
Projected Sequential Gaussian Processes: Flexible Interpolation for
Large Data Sets

Ben Ingram1, Dan Cornford1, Remi Barillec1

1Neural Computing Research Group / Aston University
b.r.ingram, d.cornford, bariller@aston.ac.uk

Abstract. Recently within the machine learning and spatial statistics communi-
ties many papers have explored the potential of reduced rank representations of the
covariance matrix, often referred to as projected or fixed rank approaches. In such
methods the covariance function of the posterior process is represented by a reduced
rank approximation which is chosen such that there is minimal information loss. In
this paper a sequential framework for inference in such projected processes is pre-
sented, where the observations are considered one at a time. We introduce a C++ li-
brary for carrying out such projected, sequential estimation which adds several novel
features. In particular we have incorporated the ability to use a generic observation
operator, or sensor model, to permit data fusion. We can also cope with a range of ob-
servation error characteristics, including non-Gaussian observation errors. Inference
for the variogram parameters is based on maximum likelihood estimation. We illus-
trate the projected sequential method in application to synthetic and real data sets.
We discuss the software implementation and suggest possible future extensions.

1 INTERPOLATION FOR LARGE DATA SETS

Techniques for treating large-scale spatial datasets can generally be organised into a small
number of categories depending whether they utilise sparsely populated covariance ma-
trices [3], spectral methods or low-rank covariance matrix approximations [5, 4, 1]. Each
technique has associated advantages and disadvantages depending on the problem domain
being considered. The popularity of these techniques in recent years is broadly due to the
increased ability to collect data; whether it be from satellite–based sensors, sampling po-
tentially vast areas across the globe, aerial photography, large monitoring networks or
large repositories of data accessible from online sources. In this paper we consider low-
rank covariance matrix approximations.

A common technique for treating large-datasets is simply to sub-sample the dataset
and use only a smaller number of observations during analysis. This is probably the most
naïve low-rank covariance matrix approximation. All but the smaller subset of observa-
tions are discarded. Choosing the subset of observations that are to be retained can be
complex. One approach to this is described by [4]. The algorithm runs for a number of
cycles sequentially inserting and removing observations determined by the magnitude of
the reduction of uncertainty in the model.

[2] presents a similar approach. Instead of discarding some observations, it is sug-
gested that the effect of the discarded observations can be projected onto the low-rank
covariance matrix in a sequential manner identifying the most informative observations
in the process. It is shown how this can be done in such a way so as to minimise loss of in-
formation. Related to this is the technique of [5] where, instead of a sequential projection
scheme, the entire dataset is projected on to a set of active points in a batch framework.



Choosing these active points in a batch framework is complex. [1] presents an alternative
idea where the Frobenius norm between the full and an approximate covariance matrices
is minimised using a closed expression.

The approach of [2] has a number of advantages. Firstly, since it is a sequential
algorithm, the complexity of the model, or the rank of the low-rank matrix can be de-
termined during runtime. In scenarios where the complexity of the dataset is unknown
a priori this is advantageous. Secondly, in a practical setting, it is not uncommon that
observations arrive for processing sequential in time. Thirdly, by processing the data in
a sequential fashion, non-Gaussian likelihood functions can be used. The projection step
mentioned earlier is employed to project from a non-Gaussian posterior distribution to
the nearest Gaussian posterior distribution, again minimising the induced error in doing
so. There are two ways in which the update coefficients, necessary for the projection,
can be calculated: analytic methods requiring the first and second derivatives of the like-
lihood function with respect to the model parameters and by population Monte Carlo
sampling. The inclusion of this population Monte Carlo sampling algorithm is a novel
feature of this implementation. The likelihood function for each observation can be easily
described without having to calculate complex derivatives. Furthermore, our sampling
based method enables observation operators (which map from latent space to observed
space) to be included, permitting data fusion.

2 SEQUENTIAL APPROACHES TO INFERENCE

To highlight the approach, we give a simple algorithm outline (Algorithm 1) for the com-
putation of the posterior distribution. The basis of this method is a parametrisation of
the posterior distribution with mean µ(x) and covariance c(x, x′) where x denotes spatial
location. The low-rank posterior distribution is parametrised using a vector ααα and matrix
CCC as shown by:

µposterior(x) = µprior(x) +
m∑
i

αic(x, xi), (1)

and:

cposterior(x, x
′) = cprior(x, x

′) +
m∑

i,j=1

c(x, xi)C(i, j)c(xj, x
′) (2)

Additional parameters, (aaa,ΛΛΛ,PPP ), are necessary if the data recycling or expectation prop-
agation stage of the algorithm is utilised but will not be elaborated here. Updating the
model parameters ααα and matrix CCC is performed sequentially using update coefficients q
and r:

µt+1 = µt + qt+1ct(x, xt+1), (3)

and:

ct+1(x, x
′) = ct(x, x

′) + rt+1ct(x, xt+1)ct(xt+1, x
′) (4)

where t indicates the algorithm iteration step. The benefits of this parametrisation are
two-fold. First, the update coefficients (q & r) can be computed for a variety of likelihood
models, and secondly, the update coefficients can be computed in a manner which does
not require that the model complexity to be increased.



