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Abstract. It has been suggested that the deleterious edfemintrast reversal on visual
recognition is unique to faces, not objects. Heee sliow from priming, supervised
category learning, and generalization that thereisuch thing as general invariance of
recognition of non-face objects against contrasensal and, likewise, changes in
direction of illumination. However, when recognitioaries with rendering conditions,
invariance may be restored, and effects of contisuearning may be reduced, by
providing prior object knowledge from active semmat Our findings suggest that the
degree of contrast invariance achieved reflectsctional characteristics of object

representations learned in a task-dependent fashion
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I ntroduction

Contrast reversal disrupts the visual recognitidnhaman faces from grey-level
(Galper, 1970; Hayes, Morrone, & Burr, 1986; Liwl@®, Burton & Chaudhuri, 1999)
and two-tone images (Phillips, 1972), wherealitit no effect of contrast reversal on
the recognition of chairs (Subramaniam & Biederma&f97) and contraptions of
geometric components (“Greebles”; Vuong, Peissiggridon & Tarr, 2005) has been
reported. A possible explanation of this discrepaiscthe existence in test objects of
differences in contrast-invariant shape featuresultieg from discontinuities of
orientation and depth (Nederhouser, Yue, ManginiBi&derman, 2007). To exclude
this possibility, the latter authors compared tlileots of contrast reversal on the
recognition of faces and non-face stimuli composkespherical harmonics. The results
obtained were suggestive to these authors of inteaersal being deleterious to the

recognition of faces but not objects.

An alternative account of the dependence of vigeabgnition on contrast
reversal has been offered by Jittner, Langguth &t$dbler (2004). These authors
studied supervised category learning (Caelli, Rdws & Scheidler, 1987) and
generalisation to contrast reversal for severa sétcompound Gabor signals (grey-
level patterns composed of Gabor waveforms; Cadlihner, & Rentschler, 1986). The
sets differed either locally in their grouping gafure space or globally in the grey-level
distribution of learning patterns. Juttner and cakers found an inverse relationship
between the set-specific duration of category liegrito criterion and generalisation to
contrast reversal whereby fast learning coinciddith 'wmvariance to contrast reversal.
They analysed their behavioural data by means wipcer simulations employing an

evidence-based, structural pattern classifierJaih & Hoffman, 1988; Caelli & Dreier,



1994; Juttner, Caelli & Rentschler, 1997). For\&egi categorisation task, Juttner et al.
obtained sets of part and part-relational attripute feature states, as solutions within
this evidence-based system (EBS). They found tlgehpphysically observed speed of
category learning to be directly proportional te thumber of EBS solutions in search
space. Importantly, fast learning was associateth vaigh relative frequency of

contrast-invariant feature states used for gemgraiass descriptions.

On the one hand, the findings by Juttner et al042ndicate that invariance to
contrast in pattern recognition depends on taskoatext-dependent characteristics of
learned representations (cf. Albright, 1995). Gaather hand, the visual recognition of
three-dimensional (3D) objects could involve mdpsteact types of representation in
the brain (Biederman, 1987; Biederman and Kalod€#y) that entail a generic,
learning-independent invariance to contrast revergaresolve this issue, we examine
the effects of changed rendering within a catedgayning paradigm involving
unfamiliar 3D objects (cf. Osman, Pearce, Juttn&eatschler, 2000; Rentschler,
Gschwind, Brettel, Osman & Caelli, 2008). More sfieally, we study supervised
category learning as well as generalisation to heesvpoints and changed rendering
using 3D objects composed of a fixed number oftidahspheres. For probing the
nature of object representations, we control thewarhofprior knowledge subjects
have about test objects. This is achieved throuighipg, a technique from memory
research using the beneficial influence of pre-exype to a stimulus in the absence of
explicit instructions to remember the stimulus (Besderman & Cooper, 1991; Cooper,

Schacter, Ballesteros, and Moore, 1992).

The conjecture of invariance characteristics ofeobjrecognition being task-

dependent entails the possibility that internalisedresentations are susceptible to



continuous learning (Tagscherer and Protzel, 19%®)scherer, 2001; Keith-Magee,
2001, unpublished Ph.D. dissertation, Curtin Ursitgrof Technology, Perth, W.A.).

