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Abstract4

In this paper we present a novel method for emulating a stochastic, or5

random output, computer model and show its application to a complex rabies6

model. The method is evaluated both in terms of accuracy and computa-7

tional efficiency on synthetic data and the rabies model. We address the issue8

of experimental design and provide empirical evidence on the effectiveness of9

utilizing replicate model evaluations compared to a space-filling design. We10

employ the Mahalanobis error measure to validate the heteroscedastic Gaus-11

sian process based emulator predictions for both the mean and (co)variance.12

The emulator allows efficient screening to identify important model inputs13

and better understanding of the complex behaviour of the rabies model.14

1 Introduction15

In many scientific and engineering problems complex simulators, based on mech-16

anistic and physical process driven models, are routinely used to solve complex17

problems. Such simulators are often computationally expensive, and full uncer-18

tainty analysis, sensitivity analysis or other probabilistic analysis becomes ex-19

tremely time consuming, effectively being computationally intractable. The most20

commonly applied solution is to create a meta-model for the simulator [5], often21

referred to as an emulator [3]. The role of the emulator can be seen to be ap-22

proximating the simulator. In most existing work emulator methods are applied23

to deterministic models, of the form y = f(x) where x represents the inputs to24

the simulator, y represents the outputs of the simulator, or some summary of25

these, and f represents the mapping imposed by the simulator evaluation. The26

probabilistic nature of the emulator, which is typically modelled as a Gaussian27

Process (GP) [3], arises from the approximation of the simulator due to having a28

finite number of simulator runs. In this paper we develop novel methods for the29

emulation of a stochastic simulator, a relatively new field [5].30
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A GP is defined as a collection of random variables, any finite subset of which31

has a joint Gaussian distribution [8]. It is completely defined by a mean and a32

covariance function, the specification of which allows the incorporation of prior33

knowledge in the emulation analysis such as the smoothness and differentiability34

of the approximated function, that is the simulator.35

Another issue commonly occurring in the context of complex datasets is that36

of experimental design [7]. We assess the efficiency of different designs, exam-37

ining the effect of replicate model evaluations, where the simulator is evaluated38

repeatedly for a single design point, against a more traditional space filling design.39

Utilizing the moments of the replicate evaluations allows for computationally effi-40

cient inference, and we empirically show that it also increases the accuracy of the41

heteroscedastic emulator, especially the (co)variance estimates.42

2 Stochastic emulation43

Relatively little work has addressed the question of the emulation of stochastic44

simulators. In this work we consider a stochastic simulator to be a mapping45

that produces random output given a fixed set of inputs. A recent review of the46

application of ‘Kriging’ (or GP regression) to emulation can be found in [5].47

Kleijnen and co-workers [5] have studied the problem of stochastic emulation48

closely, investigating queuing models. In the work of Kleijnen the emulator of49

stochastic simulators uses m repetitions of the simulator at each of the i design50

points. From this the mean response ȳi = 1
m

∑m
j=1 yi,j and the variance of the re-51

sponse S2
i = 1

m−1

∑m
j=1(ȳi−yi,j)2 are computed, where yi,j is the j’th realisation52

from the stochastic simulator, at the i’th design point. The main concern in [6] is53

modelling the mean response of the stochastic simulator. The variance estimates,54

S2
i are used to ‘Studentize’ the output with the transformation ỹi = ȳi/

√
S2
i /m

2,55

where they assume y has had any ‘large scale’ trend removed. A standard GP56

regression of the transformed output, ỹi, is then applied. The allowance for het-57

eroscedastic, i.e. input dependent, variance is limited to a small number of simple58

parametric models. In all the work on stochastic emulation very little attention59

is paid to the treatment of heterogeneity of the output variance. In this paper60

we extend the recent work of [4] to enable improved stochastic emulation of more61

complex models and test it on a rabies disease simulator.62

3 Heteroscedastic Modelling63

In this section we briefly describe our method. The reader is referred to [2] for a64