Algorithm 1 Projected Sequential Gaussian Process algorithm outline.
1: Initialise model parameters to empty values: (ααα,CCC) , (aaa,ΛΛΛ,PPP )
2: for epIter = 1 to Data Recycling Iterations do
3: t = 1
4: Randomly order the location/observation pairs.
5: while t < numObservations do
6: Get next location and observation (xxxt, yyyt)
7: if epIter = 1 then
8: No removal of observation contribution possible for previous cycle
9: else

10: Remove contribution from previous cycle of current observation (α̃̃α̃α, C̃̃C̃C)
11: end if
12: Compute model update coefficients (q, r) for specified likelihood function
13: if Likelihood update is analytic then
14: Compute update coefficients (q, r) from first and second derivatives of likeli-

hood with respect to model parameters
15: else
16: Use population Monte Carlo sampling update scheme to compute update co-

efficients (q, r)
17: end if
18: Calculate γ, a heuristic measure of the difference between the current GP and

that from the previous iteration
19: if γ exceeds a predefined threshold ε then
20: The location of this observation is added to the Active Set
21: Increase the size of, and update (α̃̃α̃α, C̃̃C̃C) and EP parameters (aaa,ΛΛΛ,PPP ) using up-

date coefficients (q, r)
22: else
23: The model parameters can be updated by a projection step
24: Project observation effect (q, r) onto (α̃̃α̃α, C̃̃C̃C) and add observation to EP param-

eter matrices (aaa,ΛΛΛ,PPP )
25: end if
26: if Size of active set > Maximum Desired Size then
27: Calculate for each active point a heuristic measure of informativeness
28: Given the least informative active point, delete it from the active set, decrease

size of, and update (α̃̃α̃α, C̃̃C̃C) and update EP parameters (aaa,ΛΛΛ,PPP )
29: end if
30: t = t+ 1
31: α̃̃α̃α = ααα, C̃̃C̃C = CCC
32: end while
33: end for



3 DESIGN OF C++ LIBRARY

The algorithm discussed in this paper is one of a number of Gaussian process algorithms
that we intend to develop, hence we emphasise the importance of having a flexible and ex-
tensible framework. Code reuse is likewise of great importance. We have chosen C++ as
the implementation language as this allows us to produce both fast and portable code. We
utilise the Matlab like IT++1 library which itself uses the highly optimised vector/matrix
operations available from BLAS2 and LAPACK3.

The base functionality of any Gaussian process algorithm is the need to calculate co-
variances given different covariance functions. We provide a CovarianceFunction
interface (abstract class, strictly) which all covariance functions must implement. The in-
terface defines a number of typical operations such as computing the covariance between
two vectors of locations or calculating a symmetric covariance function. Additionally,
where available, the functions for calculating gradients of functions with respect to their
inputs are implemented. We have implemented a basic number of covariance functions
such as the common ExponentialCF, GaussianCF or WhiteNoiseCF. Combina-
tions of covariance functions can be used using the SumCovarianceFunction class.

A LikelihoodType interface is implemented by: an AnalyticLikelihood
or a SamplingLikelihood. These classes can be further extended for a specific like-
lihood type. AnalyticLikelihood requires the first and second derivative informa-
tion to be calculated for each likelihood model whereas the SamplingLikelihood
requires the likelihood model to be specified together with an optional observation op-
erator function. The Gaussian process inference algorithm implements two interfaces,
ForwardModel and Optimisable which requires that four functions are imple-
mented for optimisation: log-likelihood, log-likelihood gradient, set model parameters
and get model parameters. Four general purpose gradient-based local optimisers are in-
cluded in the package. These optimisers take an Optimisable model as a parameter.
A train function can then be called which finds the parameters that minimise the log-
likelihood of the model. General options for optimisation can be specified such as number
of iterations, parameter tolerance and objective function tolerance.