That is, visual object recognition may not only éreabled by category learning but
continuously modified by interfering input signdtd. Edelman, 1987). We investigate
this possibility in an additional experiment, wheaticipants classify object views in

standard rendering after having performed withwest/s in changed rendering.

METHODS
Subjects

45 subjects participated for pay. They ranged i fagm 19 to 45 years and were free

of ophthalmologic and neurological disorders.

Stimuli

Learning objects. A set of three test objecigas constructed using four identical sphere
parts in varying spatial arrangements (Fig. 1a)e€ib were designed according to the
concept of chirality. Chiral objects cannot be iarinto their mirror images by
rotations and translations. Handed chiral objetltsvacategorization into “left” and
“right” objects (King, 2003). Bilaterally symmetrigbjects are achiral by definition.
Thus, one non-handed achiral object (object IFigf. 1a) and one pair of handed chiral
objects (objects 2 and 3) were used. Physical rsogeere constructed from directly
connected polystyrene balls each measuring 6 cdiameter. Three spheres formed a
rectangular isosceles triangle. The fourth spheas placed perpendicularly above the
centre of one of the base spheres. Correspondimigavimodels were generated and

displayed for 250 ms each as perspective 2D projectby means of the Open



Inventor™ (Silicon Graphics, Inc.) 3D developer’s toolkit. li§ghting model of mixed
directed and diffuse illumination lacking cast sbd was used. At the viewing

distance of 1 m, virtual objects subtended in ayera4°.

Learning views. Discarding views redundant due to rotational symme?2 learning
views (6 for object 1, and 8 for each of objectari@l 3) were generated by sampling
azimuth and polar angle of the viewing-sphere if §@ps. Steps were taken on three
great circles inclined against each other by 6@% &quatorial plane was horizontal and
contained the symmetry axis of each object (thodefotational symmetry of object 1
and two-fold rotational symmetries of objects 2 &)d The origin of the coordinate
system used for sampling was at the centre of gyra¥ithe component spheres and thus
on the symmetry axis of each object. To reduceuscmh artefacts, reference views
(Fig. 1a) were chosen such that the objects’ symyaetes were perpendicular to the
picture plane and no centre of any sphere wasttjirecthe equatorial plane. An angle
of rotation in the picture plane, randomly seledredn the values of 0°, 60°, 120°, and
180°, was employed to prevent observers from ufiiegrame of the computer screen
as a reference. To examine the possibility of ratammn depending on pixel-based
similarities of input signals and stored 2D views. (Bulthoff & Edelman, 1992),
classification probabilities were predicted fromManimum-Distance Classifier (see
Ahmed & Rao, 1975) using the maximum of the 2D sroarrelation function as a
measure of similarity (cf. Caelli & Rentschler, B398 Predicted classification
probabilities were at chance level for all thregeots, demonstrating that no differences
of pixel-based similarities exist within the leargiset. Thus, the 2D views of the

learning set qualify as “structure-only” stimuli.

[Figures 1 about here]



Test views. In order to test spatial generalisation, 64 viewsnf novel viewpoints were
obtained from sampling the viewing sphere as alibmten 30° steps. Views redundant
due to rotational symmetry or identical to thoseduduring supervised learning were
discarded. Finally, the views were manipulated gisthree different rendering
conditions. For views in thgtandard rendering condition the lighting model remained
unaltered. In theontrast reversal condition, the grey level of each pixel was sutitrd
from the maximum value 255 to obtain reversed sites (Figs. 2a). For views in the
condition ofchanged direction of illumination (Fig. 2b), the default position of the light
source was changed from the upper left (infinisgatice, 10° to the left and up from the
viewer's position) to the lower right from the obger’s position (infinite distance, 45°

to the right and 90° down from the viewer's posi}io

[Figure 2 about here]

Procedure

The main experiment consisted of three parts: mgmsupervised category learning,
and generalization. Subjects who had carried oat ganeralization test under the
rendering conditions o€ontrast reversal or changed direction of illumination (see
below) completed an additional generalisation s¢-teising the test views of the

standard rendering condition.

