647 WRITE(2,649)
649 FORMAT(12H OPTIMISED)
652 YNSTAR=SQRTP(YSTAR/NP)
 WRITE(2,650) IFUNC,YNSTAR
 WRITE(2,651)(X(I), I=1,N)
 GO TO 39
END

SUBROUTINE VECTOR(N,D)
DIMENSION D(N),ALPH(12,12),AMSQ(12),AMOD(12)
COMMON NP,FR(850),XT(850),RE(850),HI(850),H2(850),HF(850)
1,ARRAY(12,12),FAH(850)
SMA=1.0E-14
SUM1=0.0
 DO 90 I=1,N
90 SUM1=SUM1+(D(I)**2)
 BMOD=SQRTP(SUM1)
 DO 92 I=1,N
 SUM=0.0
 DO 91 J=1,N
91 SUM=SUM+*(D(J)*ARRAY(I,J))
ALPH(I,1)=SUM
DO 30 M=2,N
D(M-1)=0.0
SUM2=0.0
DO 50 I=1,N
SUM=0.0
DO 49 J=1,N
49 SUM=SUM+(D(J)*ARRAY(I,J))
ALPH(I,M)=SUM
50 SUM2=SUM2+(ALPH(I,M)**2)
30 AMOD(M)=SQRT(SUM2)
AMOD(1)=RMOD
DO 88 I=1,N
88 AMSQ(I)=AMOD(I)**2
DO 96 I=1,N
IF(AMOD(I).LT.SMA) GO TO 96
ARRAY(I,1)=ALPH(I,1)/AMOD(I)
96 CONTINUE
RETURN
END

SUBROUTINE SUMSSQ(Z,N,SSQ)
COMMON NP,FR(850),XT(850),RE(850),HI1(850),HI2(850),HIF(850),
1V(12,12),FAH(850)
DIMENSION X(12),Z(12)
DO 180 I=1,N
180 X(I)=Z(I)
X(3)=X(3)/10.0
X(4)=X(4)/100.0
X(5)=X(5)*10.0
X(9)=X(9)/100.0
X(10)=X(10)/100.0
SSQ=0.0
DO 190 I=1,NP
XF=XT(I)+X(4)*FR(I)
F=X(I)+XF*(X(2)+XF*(X(3)+XF*X(9))
PI=RE(I)+X(8)*F
P1=S=0.5*(ABS(S)+S)
H3=FAH(I)/(1.0+X(11))*ALOG(1.0+5.0*HI1(I)/X(11))/HI1(I)
DIFF=H3*EXP(F)+H2(I)*S-HIF(I)
ERR=DIFF*100.0/HIF(I)
190 SSQ=SSQ+ERR*ERR
RETURN
END

(172)
SUBROUTINE IMPDATA
DIMENSION IERR(2,100), INUM(5,100)
COMMON NP,FR(850),XT(850),RE(850),H1(850),H2(850),HF(850),
LV(12,12),FAH(850)
INTEGER RI
110 FORMAT(514)
111 FORMAT(14,2E13.6)
112 FORMAT(6E13.6)
RP=0.5
DO 35 I=1,100
IERR(1,I)=0
IERR(2,I)=0
DO35 J=1,5
35 INUM(J,I)=0
DO 36 I=1,N
READ(1,110) N
DO 36 I=1,N
READ(1,110) IERR(1,I), IERR(2,I)
IE=IERR(2,I)
36 READ(1,110) INUM(J,I),J=1,IE
J=1
NP=1
40 K=100
READ(3,110) RI
READ(4,110) IR
IF(RI.EQ.0) GOTO 105
READ(3,111) NPR,HFLUX,FLOWR
READ(4,111) N,H,F
IF(RI.NE.IERR(1,J)) GOTO 100
K=J
J=J+1
100 DO 102 I=1,NPR
READ(3,112) HF(NP),H1(NP),H2(NP),XT(NP),FR(NP),RE(NP)
READ(4,112) X,W,T,P,H1(NP)
FAH(NP)=43.02*SQRT(0.32*EXP(RE(NP)))
FR(NP)=ALOG(FR(NP))
IF(K.FQ.100) GOTO 104
IE=IERR(2,K)
DO 101 L=1,IF
IF(I.EQ.INUM(L,K)) GOTO 102
101 CONTINUE
104 NP=NP+1
102 CONTINUE
GOTO 40
105 NP=NP-1
RETURN
END
Subroutines

Vector (N,D)

This subroutine re-orthogonalizes the search vectors after each iteration as explained in V.25 and V.26. This subroutine was taken from a program written by Gibson-Robinson (C1) and was based upon one originally given in Davis, Swann and Campey's paper (D2).

IMDDATA

This subroutine reads in the data to be optimised allowing, if required, any data points to be ignored as specified by the input into the arrays IERR and INUM. When the program was used to optimise model B this subroutine also calculated the values of hf (FAH())

SUMSSQ (Z,N,SSQ)

This subroutine calculates the sum of squares percentage error on the data for values of the correlation parameters supplied in the array X (). The sum of squares percentage error is returned to the main segment as SSQ. This subroutine had to be altered for each different form of correlation investigated.

Variables

A Program control parameter
ALPHA a (2.0)
BETA β (-0.5)
ERROR used to terminate program when apparent convergence achieved.
F1,F2,F3,F4 values of root mean square error used for quadratic interpolation.
FUNC value of root mean square error returned from SUMSSQ
I Step variable
IFUNC Number of sum of square evaluations in iteration.
ISTOP Maximum number of sum of square evaluations to be allowed.
J Step variable
N Number of parameters to be optimised.
N1 N - 1
NP Number of data points.
NFUNC Total number of sum of squares evaluations performed.
NS Number of parameter step lengths of negligible size.
S Vector step length found from quadratic interpolation.
S1 Parameter used in determining value of S.
STEP Step length.
YNSTAR Lowest root mean sum of squares error found.
YSTAR Sum of squares percentage error.

Arrays
D Array of progress achieved along each vector in iteration.
E Array of vectorial step lengths.
FR Array of ln(fr) values.
FAH Array of values of hf.
HI Array of convective heat transfer coefficients.
H2 Array of nucleate heat transfer coefficients.
HF Array of experimental heat transfer coefficients.
RE Array of ln(Re) values.
V Array of orthogonal search vectors.
X Array of best parameters found.
XT Array of ln(\frac{1}{\sqrt{IT}}) values.
Z Array of parameter values whose error is to be found by subroutine SUMSSQ.