detailed description. Following [4], we define a GP on the mean model output Gµ65

and a second GP on the log variance of the model output, GΣ. We do not present66

the full GP inference framework here but note that in all experiments maximum67

marginal likelihood estimation was used for the covariance hyper-parameters. The68

notation used is: N the number of design points used during inference, D = {xi, yi}69

the training dataset, ni the number of replicate model evaluations at each design70

point location xi i ∈ [1, . . . , N ] and diag signifies a diagonal matrix.71
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The algorithm is initialized by estimating a homoscedastic GP which is fitted72

on the empirical mean values. This is treated as our initial estimate of Gµ. We73

proceed by estimating the variance GP GΣ. Where no replicate model evaluations74

are available for a design point xi, the predictive distribution of the mean GP Gµ75

is sampled to estimate the noise levels of the data [4]. In the case of replicate76

evaluations at xi the empirical variance S2
i is estimated directly. To correct for77

the biased estimate of the variance due to the log transformation we apply the78

correction: ri = log(S2
i ) + (di + di log(2) − Ψ(di/2))−1, where ri is the true log79

variance, di = ni − 1, and Ψ the digamma function.80

Finally the heteroscedastic GP Gµ is estimated to jointly predict the mean81

and variance. The predictive distribution equations for Gµ for M test points x∗82

are:83

E[y∗|x∗, D] = K∗(K +RP−1)−1y + ET β̄,

V ar[y∗|x∗, D] = K∗∗ +R∗ −K∗
T

(K +R)−1K∗ + ET (H(K +R)−1HT )−1E,

where y = [y1 . . . yN ] is the vector of outputs in the training set D, K is the84

covariance of training points, K∗ the cross-covariance between training and test85

points, K∗∗ the covariance of test points, H a set of fixed basis functions, β̄ =86

(H(K + R)−1HT )−1H(K + R)−1y the regression coefficients, E = H∗ −H(K +87

R)−1K∗, P = diag(n1 . . . nN ) the number of replicates at each training point, R =88

diag[r(x1) . . . r(xN )] and R∗ = diag[r(x∗1) . . . r(x∗M )] the variance estimate from89

GΣ at the training and test points respectively. We note that the non-standard90

RP−1 term in the predictive mean arises from the use of replicate evaluations.91

The algorithm is repeated until convergence.92

4 Experimental design analysis using synthetic data93

In this section we utilize our framework to assess the efficacy of different experi-94

mental design towards emulation accuracy on a synthetic dataset [10]. Our chief95

validation measure is the Mahalanobis error DMD = (y − t)′Σ−1(y − t), where96

t the vector of model outputs, y and Σ the predictive GP mean and covariance97

respectively. The Mahalanobis error assesses the goodness of the joint fit, both of98

the mean and covariance prediction [1].99

In this experiment the total number of model evaluations is kept fixed and we100

contrast a space-filling design with only single model evaluations against a more101

widely-spaced replicate design that has the same number of evaluations for all102

design points.103

The benefits of a replicate design can be seen in Figure 1 where the Mean104

Squared Error (MSE) and Mahalanobis error are shown for the different designs.105

There is little difference in terms of MSE signifying similar performance with106

regards to the prediction of the mean. The Mahalanobis error however reveals107

significant gains when replicate designs are used, reflecting an improvement in108

variance prediction. The replicate designs are also substantially faster to use from109

a computational perspective, i.e. inference time.110
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(a) Mean Squared Error (b) Mahalanobis

Figure 1: Comparison of emulator fit where the total number of model evaluations
is fixed at different levels. Notation is: 30T3 = 30 design points each with 3
replicates. Results shown for a total of 90, 300, 400, 600 and 1600 total number
of model evaluations.