Priming phase. During priming subjects either explored with thbands the physical
objects occluded from sightadtive touch priming) or explored virtual models by
grasping 2D views on the computer display with rtih@use and a cursor and rotating
them within the viewing spheredive vison priming). Priming lasted for 5 min in

either condition. No instruction other than theitatron to familiarize themselves with



the objects was given. As a baseline for the twimipg conditions a neutratgntrol)
condition was included, where subjects enteredgdvend part of the experiment, visual
category learning, directly, i.e. without acquiripgor object knowledge. Participants
were randomly assigned to one the three experitheataditions, resulting in 15

participants per condition.

Supervised category learning. The second part of the experiment involved a pioce

of supervised learning partitioned into learningtsi(for details, see Rentschler, Juttner
& Caelli, 1994; Osman et al., 2000). Each learnimg consisted of a learning phase
and a test phase. During the learning phase eaitte &2 views of the learning set was
presented once for 250ms and in random order,Wellbby the corresponding object
label (“1”, “2” or “3”) displayed for 1 s. Duringhie test phase, each learning view was
presented once, whereupon the observer assigriecite of the three objects. Upon
completion of each test phase, participants redefgedback as to the percent correct
value of their responses. No instructions as topbssible duration of classification
decisions were given. On average duration, a legranit took 5 min to complete. The
series of learning units terminated upon reachingcrierion of 90% correct

classification.

Generalization test. The final part of the main experiment assessecengéination to

novel viewpoints and to changes in rendering. Heaeh of 64 novel test views of one
rendering condition was shown three times for 250amd in random order. Upon each
presentation, the observer had to assign the eeoné of the object categories 1 to 3.
The 15 participants within each priming conditioaresrandomly assigned to one of the
three rendering conditions, resulting in 5 par@eifs per priming and rendering

condition.



Generalization re-test. To test for effects of continuous learning, papants who had
completed the generalisation test under the camditof changed renderingofitrast
reversal or changed direction of illumination) were tested again for generalisation to
novel viewpoints, this time using the test viewstlod standard rendering condition.
The same procedure as during the generalizatiorwias employed. However, the test

views were presented only once in random order.

RESULTS

Table 1 summarises durations of supervised catdgarying to criterion (90% correct
classification) for thecontrol condition, where no prior knowledge about testeoty
was provided, as well as the two priming conditiohsctive vision andactive touch.
Learning duration, as measured by the number ofileg units, is distinctly reduced by

either form of priming relative to the control gpou

[Table 1 about here]

From the confusion matrix of each observer, thegrage of correct scores for
each of the three objects was computed to assassifidation performance in the
generalization test. Figures 3 a-c show mean gkreian performance to novel
viewpoints for thecontrol condition and the priming conditions ative vision and
active touch. Each graph shows three pairs of bars, with tHe (leright) bar
corresponding to generalization performance for-nanded object 1 and the right
(dark) bar to mean performance for handed objeetsd?3. In order to test the impact of
priming and rendering, we analysed the data in sevfrseparate 3 (priming condition:

control vs.active vision vs. active touch) x 3 (rendering conditiorstandard vs. contrast



reversal vs. changed direction of illumination) ANOVAs for handed and non-handed
objects. The analysis yielded a significant mafeatfof priming condition (non-handed
object: F(2,36)=6.72, p<0.01; handed objects: B(2B5.92, p<0.001). Rendering
condition significantly affected generalization case of handed objects 2 and 3
(F(2,36)=6.02, p<0.01) and marginally in case ofi-handed object 1 (F(2,36)=3.13,
p=0.05). There was no significant interaction betwehe two factors (non-handed

object: F(4,36)=1.80, p=0.15; handed objects: F}3.55, p=0.70).

[Figure 3 about here]

To further assess the effect of rendering, addiimne-way ANOVASs were
conducted for each priming condition and objecktyipor the control condition, there
was a significant effect of rendering on generélisafor both object types (hon-handed
object: F(2,12)=7.36, p<0.01; handed objects: R)216.69, p<0.001). As illustrated in
Fig. 3a and confirmed by post-hoc Bonferroni congmars, contrast reversal
significantly impeded generalisation for both trentled and non-handed object (all ps
<0.05). A change in the direction of illuminatianpeded generalization of the handed
objects (p<0.01) while leaving recognition of thenrhanded object unaffected (p

=0.99).