4 EXAMPLE APPLICATIONS

To demonstrate the simplicity of using this software, we present a small segment of code
which demonstrates calling our code. Algorithm 2 shows the simple outline. Lines 1
& 2 create two objects, one from the SequentialGP class which is passed locations
(X), observations (y) and a covariance function object (covFunc) which was previously
defined. The second class, SCGModelTrainer, is for optimising the model parame-
ters. During instantiation, the only parameter that is required is an object derived from
the Optimisable class, in this case it is the PSGP model. A loop control structure
is created which controls how many data recycling steps are desired. The posterior of
the Gaussian process is computed during each iteration. The SequentialGP member
function computePosterior is overloaded. Two scenarios are contemplated. Firstly,
that there is one likelihood model for the entire dataset. The second scenario is where
observations may have differing likelihood models. A vector of references to these

1http://itpp.sourceforge.net/
2http://www.netlib.org/blas
3http://www.netlib.org/lapack



Figure 1: Synthetic example of using the projected sequential Gaussian process algorithm,
incorrect (left) and correct (right) likelihood models. Observations with Gaussian addi-
tive noise (o) and one-sided exponential noise (+). Dashed line is underlying noiseless
function and the black solid line is the mean prediction.

Algorithm 2 Example script.
1: SequentialGP ssgp(2, 1, X, y, covFunc); // create psgp object
2: SCGModelTrainer gpTrainer(ssgp); // create optimiser object
3: for epIter = 1 to Data Recycling Iterations do
4: ssgp.computePosterior(likIndex, likVector); // compute GP posterior
5: gpTrainer.Train(5); // optimise the model parameters
6: end for
7: ssgp.makePredictions(meanP, varP, pX); // make predictions at pX

different likelihood models is the second parameter, the first is an integer vector of
indexes corresponding to the references in the vector of likelihood models. For each
observation there is an integer index. This enables a mixture of likelihood models to be
used. After the model posterior has been computed, the trainmember function is called
with a parameter indicating how many iterations of the optimisation algorithm should be
performed.

The software uses a number of default settings which are described in the user manual
and documentation. However, the default parameters may not always be appropriate for
all applications. Functions for setting and getting particular parameter values are included.

When the error associated with observations are non-Gaussian and/or have varying
magnitudes, we can include this knowledge in our model. Figure 1 shows an example
of why utilising additional knowledge about a dataset is crucial to obtaining good results
during prediction. Additive noise of two types is applied to observations of a simple
underlying function. By assuming a Gaussian noise distribution on the centre section of
the dataset, prediction values are severely over-estimated. A correct specification of the
likelihood for each observation leads to a much improved prediction.

To demonstrate our software in a real-world context, gamma dose radiation data was
collected by a large network of sensors administered by Bundesamt für Strahlenschutz4.
An estimate of the measurement error was derived based on a variety sensor character-
istics and was assumed to have the form of a Gaussian distribution. We set the number

4http://www.bfs.de



of active points to be 150 in this example and leave all other algorithm parameters at
their default values. We train our model using 1211 locations for computing the posterior
distribution and test it at 700 locations where data was known, but withheld.

Table 1: Summary statistics using 3 different implementations, based on standard Gaus-
sian processes (maximum likelihood based inference), and PSGP in two implementations.

Method ME MAE R Time(s)
GP 0.0001 0.0091 0.873 349
PSGP (Matlab) 0.0001 0.0094 0.865 1232
PSGP (C++) 0.0001 0.0095 0.865 19

5 DISCUSSION AND CONCLUSIONS

The examples employed to demonstrate the software described are naïve in the sense
that a minimal analysis has been reported due to space constraints. Instead, two simple
examples have shown and motivated why such an algorithm is important, particularly
when implemented in a fast, efficient manner. Timings (Table 1) show that the C++ im-
plementation is a significant improvement in terms of computation time while maintain
prediction quality. The tiny discrepancy between PSGP runs is due to the random or-
dering of the data when applying the data recycling algorithm. The configuration of the
algorithm was not discussed in detail as there is insufficient space, however the software
provides significant scope for configuration. Fine tuning specific parameters can induce a
further computational efficiency increase. For example, specifying the active set a priori
instead of the default swapping-based iterative refinement is a useful option for reducing
computation time. If the threshold for acceptance into the active set, γ, is set too low, then
this can cause an increase in computation time due to frequent swapping in and out of
active points. Future work will consider multiple outputs (co-kriging), the use of external
predictors (universal kriging and regression kriging) in a batch projected Bayesian setting,
and focus further on validation of the models.

REFERENCES

[1] N. Cressie and G. Johannesson. Fixed rank kriging for very large spatial data
sets. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
70(1):209–226, 2008.

[2] L. Csató and M. Opper. Sparse online Gaussian processes. Neural Computation,
14(3):641–669, 2002.

[3] R. Furrer, M. G. Genton, and D. Nychka. Covariance tapering for interpolation of
large spatial datasets. Journal of Computational and Graphical Statistics, 15(3):502–
523, 2006.

[4] N.D. Lawrence, M. Seeger, and R. Herbrich. Fast sparse Gaussian process meth-
ods: The informative vector machine. Advances in Neural Information Processing
Systems, 15:609–616, 2003.

[5] E. Snelson and Z. Ghahramani. Sparse Gaussian processes using pseudo-inputs. Ad-
vances in Neural Information Processing Systems, 18:1257, 2006.