4.1 Stochastic Rabies Model111

Although wildlife rabies was eradicated from large parts of Europe, there is a re-112

maining risk of disease re-introduction. The situation is aggravated by an invasive113

species, the raccoon dog (Nyctereutes procyonoides) that can act as a second ra-114

bies vector in addition to the red fox (Vulpes vulpes). The purpose of our rabies115

model is to analyse the risk of rabies spread in this new type of vector community116

[9]. The individual-based, non-spatial, time-discrete model incorporates popula-117

tion and disease dynamical processes such as host reproduction and mortality as118

well as disease transmission. These processes are modelled stochastically to reflect119

natural variability (e.g. demographic stochasticity). Thus model analysis (e.g.120

sensitivity analysis) has to deal with stochastic, indeed heteroscedastic, model121

output.122

The model output investigated in this study is the number of time steps to dis-123

ease extinction. This output is important in deciding on the response to a potential124

rabies outbreak. This output has a rather complex, non-Gaussian, distribution for125

a fixed input; in this paper we emulate the first two moments of the log extinction126

time, which is more approximately Gaussian, as evidenced from visual inspection127

of Q-Q plots.128

In Figure 2 we show the validation results of a single instance of our GP129

framework. The GPs were trained using a 1000 point Latin Hypercube design130

with a mixture of single and replicate model evaluations. A total of 4000 rabies131

model evaluations were used. In Figure 2(a), estimates of the ‘correct’ mean132

and standard deviation response (using 1000 repetitions) are plotted against the133

corresponding predicted values from Gµ.134

We finally explore the question of how the replicate framework compares to135

approximations often applied within GP inference. The projected process method136
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(a) Estimated (square) vs Predicted
(x) deviation and mean (+).

(b) Mahalanobis Error

Figure 2: (a) Emulating the rabies model using 1000 design points with a replicate
design. (b) Projected process ‘Kersting’ (4000) vs replicated design (1000).

utilizes all N training points but it only represents m < N latent function values,137

called support points, as an approximation to the full GP posterior [8]. In Fig-138

ure 2(b) the Mahalanobis error of applying the approximation on [4] using a 4000139

point space-filling design with m = 1000 support points is contrasted against the140

replicate method on a 1000 point space-filling design with 4 replicate observations141

at each design point. Both methods require approximately the same amount of142

computational resource, but the replicate observation method gives substantially143

better results, over 10 repetitions.144

4.1.1 Screening of the rabies model145

Lastly we consider using the replicate framework to perform screening which is146

often used as a preliminary stage in sensitivity analysis to remove clearly unim-147

portant factors. In our framework, screening can be accomplished quite intuitively148

by looking at the posterior values of regression coefficients and correlation length149

scales. Furthermore these effects can be decomposed for the mean process (Gµ)150

and variance process (GΣ).151

The three dominant factors (out of 14 model inputs) on the variance response of152

the rabies model in terms of linear effects and correlation length scales are shown in153

Table 1. We observe that density and mortality rates of raccoon dogs have strong154

linear effects (significantly higher regression coefficients than other parameters).155

With regards to correlation length scales which reveal non-linear and interaction156

effects, factors related to disease in the vector species appear influential.157

Table 1: Interpreting the variance emulator (GΣ) by looking at the regression
coefficients (Coeff) and correlation length scales (Scale).

Factor Coeff Factor Scale

Rac Density 0.1608 Rac Rabid 1.4281
Rac Death 0.0633 Fox Inf 1.4594
Rac Birth 0.0200 Fox Rabid 1.5047
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5 Conclusions158

In this paper we have presented a new approach to the emulation of stochastic159

models which improves upon existing methods both in terms of accuracy and160

computational efficiency. Our framework allows further analysis to be carried out161

in a straight-forward and efficient manner using the emulator as a proxy for the162

simulator. Examples of such analyses include screening and uncertainty analysis,163

where we have included a demonstration of the former on a rabies model. Further-164

more the computer model parameter space can be explored without the necessity165

of a large number of (computationally demanding) simulator runs. In combination166

with a discrepancy model and real-world observations, this method could facilitate167

the efficient statistical calibration of stochastic models.168
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