No significant effect of rendering on generalizatiovas observed in case of
active vision or active touch priming for both non-handed object &cijve vision:
F(2,12)=0.30, p=0.7%active touch: F(2,12)=0.01, p=0.99) and handed objects 2 and 3
(active vision: F(2,12)=0.64, p=0.54active touch: F(2,12)=1.37, p=0.29). For both
types of objects, categorisation performance wasriant to contrast reversal and
changes in the direction of illumination. Still, iy t-tests revealed that for priming

from active vision performance for handed objects 2 and 3 was cemsigtlower than



for non-handed object 1 in these two rendering tmmd (t(4)>3.26, p<0.05 and
t(4)=7.36, p<0.01, respectively), whereas there wassignificant difference for the
baseline condition of standard rendering (t(4)=188.12). Priming fronactive touch

yielded a generalisation performance for the twpetsy of objects that differed
significantly only in case of changed illuminatidt{(4)=4.55, p<0.05) but not for

standard rendering (t(4)=0.27, p=0.80) or contrastrsal (t(4)=2.10, p=0.11),

[Figure 4 about here]

Figure 4 a-c shows results obtained in the reéspatial generalization to
standard rendering for those subjects who had liiegn tested in the conditions of
contrast reversal or changed direction of illumination (middle and right double bars
For comparison, generalization performance of tbera-tested group of participants
(i.e., those who had directly been tested with heigevs under conditions of standard

rendering) is re-plotted from Figure 3 (open bars).

Separate 3 (priming condition: control vs. activsion vs. active touch) x 3
(rendering conditionstandard direct vs.standard after contrast reversal vs. standard
after changed direction of illumination) ANOVAs for both types of object revealed
significant main effects of priming condition (ndanded object: F(2,36)=4.28, p<0.05;
handed objects: F(2,36)=12.44, p<0.001) and rengerondition (non-handed object:
F(2,36)=6.56, p<0.01; handed objects: F(2,36)=4p30.05). There was no significant
interaction between the two factors (non-handeecibj(4,36)=1.67, p=0.18; handed

objects: F(4,36)=0.34, p=0.85).

To further test for effects of continuous learniaggditional one-way ANOVAs
were conducted for each of the priming conditiond abject types. For the control

condition, there was a significant effect of theeqading test involving changed

10



rendering on generalization performance in the est-t(non-handed object:
F(2,12)=12.21, p<0.001; handed objects: F(2,128:43:0.05). As illustrated in Fig.
4a and confirmed by post-hoc Bonferroni comparisdhs was mainly due to the
detrimental effect of contrast reversal. Precedasjing with contrast-reversed images
significantly impeded generalisation in the re-testboth the handed and non-handed
object (all ps <0.05), whereas a change in thectiie of illumination left recognition

of both types of objects during the re-test unaéfiécall ps>0.24).

No significant evidence for continuous learning waand in case ofctive
vision or active touch priming for non-handed object 1 (active vision2A@)=0.37,
p=0.70; active touch: F(2,12)=1.29, p=0.31) anddeanobjects 2 and 3 (active vision:
F(2,12)=1.42, p=0.28; active touch: F(2,12)=0.720.p1). For both types of objects
generalization performance in the re-test afterezqding test with changed rendering
did not differ significantly from that without sudbst history. This indicates that prior
knowledge from active visual or tactual sensatioabted the acquisition of more

robust object representations.

DISCUSSION

We have shown that contrast reversal or a changkraction of illumination may be
deleterious to the visual recognition of non-fatgeots. Yet it is possible to enable
invariant recognition by providing observers withop object knowledge from active
sensation gctive vision or active touch). Such type of information does not only
diminish the effects of changed rendering but adlothe construction of object
representations that are relatively robust agapesturbation by intervening input

signals, i.e., continuous learning.
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Our results qualify previous claims of a generigaimance of non-face objects
against contrast reversal (Nederhouser et al.,)200deed, the latter would seem to be
in stark contrast to what is known from studiegpérceptual learning. Discrimination
performance typically improves with practice butedonot transfer to new stimulus
conditions (e.g., Fiorentini & Berardi, 1980; Kar&i Sagi, 1991; Poggio, Fahle &
Edelman, 1992). Accordingly, perceptual learningmnotion discrimination is highly
specific to practised directions of motion for ditflt discrimination tasks but transfers
to new directions when the difficulty is reducedulL1999). Similarly, Jittner et al.
(2004) have shown that the effects of contrastreaen visual pattern recognition are

determined by task-dependent characteristics afidebrepresentations.

Here we have observed that changes in rendergaylglimpair visual object
categorisation but prior knowledge from active stios1 may facilitate recognitioand
make it more invariant against changes in renderihgthermore, prior knowledge
from active sensation may reduce continuous legrniro better understand these
results, it is helpful to note that machine leagngystems are typically based on the
assumption of learning being restricted to a certane interval (learning phase),
whereupon systems are put into operation (workimasp). Yet there exist systems that
allow learning to take place all the time in annterrupted fashion, thus being able to
adapt to time-variant environments (Tagscherer Rruizel, 1998; Tagscherer, 2001,
Keith-Magee, 2001, unpublished Ph.D. dissertat@mitin University of Technology,
Perth, W.A.). Moreover, there is reason to belidvat perceptual categorisation and
generalization are adaptiyer se (Edelman, 1987). Thus it is not surprising thatreno
reliable information on the physical 3D-structuré the environment from active
sensation entails the construction of more invaraard robust internal representations

for visual object categorisation.
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The present study differs from earlier work onualsobject recognition mainly
in two respects. First, a paradigm of categoryrligagy involving 2D views from all over
the viewing (half-) sphere of non-handed and hand&dcture-only objects was
employed. This precluded recognition from non-aeotdl object parts by necessitating
the construction and maintenance in working men{eege Baddeley, 1986) of object
representations conserving at least aspects oftiBibtgre. By contrast, Nederhouser
and co-workers (2007) used a matching-to-sampladigm, where participants were
presented simultaneously with three object viewsnfrsame viewpoint of which two
portrayed the same object. Thus, observers could ae image discrimination by
comparing contrast invariant shape features. Fstance, in Fig. 4a of Nederhouser et
al., the distractor and the right matching viewwglai their lowest central positions the

same acute protuberance, which is lacking in tfieriatching view.

Second, the effects of changed rendering were masspicuous for handed
chiral objects. Concerning this observation, ih&pful to note that mirror-symmetric
object 1 can be carried into itself by mirror reflens (3-fold mirror symmetry; see
Weyl, 1952). There is evidence that such symmetiaesitate object recognition
(Vetter, Poggio & Bilthoff, 1994). Handed chiraljetts 2 and 3 can be carried into
themselves only by movements enacted on rigid lsodieh as pure rotations (see
International Union of Crystallography, 2005), wées mirror reflections carry them
into each other, thus contributing to their condusilndeed, physical models of handed
chiral objects are disambiguated by spatial tramsfdion in 3D and alignment to a
scene-based reference (Hinton & Parsons, 1988)reabethe recognition of handed
objects from 2D projections involves “mental radati of internalized models (Shepard
& Metzler, 1971). In brief, symmetry propertiesifaate the recognition of non-handed

object 1 but impair the recognition of handed dhotgects 2 and 3.
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The possibility of non-handed object 1 being recoggh from about half of its
test views by relying on projected symmetries dredthree-fold connectivity of one of
its sphere parts (Fig. 1b, left) has to be ackndgael. Similarly, about half of the views
of handed objects 2 (Fig. 1b, middle) and 3 (Fig, dight) display a “snake-like”
structure (introspective reports of participantlys allowing their distinction against
non-handed object 1 but not each other. Howevaer, cfassifying the remaining
“difficult” (introspective reports of participantsjiews and in particular handedness,
observers had to enact the full cycle of image tstdading, i.e., the (mental)
generation of candidate 3D models from input ima@eserse modelling), their
rendering back into images (forward modelling), ahe corresponding matching
process (for formal solutions in the area of maehielligence see Caelli & Bischof,
1997; Cheng, Caelli & Sanchez-Azofeifa, 2006). @iube relative disadvantage of
recognising handedness in the absence of prior letlpe and, to some extent, with
active vision priming, it can be assumed that observers relredttiibutes, or features,
in image format under such conditions. The depecel@i recognition on rendering

conditions would be the consequence of such cleasdn strategies.

We shall then turn to the question of how prior\kitexlge from active sensation
may have affected the construction of object reprgions. It would have drawn the
attention of subjects to 3D structures, thus eragging them to generate corresponding
models (Thoma, Hummel & Davidoff, 2004). They mayé achieved this by encoding
temporal sequences of object viewstive vision) or exploratory finger and hand
movements along the physical object modatsiye touch). As object palpation directly
evokes mental imagery (Critchley, 1953, chap. iM@, can conjecture that some sort of
kinetic object traces were stored in multimodal resentations (e.g., Zangaladze,

Epstein, Grafton & Sathian, 1999). Subjects maw thave inferred 3D structures from

14



linking object parts exposed in 2D views to sugiresentations. Related categorisation

strategies would have enabled more invariant ratiogn

In conclusion, we agree with Nederhouser et &072 in that effects of contrast
reversal depend on the nature of internal objeptesentations rather than physical
stimulus attributes such as spectral compositiog.,(élayes, Morrone & Burr, 1986).
The difference in perspective resides in the faeit tNederhouser and co-workers
attributed the effect of contrast reversal on redtan to fixed and invariant stimulus
categories (face vs. non-face objects), whereafowmad it task- or context-dependent.
We propose that prior object knowledge from acteasation causes representational
shifts as have been reported for face recognitsme (Palmeri, Wong, and Gauthier,
2004) and classification of mirror-image patteriReritschler & Juttner, 2007). Such
shifts enable increased invariance of recognitioe tb an increased use of contrast- or
illumination-invariant part-relational object atitites. Moreover, they render object
representations more robust, i.e., less sensiiveddification through interfering input

signals.
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Figure captions:

Figure 1. 2D views of the set of objects for category leagnand generalisatioia)
Achiral (bilaterally symmetric; left) object 1 (OBnd handed chiral (mirror image;
centre and right) objects 2 (02) and 3 (O3). Thspberes formed a rectangular
isosceles triangle. The fourth sphere was placegepéicularly above the centre of one
of the base spheres. All spheres were of sameasidaeflectancglb) Sample of four
2D views for each of the objects (left). Views obéal from sampling azimuth and
polar angle of the viewing (half) sphere in 60°%stethus yielding 8 views per object
(right). 2 views of object 1 were redundant dusymmetry reasons. Discarding them,
22 views (6 for object 1 and 8 for each of objeztand 3) were used for category

learning to criterion.

Figure 2. Changed object renderin@) For contrast reversal, original intensities were
subtracted from the maximum value 255 to obtairersed intensities. Background
intensities remained fixed under these conditighy.For a change in the direction of
illumination, the default position of the virtuaglht source was changed from the upper

left corner to the lower right corner from the alyee’s position.

Figure 3. Spatial generalisation under three conditions aideging and three
conditions of priming.Sandard rendering (leftmost double bargentrast reversal
(centre), andchanged direction of illumination (rightmost double bars). Priming
conditions of control (top), active vision (centre), andactive touch (bottom).
Generalisation performance is given in percentemrelassification. Left bar of double
bars: Object 1; right bar of double bars: mean eaitiobjects 2 and 3. Error bars: 1

S.E. (N =5; O1); mean values of S.E.s (N=5 eac¢ha@d O3).
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Figure 4. Re-test of spatial generalisation under conditiofsstandard rendering
following spatial generalisation under conditiorfscontrast reversal (middle double
bars), andchanged direction of illumination (rightmost double bars). Data for
participants, who were initially tested under caiotis of standard rendering,
reproduced from Fig. 3 (leftmost double bars). Brgnconditions ofcontrol (top),
active vision (centre), andctive touch (bottom). Generalisation performance is given in
percent correct classification. Left bars of doubds: object 1; right bars of double
bars: mean value of objects 2 and 3. Error barS:EL (N = 5; O1); mean values of

S.E.s (N=5 each; O2 and O3).

Table 1. Duration of category learning to criterion for ttigee conditions o€ontrol,
active vision priming, and active touch priming. Mean values over groups of
participants and standard errors in number of lagranits (N = 15, standard rendering;

N = 15, contrast reversal, and N = 15, directiofllomination).
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